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Strength versus gravity

the existence of any differences of height on the earth’s surface is 

 decisive evidence that the internal stress is not hydrostatic. If the earth 

was liquid any elevation would spread out horizontally until it disap-

peared. the only departure of the surface from a spherical form would 

be the ellipticity; the outer surface would become a level surface, the 

ocean would cover it to a uniform depth, and that would be the end of us. 

the fact that we are here implies that the stress departs appreciably from 

being hydrostatic; …

H. Jeffreys, Earthquakes and Mountains (1935)

3.1 Topography and stress

Sir Harold Jeffreys (1891–1989), one of the leading geophysicists of the early twentieth 

century, was fascinated (one might almost say obsessed) with the strength necessary to 

support the observed topographic relief on the earth and Moon. through several books and 

numerous papers he made quantitative estimates of the strength of the earth’s interior and 

compared the results of those estimates to the strength of common rocks.

Jeffreys was not the only earth scientist who grasped the fundamental importance of rock 

strength. almost ifty years before Jeffreys, american geologist G. K. Gilbert (1843–1918) 

wrote in a similar vein:

If the earth possessed no rigidity, its materials would arrange themselves in accordance with the laws 

of hydrostatic equilibrium. the matter speciically heaviest would assume the lowest position, and 

there would be a graduation upward to the matter speciically lightest, which would constitute the 

entire surface. the surface would be regularly ellipsoidal, and would be completely covered by the 

ocean. elevations and depressions, mountains and valleys, continents and ocean basins, are rendered 

possible by the property of rigidity. 

G. K. Gilbert, Lake Bonneville (1890)

By rigidity Gilbert meant the resistance of an elastic body to a change of shape. He was 

well aware that this rigidity has its limits, and that when some threshold is exceeded earth 

materials fail to support any further loads. We call this threshold strength and recognize 

that this material property resists the tendency of gravitational forces to erase all topo-

graphic variation on the surface of the earth and the other solid planets and moons.
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Strength versus gravity50

the importance of strength is highlighted by a simple computation that Jeffreys included 

in his masterwork, The Earth (1952). this computation is summarized in Box 3.1, where 

it is shown that, without strength, a topographic feature of breadth w would disappear from 

the surface of a planet in a time tcollapse given by:

 

t
w

g
collapse =

π
8

 

(3.1)

where g is surface gravitational acceleration. Without strength, a mountain 10 km wide on 

the earth would collapse in about 20 seconds, and a 100 km wide crater on the moon would 

disappear in about 3 minutes. clearly, such features can and do persist for much longer 

periods of time.

Planetary topography, and the material strength that makes it possible, lend interest 

and variety to planetary surfaces. However, when seen from a distance, it is clear that 

the shapes of planets are, nevertheless, very close to spheroids. only very small aster-

oids and moons (Phobos and Deimos are examples) depart greatly from a spheroidal 

shape in equilibrium with their rotation or tidal distortion. thus, although the strength of 

planetary materials (rock or ice) is adequate to support a certain amount of topography, 

it is evidently limited. Such things as 100 km high mountains do not exist on the earth 

because strength has limits. the ultimate extremes of altitude on a planet’s surface are 

regulated by the antagonism between the strength of its surface materials and its gravi-

tational ield.

although everyone has an intuitive idea of strength, the full quantiication of this property 

is both complex and subtle. Many introductory physics or engineering textbooks present 

strength as if it were a simple number that can be looked up in the appropriate handbook. 

this impression is reinforced by handbooks that offer tables of numbers purporting to 

represent the strength of given materials. But further investigation soon reveals that there 

are different kinds of strength: crushing strength, tensile strength, shear strength, and many 

others. Strength sometimes seems to depend on the way that forces or loads are applied to 

the material, and upon other conditions such as pressure, temperature, and even its history 

of deformation. the various strengths of ductile metals, like iron or aluminum, typically do 

not depend much on how the load is applied, or how fast it is applied, but common planet-

ary materials behave quite differently.

Quantitative understanding of the relation between topography, strength, and gravity 

requires, irst, some elementary notions of stress and strain and, second, a more detailed 

understanding of how apparently solid materials resist changes in shape. this chapter intro-

duces the basic concepts of stress, strain, and strength before failure, and applies them to 

the limits on possible topography. It also introduces the role of time and temperature in 

limiting the strength of materials and the duration of topographic features. the next chapter 

examines deformation beyond the strength limit and the tectonic landforms that develop 

when this limit is exceeded.
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3.1 Topography and stress 51

Box 3.1 Collapse of topography on a strengthless planet

consider a long mountain ridge of height h, width w and effectively ininite length L standing 

on a wide, level plain. for simplicity suppose that the proile of the mountain is rectangular, 

with vertical cliffs of height h bounding both sides (figure B3.1.1). the surface gravitational 

acceleration of the planet on which this mountain lies is g, and ρ is the density of the material 

from which both the mountain and planetary surface are composed.

the weight of the mountain is ρghwL. If there is no strength, this weight (force) can only 

be balanced by the inertial resistance of material accelerating beneath the surface, according to 

newton’s law F = ma. the driving force F equals the weight of the mountain, F = ρghwL. the 

acceleration a is equal to the second time derivative of the mountain height, a
d h

dt
=

2

2
. the 

 

mass being accelerated is less easy to compute exactly, but it is approximately the mass 

enclosed in a half cylinder of radius w/2 beneath the mountain (this neglects the mass of the 

mountain itself, which is not strictly correct, but if h is small compared to w, the mountain 

mass is only a small correction). the mass is then m w L≈ π ρ
8

2
. this yields a simple, second-

order differential equation for the mountain height h as a function of time, t:

 

d h t

dt

g

w
h t

2

2

8( )
( ).=

π  
(B3.1.1)

this equation has the solution

 
h t h eo

t t
( )

/= − collapse

 
(B3.1.2)

where h0 is the initial height of the mountain and the timescale for collapse is given by:

 

t
w

g
collapse = π

8
.

 

(B3.1.3)

h

w

m

g

figure B3.1.1 the dimensions and velocity of a linear collapsing mountain of height h and 

width w on a strengthless half space of density ρ that is compressed by the surface gravity g 

on a luid planet. as the mountain collapses vertically it drives a plug of material of mass m 

underneath it that lows out through the dashed cylindrical surface.
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Strength versus gravity52

3.2 Stress and strain: a primer

a full exposition of the continuum theory of stress and strain is beyond the scope of 

this book. for the intimate details, the reader is referred to sources such as turcotte and 

Schubert’s excellent book Geodynamics (2002). a few simple concepts will sufice for a 

general understanding of planetary surface processes, although the actual computation of 

stresses under the different loading conditions illustrated later in this chapter requires an 

application of the full theory of elasticity.

3.2.1 Strain

Strain is a dimensionless measure of deformation. It is a purely geometric concept that is 

meaningful only in the limit where solids are approximated as continuous materials: all 

relevant dimensions must be much larger than the atoms of which matter is composed. 

Historically, the concept of strain was derived from measurements of the change in length 

of a rod that is either stretched or compressed. When a force is applied parallel to a rod of 

length l, its length changes by an amount Δl. the length change Δl is observed to be propor-

tional to the length l itself, so Δl depends on the size of the specimen being tested. a measure 

of deformation that is independent of the specimen size is obtained by taking the ratio of 

these two quantities to deine a dimensionless longitudinal strain as (see figure 3.1a):

 
εl

l

l
=

∆
.
 

(3.2)

a full description of extensional strain in a three-dimensional body requires three per-

pendicular longitudinal strains, one for each direction in space.

In addition to stretching or compression, a solid can also be deformed by shear, in which 

one side of a specimen shifts in a direction parallel to the opposite side. In the special case 

x

b

b
A

F s

p

l l

F
l

A
c

V

V

 (a)  (b)  (c)

figure 3.1 three varieties of strain. (a) longitudinal strain, in which a block of material of original 

length l and basal area Ac is extended an amount Δl by a force Fl. (b) Shear strain, in which the top 

of a block of height b is sheared a distance Δx relative to its base (to an angle θ) by a differential 

force Fs. (c) Volume strain, in which a block of original volume V is compressed an amount ΔV by 

a pressure p.
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3.2 Stress and strain: a primer 53

of simple shear the top of a layer of thickness b is displaced by a horizontal distance Δx 

from the bottom, while its thickness b remains constant. In this case the shear strain is 

deined as (figure 3.1b)

 
ε θs

x

b
= ≈

∆

 
(3.3)

where θ is the slope angle of the sheared material. this angle becomes exactly equal to 

Δx/b as Δx approaches zero. again, because space is three-dimensional there are three 

independent shear strains.

Mathematically sophisticated readers may note that the six strains are not vector quan-

tities, but form components of a 3 × 3 symmetric tensor. the three perpendicular lon-

gitudinal strains are the diagonal components and the shear strains are the off-diagonal 

components. an important theorem states that the coordinate axes can always be rotated 

to a system in which the strain tensor is diagonal. In this coordinate system all strains are 

 longitudinal, although some may be compressional while others are extensional. a gen-

eral 3 × 3 matrix has 9 components, not 6. the extra three (which form an antisymmetric 

tensor) correspond to pure rotations, which, because they do not cause distortions of the 

material, are wisely excluded from the deinition of the strain tensor.

finally, if all the dimensions are shrunk or expanded equally, the shape is preserved, 

but the volume V changes, and the resulting deformation is described by the volume strain 

(figure 3.1c):

 
εV

V

V
=

∆
.
 

(3.4)

there is only one volume strain and it depends entirely on the longitudinal strains, 

because it can be expressed as the sum of the three perpendicular longitudinal strains.

3.2.2 Stress

Stress is a measure of the forces that cause deformation. In the limit of small deformations 

it is linearly proportional to strain for an elastic material. Just as the strain is expressed as 

a ratio of the change in length divided by the length, to make it independent of the size 

of the test specimen, stress is expressed as the ratio between the force acting on the spe-

cimen and its cross-sectional area. Deined in this way, stress is independent of the size of 

the test specimen and has dimensions of force per unit area, the same as pressure. thus, if 

the cross-sectional area of a rod is Ac, and a force Fl is acting to stretch or compress it, the 

normal stress in the rod is deined as:

 

σ l

l

c

F

A
= .

 

(3.5)

Similarly to longitudinal strain, there are three normal stresses, one for each perpendicu-

lar direction of space.
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Strength versus gravity54

Stress is deined as positive when a rod is extended. this makes stress proportional to 

strain times a positive number. this is a sensible procedure and is used without further 

comment in engineering texts, in which positive stress is tensional. However, in geologic 

applications stresses are nearly always compressional. even when stretching does occur, it 

is often under conditions of an overall compressional background stress, so that the stress 

in the extended direction is simply less compressive than the other directions (in this case, 

the stress is often said to be extensional as opposed to tensional). for such applications it 

would obviously be simpler if compressional stress is taken as positive. However, such a 

convention complicates other simple relations in the full theory of stress and strain. Various 

geological authors have tried special deinitions to deal with this problem, although few 

have gone so far as to make the constants relating stress and strain negative. turcotte and 

Schubert, in their otherwise excellent book, actually switch conventions halfway through, 

and other authors recommend changing the sign of the strain deinition. the least drastic 

convention, and the one followed in this book, is to deine pressure as the negative of the 

average of the three perpendicular stresses, so that compressive (negative) stress always 

give rise to positive pressure. this means that a compressional stress acting on a rock mass 

is negative.

In close analogy to shear strains, the three shear stresses are deined as the ratio between 

a deforming force Fs and, in this case, the basal area of the sheared layer Ab:

 

σ s

s

b

F

A
= .

 

(3.6)

Just as for strains, stresses are components of a 3 × 3 tensor whose diagonal components 

are the normal stresses and the off-diagonal components are the shear stresses. (the three 

antisymmetric components of the full 3 × 3 tensor are torque densities, which almost never 

arise in practice. We do not consider them further.) Stresses are not vectors: the forces are 

vectors, but because the forces are divided by an area that also has a direction in space, the 

stresses are components of a tensor. Stresses, thus, do not point in some direction in space. 

However, it is always possible to rotate the coordinate axes such that the off-diagonal shear 

stresses are zero in the new coordinate system, and stresses are sometimes graphically rep-

resented as triplets of arrows of different lengths pointing in perpendicular directions. But 

beware! Such arrows cannot be added or subtracted in the same fashion as vectors!

finally, in the special case where the stresses are equal in three perpendicular spatial 

directions, the negative of the force per unit area (all directions are equivalent in this case) 

is deined as the pressure:

 
P

F

A
= − = −σ vol .

 
(3.7)

Because stresses, and stress differences in particular, play a major role in determining 

the ability of a solid to resist deformation, it is often convenient to single out the three 

perpendicular normal stresses in the special coordinate system in which the shear stresses 
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3.2 Stress and strain: a primer 55

vanish. these special stresses are called principal stresses and are frequently denoted σ1, 

σ2, and σ3 for the maximum (most tensional), intermediate, and minimum (most com-

pressive) normal stress directions – but be careful of stress conventions here: in geologic 

applications the maximum stress is often taken as the most compressive. So long as 

this is understood, it causes little dificulty. In the case of hydrostatic stress (pressure) 

these principal stresses are all equal. When there are three unequal deviatoric stresses the 

deinition of pressure in equation (3.7) is generalized so that p is equal to the negative 

average of the three principal stresses. this quantity plays a special role in the tensor 

description of stress because it is a rotational invariant, the (negative) trace of the stress 

tensor, divided by 3.

Because of the qualitatively different dependence of strength on pressure and shear, the 

stress is often separated into a component that depends only on differential stresses, called 

the deviatoric stress (often written as σ ′ – thereby forming a test of the readers’ attentive-

ness) plus the (negative) pressure. the principal stresses are then written as σ1′-p, σ2′-p and 

σ3′-p, whereas the shear stresses are the same as before.

the ultimate strength of many materials is often found to depend on the magnitude of the 

difference between the maximum and minimum principal stresses, |σ 1 − σ 3|, without any 

dependence on the intermediate principal stress. a somewhat more complicated measure 

of the total distortional stress that does take the intermediate principal stress into account is 

called the second stress invariant Σ2 (pressure is the irst invariant):

 
Σ2 1 3

2

1 2

2

2 3

21

6
= −( ) + −( ) + −( )



σ σ σ σ σ σ .

 
(3.8)

the factor of 1/6 under the square root is a conventional part of the deinition. there is 

also a third invariant, whose role in failure mechanics is more complex, and is not consid-

ered further in this text. these quantities are called invariants because their magnitude does 

not depend on the orientation of the coordinate system. once their values are established in 

one coordinate system, they are the same in all.

It may seem surprising that there is no shear stress term in either of these formulas: after 

all, it is common experience that solids break more readily in shear than under compres-

sion. However, shear actually is incorporated, although this may not be apparent. the rea-

son is that shear is one of those off-diagonal components that are intentionally eliminated 

by the coordinate rotation that brings the stress tensor to its diagonal form. It can be shown 

that a state of pure shear stress σs is equivalent to one in which the coordinate axes are 

rotated 45° and the principal stresses are σ 1 = −σ 3 = σs.

3.2.3 Stress and strain combined: Hooke’s law

english scientist (and newton’s arch-rival) robert Hooke (1635–1703) recorded some of 

the irst observations of the relation between stress and strain in 1665. Working mainly with 

springs (Hooke was really interested in clocks) that produce visible deformations under 
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relatively small loads, Hooke hypothesized a linear relation between longitudinal stress 

and strain, now known as Hooke’s law:

 σ l = E ε l (3.9)

where the proportionality constant E has dimensions of pressure and is generally known as 

young’s modulus, after a much later researcher who studied the extension of elastic rods. 

although it was once believed that a single elastic constant is suficient to describe the 

stress–strain relation for a given material, it was inally demonstrated in the early 1800s 

that at least two constants are necessary to characterize an isotropic solid (in fact, for a 

single crystal, up to 21 elastic constants may be necessary, but here we consider only the 

minimum required). the second constant is often taken to be the shear modulus μ that 

relates shear stress to shear strain:

 σ s = 2 μ ε s. (3.10)

the factor of 2 is a conventional part of the deinition that derives from the way shear 

strain is deined. Because there are two elastic constants they can be, and often are, com-

bined in various ways. for example, pressure and volume strain are related by a constant K 

usually known as the bulk modulus:

 p = −K ε V (3.11)

(note the minus sign because of the way pressure is deined). Because there are only two 

independent stress–strain constants, one of these three must obviously be a function of the 

others: It can be shown that E = 9Kμ/(3K + μ).

another useful combination is called Poisson’s ratio ν. In figure 3.1a the extended rod 

is illustrated as having contracted in the direction perpendicular to its extension. this is a 

real, observed effect (indeed, the case of pure extension, without lateral contraction, is very 

dificult to realize in practice as it requires tensional loads perpendicular to the extension 

axis to maintain a constant cross section). the dimensionless Poisson’s ratio is deined 

as the ratio between the amount of lateral contraction and the longitudinal extension of a 

laterally unconstrained rod. the deformation illustrated in figure 3.1a actually involves 

both a volume change and shear (change of shape), so that the young’s modulus contains 

contributions from both the bulk modulus and shear modulus. In terms of Poisson’s ratio, 

ν, the young’s modulus is E = 2(1 + ν)μ.

relations between stress and strain are generally known as constitutive relations. 

Hooke’s law was simply the irst of what is now understood to be a large class of possible 

relationships between deformation (strain) and applied force (stress). Such relations may 

also involve time: We will shortly meet the concept of viscosity (invented by newton) that 

relates the strain rate (the derivative of strain with respect to time) to applied stress. In 

modern times the study of the relation between deformation and stress has reached a high 

degree of sophistication. this ield is now known under the name of rheology. Because the 

materials that make up planets are complex, the rheologic properties of materials as diverse 

as rock, air, ice, and lava are crucial for an understanding of how the surfaces of planets and 

moons formed and continue to evolve.
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the mathematically convenient linear relation between stress and strain does not hold in 

all, or even in most, real situations: although stress and strain are always proportional for 

suficiently small deformations, when the deformation becomes large enough (and large 

may be a strain of only 0.001 – not even visible to the human eye!) the relation becomes 

non-linear and catastrophic failure of various kinds may occur (figure 3.2). nevertheless, 

the combination of simple constitutive laws, such as that of robert Hooke, and the require-

ment that both internal and external forces are in balance (often known under the name 

stress equilibrium) has been immensely fruitful in explaining the ability of planets to sup-

port topographic loads.

3.2.4 Stress, strain, and time: viscosity

Just as ideal elasticity is a useful limit describing the deformation of materials at small 

strains, so too is the concept of ideal viscosity. Isaac newton irst recognized viscosity 

on the basis of his extensive experimental studies, and proposed an ideal generalization 

of his experiments (in fact, newton proposed this property mainly to undermine his rival 

Descartes’ vortex theory of planetary motion). Ideal elasticity relates shear stress σs and 

shear strain εs by a linear equation. Similarly, ideal (or Newtonian) viscosity relates the 

shear stress and shear strain rate ε ̇ s through a single constant η, the viscosity:

 σ s = 2ηε ̇ s. (3.12)

Viscosity has dimensions of stress × time, or Pa-s in SI units. the rules for viscous 

low are somewhat more complicated than those of elasticity because the volume strain εV 

p
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figure 3.2 In a real solid, stress is linearly proportional to strain only for small stresses and strains 

(typically only up to a strain of about 0.001). Beyond this limit the relationship becomes non-linear. In 

this regime the low deformation may be reversible (non-linear elasticity) or non-reversible (plastic). 

at even larger strains the material may fracture, losing its strength suddenly in a brittle fracture, or 

continue to deform to large strains in ductile low.
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cannot be a function of time: If it were, the volume of a viscous substance under pressure 

would gradually decrease to zero! Discussions of viscous low must, therefore, pay careful 

attention to the difference between volume strain and shear strain. In most ideal models the 

volume strain is set equal to zero; this is called the incompressible limit. a more realistic, 

but mathematically more complex, approximation is to treat the volume strain as elastic 

and the shear strain as viscous.

3.3 Linking stress and strain: Jeffreys’ theorem

3.3.1 Elastic deformation and topographic support

the earliest and simplest models of topographic support are derived from applications of the 

classic theory of elasticity. this theory combines the full tensor deinitions of stress and strain 

with a linear Hooke-type relation between stress and strain (with just two elastic constants, the 

minimum number) and the stress equilibrium equations to derive a closed mathematical system. 

Within the context of this theory, one can show that, starting from an unstressed initial solid, the 

stress and strain throughout the solid are uniquely determined by the forces and displacements 

acting on its surface. thus, if we approximate a planet, or some well-deined portion of it, as an 

elastic solid, and treat the weight of topography as a load acting on its surface, the stress differ-

ences induced by the topography can be accurately computed throughout its interior.

of course, this is an unrealistically rosy picture of what is actually possible: the 

troubles come from the detailed conditions under which elastic theory is valid. Harold 

Jeffreys, to whom we owe many of the results that follow, was painfully aware of the 

limitations of the elastic model, and he devoted much effort to understanding both its 

successes and its failures. the irst dificulty is the obvious limitation of elastic behavior 

to small deformations. once failure or low occurs, elastic theory becomes invalid. In 

principle this can be addressed by numerical methods and is thus inconvenient but not 

insurmountable. the second, more insidious dificulty stems from the condition of an 

unstressed initial solid. all planetary surfaces with which we are familiar exhibit a long 

history of change, of repeated events that certainly exceeded the limits of linear elasti-

city. So to what extent can the near-surface material be considered initially unstressed?

all planetary materials have mass and all are subject to gravity, so at a minimum, the rocks 

beneath the surface must develop suficient stresses to support their own weight. However, 

even a liquid, without resistance to deformation (but still resisting volume change!) can 

support its own weight. It does this by compressing slightly and thus balancing the gravi-

tational force of the overlying material against the much stronger quantum mechanical 

forces that resist the close approach of atoms (gravity eventually wins this struggle in the 

stellar collapse to a black hole, but this is far outside the range of planetary processes). the 

stresses are hydrostatic in this case, and the pressure p a distance h below the surface of a 

body with uniform density ρ and surface gravitational acceleration g is given by:

 p = ρgh. (3.13)
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although such lithostatic pressures may be very large compared to the stress differences 

needed to cause rock failure, the large value of the bulk modulus K for most substances 

ensures that the associated volume strain is small. In this case, we can simply add the 

lithostatic stress and strain of the subsurface rock to that caused by other loads. this is a 

consequence of the linearity of the theory of elasticity: two solutions can always be added 

to give a third solution, so long as the boundary conditions of the third solution are the sums 

of those of its components.

If the rock beneath a planet’s surface crystallizes from a deep liquid mass, or is heated 

to such a high temperature that all differential stresses relax after some time, then the 

lithostatic stress state described above can be accurately considered to be the initial state 

and the response to any subsequent loads can be computed as elastic additions to this 

basic state. unfortunately, most planets are not so cooperative: In most cases one can-

not assume that all differential stresses were erased just before the latest episode of 

 topographic loading.

another elastic solution useful for describing an initial state is derived from the stresses 

that develop in an initially unstressed and very wide elastic sheet that is suddenly subjected 

to the force of gravity. the elastic sheet cannot expand laterally; it can only compress ver-

tically. In this case the principal stresses are not all equal (lithostatic), but the vertical stress 

σV and horizontal stresses σH differ in magnitude:

 

σ ρ

σ ν
ν

ρ

V

H

gh

gh

= −

= −
−1  

(3.14)

where ν is Poisson’s ratio, which can be no larger than 0.5. Poisson’s ratio for most solid 

rocks is close to 0.25, although it can approach 0.0 for loosely consolidated sediments. In 

this solution the magnitude of the horizontal stress is smaller than the magnitude of the ver-

tical stress. the difference between the horizontal stresses and the vertical stress increases 

linearly with depth and so, at some large enough depth failure must occur, but this is often 

so deep that the solution has great practical value.

alert readers may wonder that this solution has any practical value at all: the idea that 

a mass of rock might be assembled in the absence of gravity, which is afterwards magic-

ally turned on, seems so artiicial that it could not apply to any real situation. However, as 

demonstrated by Haxby and turcotte (1976), this is precisely the stress state that develops 

in a rock mass assembled from the gradual accumulation of a stack of thin, broad and ini-

tially stress-free layers. thus, the stresses that develop in a thick pile of lava lows, or in an 

accumulating sedimentary basin, are well described by this model. compilations of verti-

cal and horizontal stress measurements in the earth (McGarr and Gay, 1978) show that, in 

many places, such as southern africa or in sedimentary basins in north america, stresses 

are bounded between the lithostatic and ininite-layer results (this is not true everywhere: 

In canada and much of europe horizontal stresses are much larger than suggested by these 

solutions).
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Strength versus gravity60

although the two basic states just described are frequently useful, they are certainly not 

unique: through all six editions of The Earth, Jeffreys invariably emphasized that, due to 

the generally unknown history of previous deformation, there are an ininite number of 

stress and strain conigurations that are compatible with the presently observed topography. 

So why did he devote so much time and effort to obtaining elastic solutions when he did not 

believe that such solutions could be accurate? Jeffreys frequently cited a theorem he called 

Castigliano’s principle, which asserts: “of all states consistent with given external forces, 

the elastic one implies the least strain energy” (Jeffreys, ed. 6, appendix c). thus, to the 

extent that the forces acting below a planetary surface tend toward a minimum of energy, 

the elastic solution delineates the favored minimum. a second reason is that, although a 

given elastic solution may not represent the complete stress state, it does often indicate how 

the stresses change in response to a small change in the applied loads. for example, the 

formation of a distant impact crater or a change in planetary spin rate or tidal stresses may 

cause stress changes that are accurately described by an elastic deformation. In either case, 

the elastic solutions are of greater signiicance than the limitations of the strictly conceived 

elastic model would suggest.

3.3.2 Elastic stress solutions and a limit theorem

using the full theory of elasticity, stresses can be computed beneath various surface loads, 

assuming an initially hydrostatic initial state. contour plots of the second invariant Σ2 for 

four of these conigurations are shown in figure 3.3a–d. figures 3.3a–c apply to long 

loads intended to represent idealized mountain proiles, originally computed by Jeffreys. 

figure 3.3d shows the stress differences underneath an axially symmetric idealized impact 

crater with a depth/diameter ratio of 0.3.

although the patterns illustrated by these various solutions are diverse in detail, there 

are a number of similarities. Most obvious is that the maximum stress differences are not at 

the surface, but occur some distance below. thus, most of the weight of a sinusoidal series 

of mountain ridges is not supported by the strength of the material in the mountains them-

selves, but by material some distance below. this is an important lesson (one ignored by 

the builders of the tower of Pisa): foundations are important! the second important lesson 

is that the maximum stress difference is about 1/3 of the total load itself for all four cases 

illustrated. these results are summarized in table 3.1, where the depth to the maximum 

stress and the maximum stress differences for figures 3.3a–d are listed.

the irst lesson from these solutions, the isolation of the maximum stress region below 

the surface, is not strictly valid outside the domain of elastic solutions. More sophisti-

cated analyses, using the theory of plasticity described below, show that, although irst 

failure upon loading does, indeed, occur where the elastic solution predicts the max-

imum stress differences, once this failure has occurred the failure zone may work its 

way  toward the surface, especially if the load has sharp edges, as for a cliff or steep 

surface slope. the inal, visible failure may, thus, involve a surface landslide localized at 

one of these sharp edges. However, the region over which the strength of the material is 
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3.3 Linking stress and strain 61

exceeded is far broader than such a surface manifestation and is well delineated by the 

elastic solution.

the second lesson from the elastic analysis is more enduring. Generations of struc-

tural engineers have devoted their ingenuity to ways of extending their ability to analyze 

the maximum stresses that develop in any given structure. the results of this effort (and 

the subject of a huge literature of its own) are the so-called limit theorems. although 

theorems of this type do not give the user the detailed distribution of stresses in some 

complex structure (this must be done on a case-by-case basis using a full knowledge of 

the structure and its history of loading), they do give some overall constraints on how 
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figure 3.3 Stresses below various loads placed on an originally unstressed elastic half space. contours 

are of the second invariant Σ2 and are drawn at intervals of 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, and 

0.4 of the maximum load. these plots were constructed by summing the fourier components of 

the airy stress function that satisies the load boundary conditions. (a) Shows the differential stress 

magnitudes beneath a series of very long mountains with sinusoidal hills and valleys. (b) Stresses 

beneath a vertical-sided strip mountain. (c) Stresses beneath a long mountain with a triangular proile 

and (d) Stresses beneath a circular impact crater with depth/diameter ratio 0.3. Plots are not vertically 

exaggerated; horizontal dimensions are in units of the load width. the + sign marks the position of 

the stress maximum in each plot.
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Strength versus gravity62

strong materials must be to support some given load, independent of structure and history 

of construction.

as summarized by Jeffreys, structural limit theorems assure us that to support a surface 

load of order ρgh, somewhere in the body stresses between ½ and 1/3 of this load must be 

sustained. furthermore, this stress is generally supported at a depth comparable to the load 

width (exceptions to this depth rule, such as loads supported by strong, thin plates, usually 

imply stresses greatly in excess of the minimum).

this fundamental theorem is so important (and so often overlooked in the planetary lit-

erature!) that I set it out by itself for emphasis:

Jeffreys’ Theorem: The minimum stress difference required to support a surface load 

of ρgh is (1/2 to 1/3) ρgh. This stress is usually sustained over a region comparable in 

dimensions to the load.

of course, this theorem does not prevent much larger stresses from developing in speciic 

situations, but a given topographic load cannot be supported by any smaller stress diffe-

rence. the value of this theorem is that it can be linked to speciic strength models to obtain 

quick estimates of the maximum topographic variation to be expected on any given Solar 

System body, even when the speciics of interior structure and history are unknown. an 

example of this procedure is given in the next section.

3.3.3 A model of planetary topography

consider a generic planetary body (figure 3.4) of mass M, average radius R̅ and average 

density ρ̅. the surface acceleration of gravity g is:

 
g

G M

R
G R= − = −

2

4

3
π ρ

 
(3.15)

where G is newton’s gravitational constant.

table 3.1 Elastic stress differences, Poisson’s ratio ν = 0.25

load shape

Maximum stress  

difference Σ2/ρgh

Depth of maximum  

below surface

Sinusoidal strip, 

wavelength λ
0.384 0.289 λ

rectangular strip,

width w

0.352 0.865 w

triangular strip,

basal width w

0.305 0.388 w

axisymmetric crater,  

depth/diameter=0.3, diameter D

0.359 0.305 D
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3.3 Linking stress and strain 63

this relation is exact for a spherical body, and approximate for any other shape. If 

the surface has topography of order Δh, and its material is of density ρc, the surface load 

imposed by this topographic variation is about Δσ = ρcgΔh. applying Jeffreys’ theorem, a 

minimum stress of magnitude Y must be present somewhere in the body’s interior:

 
Y G R hc≈ =

1

2

2

3
∆ ∆σ π ρ ρ .

 
(3.16)

rearranging, we obtain an equation that relates the maximum topographic variation, Δh, 

to some measure of strength, Y.

 

∆h
Y

G Rc

≈
3

2

1

π ρ ρ
.

 

(3.17)

applying this equation to the earth, take ρ ̅ = 5200 kg/m3, ρc = 2700 kg/m3, R ̅ =  

6340 km. We ind:

 Δhearth (m) ≈ 80.4 Y (MPa). (3.18)

taking Y ≈ 100 MPa, which is about the crushing strength of granite, we see that the 

earth can support abut 8 km of topography – not far off the 8850 m height of Mount 

everest or the 11 000 m depth of the Marianas trench, when the buoyancy of submerged 

rock is taken into account. However, the dependence of Δh on 1/R ̅ means that, if Y is the 

Rmin
ρc g

Rmax

CM

M, ρ

R

∆h

figure 3.4 a simple model of the gravitational forces in an irregular self-gravitating body such as an 

asteroid. the average radius is R ̅ and the maximum and minimum radii for points on the surface are 

Rmax and Rmin from the center of mass cM. the mean density of the object is ρ ̅.
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Strength versus gravity64

same for all the terrestrial planets, we should expect 8 km high mountains on Venus, 24 

km high mountains on Mars and 50 km high mountains on the Moon. as shown in figures 

2.3b and 2.3e, this is not far off for Venus and Mars, but is more than twice the observed 

topographic range on the Moon in figure 2.3d. evidently strength is not the major factor 

limiting the Moon’s topography: History must play a role, too.

applying this model for topography to the smaller bodies of the Solar System, such as 

Phobos, this rock strength limitation leads to ridiculous conclusions about the topographic 

ranges on these bodies (see Problem 3.1 at the end of the chapter). one might be tempted 

simply to give up and look for factors other than strength that limit topography. However, 

as we shall see in the next section, a better appreciation of the concept of strength lets us go 

considerably farther down the strength limitation path. In particular, we need to appreciate 

the laws that govern the strength of broken rock.

3.4 The nature of strength

3.4.1 Rheology: elastic, viscous, plastic, and more

rheology is the study of the response of materials to applied stress. although stemming 

from roots in prehistory, e. c. Bingham (of whom we will learn much more in chapter 

5) irst established it as a scientiic discipline in the 1930s. It is not a simple science: real 

materials are complex and so is their detailed description. However, much of this com-

plex behavior can be understood in terms of the properties of a number of simple ideal 

materials, which are then compounded to approximate real substances. We have already 

described ideal elastic and viscous substances. a third ideal behavior is implicit in the idea 

of strength: an ideal plastic substance is one which does not undergo any strain at all until 

the strength reaches some limiting value, after which the strain increases to any  extent con-

sistent with other constraints on the material. of course, no real material behaves in this 

way, but many materials do not undergo any very large strains until some limiting stress 

is reached, after which strain increases rapidly. a slightly more realistic model is to com-

pound elastic behavior with plastic yielding to arrive at an elastic-plastic substance that 

responds to applied stress as an ideal elastic material until the stress exceeds some limit, 

after which its strain is limited only by system constraints. then we could add materials 

whose elastic strain depends on a non-linear function of stress. We can add time depend-

ence by coupling elastic and viscous behavior. and so on.

this section explores some examples of such compound behavior relevant to understand-

ing planetary topography and its long-term evolution. the irst topic we examine is the 

ultimate limits to topographic heights, after which we will look at more realistic limits.

3.4.2 Long-term strength

The ultimate strength of atomic matter. a full understanding of the strength of matter was 

achieved only in the mid-twentieth century. Despite the triumphs of quantum mechanics 

in explaining the bulk properties of matter in the early twentieth century, an explanation of 
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3.4 The nature of strength 65

strength came much later. the earliest modern attempt to compute the strength of materi-

als from basic principles was a mitigated disaster: yakov frenkel (1894–1952), in 1926 

(frenkel, 1926), constructed a simple model of shear resistance (see Box 3.2 for his deriv-

ation) that relates the ultimate strength, Yultimate, of a material to its shear modulus μ:

 Yultimate = μ/2π. (3.19)

Box 3.2 the ultimate strength of solids

the irst estimate of the theoretical upper limit to the strength of a solid was formulated by 

yakov (a.k.a. Jacov or James) frenkel (1926). frenkel started from the fact that atoms in a 

crystal lattice are uniformly spaced at the interatomic distance a. When a solid is subjected to 

shear strain, each plane of atoms parallel to the direction of the strain shifts a small distance 

u with respect to the plane immediately above or below. the net shear strain is thus given 

by εs = u/a, and is numerically the same at both the atomic and macroscopic scales (see 

figure B3.2.1). the force resisting this deformation increases as one plane of atoms shifts 

over the adjacent plane, because the length of the bonds between each atom and its neighbor 

increases. However, when the deformation becomes so large that the atoms of adjacent planes 

are midway between lattice sites (that is, at a strain εs equal to ½), the attraction to the next 

atom in the adjacent plane equals the attraction from the shifting atom’s previous neighbor and 

the resistance to deformation drops to zero. further deformation brings each atom into closer 

proximity to its new neighbor. new bonds form: the atomic plane snaps into a new position, 

jumping forward by one atomic step.

the force between adjacent atomic planes of a strained crystal is thus periodic, with a repeat 

distance equal to the interatomic spacing. frenkel assumed that this periodic function would 

be the simplest that he could think of: a sine function. He set the force resisting deformation 

equal to a constant times sin (2πu/a). Because the maximum value of the sine function is 

1 (when u = a/4), the constant equals the ultimate strength of the crystal, Yfrenkel. thus, he 

supposed that the shear stress is given by:

 

σ π πεs sY
u

a
Y= 





=frenkel frenkelsin sin( ).
2

2

 

(B3.2.1)

to determine the constant, he noted that very small deformations are elastic, and in this 

limit σs = μεs. expanding the sine function for very small arguments yields frenkel’s relation 

for the ultimate strength of a solid in terms of the shear modulus μ,

 
Yfrenkel = μ

π2
.
 

(B3.2.2)

although defect-free solids such as ine whiskers and carbon microtubules can approach this 

limit, table 3.2 shows that frenkel’s limit greatly overestimates the strength of real materials, 

even for rocks at high conining pressures.

accurate computation of the actual strength of materials is not yet possible, so that 

measurement and empirical estimates are still necessary to determine the strength of a real 

substance under conditions of interest to planetary science.
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figure B3.2.1 the theoretical limit to the strength of a solid, based on the model of yakov 

frenkel. the graph on the top shows the sinusoidal dependence of shear force on shear strain, 

indicating that it is a periodic function of lattice displacement. the lower part of the igure shows 

the deformation of a lattice at three different strains, correlated with points on the force–strain 

plot above by the circled numbers: (1) is the undeformed solid, (2) has been subjected to a small 

strain, while (3) indicates a strain so large that the atoms in the solid are again in register with 

their neighbors, so that the shear force vanishes.

Box 3.2 (cont.)

the shear modulus has been measured for a large variety of materials. It is a bulk 

property that can now be computed from irst principles for many single crystals. 

although frenkel’s formula is elegantly simple, it is also grossly inadequate: as shown 

in table 3.2, the actual measured strength of most materials is a factor of 100 or more 

smaller than the frenkel limit. nevertheless, the frenkel limit is not wholly wrong or 

useless: the strength of a few materials, such as carefully prepared single crystals or 

ine carbon ibers, does approach this limit. However, the frenkel limit clearly does 

not capture the factors controlling the strength of the materials we are likely to meet in 

planetary interiors.

the principal shortcoming of frenkel’s strength estimate is its neglect of defects. rocks 

are composed of crystals of individual minerals. While the crystals themselves might be 

strong, they are bonded through weaker surface interactions. Most igneous rocks, such as 

granite or basalt, have cooled through a large range of temperatures and, because of the 

different thermal expansion coeficients of their constituent minerals, tiny grain-boundary 

cracks develop in abundance. Sedimentary and metamorphic rocks also contain vast num-

bers of microscopic cracks and weak bonds between individual grains. all rocks contain 
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macroscopic cracks in the form of joints. In addition to cracks between mineral grains, the 

minerals themselves inevitably contain arrays of a peculiar sort of strength-related line 

defect called dislocations. first described in the 1950s by engineers studying the creep 

elongation of turbine blades in high-temperature jet engines, dislocations low under 

stresses far below the frenkel limit. It is only by studying the properties and interactions of 

entities such as cracks and dislocations that progress has been made in understanding the 

practical limitations on the strength of materials.

although the strength of materials is a large ield of endeavor in itself, one too vast to 

cover in this book (references for this literature are provided at the end of this chapter), the 

basic take-away lesson is that defects rule the macroscopic strength properties of materials. 

one cannot expect planetary materials to be stronger than a small fraction of the frenkel 

limit. and, in spite of a half-century of progress in understanding the fundamental basis of 

strength, there are so many complex contributing factors that the strength of a particular 

material under given conditions of pressure, temperature, and chemical environment is still 

best determined by experiment.

traditional material science focuses on the strength properties of metals. only recently 

have the much more complex problems presented by the strength of ceramics and geologic 

materials, such as rocks, become amenable to rational explanation. naturally, experiment-

ers did not wait for theoreticians to make up models of the strength of rock, so that much 

of our present understanding is based upon empirical observations.

Built upon sand: The strength of broken rock. Most experts on asteroids now believe that 

all but the very smallest asteroids (bigger than a few tens of meters in diameter) are better 

described as fragmented rubble piles than as solid chunks of rock. unlike solid rock, rubble 

table 3.2 Theoretical vs. observed material strength

Solid material

yultimate

= μ /2π (GPa)a

yobserved

at p = 1 and 5 (GPa)b

Iron, fe 13.0 0.11–1.0

aluminum, al 4.14 0.10–0.30

corundum, al2o3 25.9 0.26–0.92

Periclase, Mgo 20.9 0.14–1.07

Quartz (opal), Sio2 7.08 0.35–1.8

forsterite, Mg2Sio4 12.9 1.13 (p = 0.5 GPa)c

calcite, caco3 5.09 0.27–0.84

Halite, nacl 2.34 0.09–0.29

Ice, H2o 0.54 0.20–1.0d

a elastic moduli from Bass (1995).
b at 23°c from Handin (1966) table 11–9, except as noted.
c at 24°c Handin (1966), table 11–3, Dun Mtn., nZ, peridotite.
d at 77–115 K; extrapolated from Beeman et al. (1988).

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9780511977848.004
Downloaded from http:/www.cambridge.org/core. University of Chicago, on 04 Jan 2017 at 02:46:58, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511977848.004
http:/www.cambridge.org/core


Strength versus gravity68

piles have no tensile strength. their entire ability to resist changes in shape depends on the 

frictional forces acting across the rock–rock contacts between their components.

coulomb in 1785 irst formulated the laws governing the mechanical behavior of a mass 

of broken rock (or a pile of sand). Because the frictional resistance at a rock–rock con-

tact is proportional to the force pushing the rocks together, the strength of a mass of bro-

ken rock is proportional to the pressure. this fact was irst clearly stated by leonardo da 

Vinci (1452–1519) in the ifteenth century, but not published by him. Guillaume amontons 

(1663–1705) in 1699 resurrected this relation from da Vinci’s codices. this behavior is in 

stark contrast to the strength of ductile metals, such as aluminum or steel, which is nearly 

independent of pressure. Many experimental studies of the strength of sand or soil show 

that the mass begins to yield when the applied shear stress σs reaches a constant fraction of 

the overburden pressure p:

 |σ s| = ff p = tan φ f p (3.20)

where ff is the coeficient of friction and φ f is the related angle of internal friction. this 

angle is also closely related to φ r, the angle of repose, which is the maximum steepness of a 

slope composed of this material (See Section 8.2.1 and table 8.1 for more on internal fric-

tion). this coeficient is typically about 0.6 for most geologic materials (including water 

ice well below its freezing point), making φ f about 30°.

applying this formula to a model of small-body topographic support, the most obvious 

evidence of topography on small bodies is the difference between their longest and shortest 

dimensions, Rmax − Rmin (refer back to figure 3.4) this out of roundness corresponds to a 

load of breadth comparable to the mean radius of the body itself, R ̅. the stress support-

ing this load is, thus, localized deep within the body. the average pressure in the center 

of a homogeneous body (ρc = ρ̅) is p g Rctr = 1

2
ρ , so that the strength, Y, or resistance to

 

yield, is Y ≈ ff pctr. Inserting this into the equation for Δh, we ind that a small-body model 

of strength implies:

 Δhsmallbody ≈ ff R̅. (3.21)

another way of deriving the same result is to note that a constant coeficient of friction 

implies a constant angle of repose, which is nearly equal to the angle of internal friction. 

Imagine a hypothetical, maximally out-of-round asteroid constructed in such a way that 

every slope on its surface is at the angle of repose in its local gravitational ield (such a 

shape has now been constructed by Minton, 2008). although the precise shape is complex, 

it is clear that, in traversing the surface of the asteroid from equator to pole, a distance of 

(π/2)R ̅, up (or down) a constant slope of angle φr, an elevation change of the order of (π/2)R̅ 

tan φr must take place. this yields essentially the same Δhsmallbody as above.

this small-body topography model predicts that the maximum fractional deviation from 

sphericity, (Rmax − Rmin)/R̅, is actually independent of size. this is in strong contrast to the 

constant-strength model derived for the earth, which suggests that, as a body becomes lar-

ger, its shape becomes relatively closer to a spheroid because ( ) / ∝ /max minR R R R ,− 1 2
 so 

that the ratio decreases as R ̅ increases.
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How do these model predictions fare against reality? figure 3.5 plots the maximum frac-

tional deviation from sphericity against mean radius for a variety of Solar System objects. 

It is clear that the topography of the smaller bodies does, indeed, follow a law that suggests 

the dominance of frictional strength. there is no obvious tendency for the fractional topo-

graphic deviation to decrease with increasing size. However, at a radius of about 200 km 

the frictional relationship breaks off and the maximum topographic deviations of the larger 

planets and moons decrease sharply with increasing diameter, following an approximate 

1/R2̅ dependence on the log–log plot. for these large objects greater size does imply greater 

smoothness. the trend of the curve for larger planetary objects suggests that the ultimate 

strength of planetary crusts is about 0.1 GPa.

the constancy of the maximum fractional deviation for small objects is a direct con-

sequence of the ability of pressure to increase the strength of broken rock materials. 

obviously, however, this frictional increase in strength has its limits. this fact is also clear 

from laboratory measurements of rock strength: as shown in figure 3.6, the frictional 

 regime holds up to some maximum stress, generally a few GPa, when the intrinsic strength 

of the rock is reached and yielding occurs in spite of increasing overburden pressures. as 

in the large–planet topography model, it seems that the ultimate limit to topography lies 

in the ultimate ability of matter to resist deformation. It is thus worth inquiring just what 

determines this resistance.

David Griggs and the strength of rocks. the most obvious feature of the rocks outcrop-

ping on the surface of the earth is that they are pervaded by fractures at all scales. How 

these fractures actually form, however, is much less obvious. It took many years before 

experimenters could reproduce the pressures and temperatures existing in the earth’s 
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figure 3.5 the ratio of the maximum elevation difference to the radius for various Solar System 

bodies as a function of diameter. up to a diameter of about 200 km, this ratio is nearly constant, as 

expected for rubble piles supported only by frictional strength. above this diameter the ratio falls off, 

consistent with an ultimate planetary crustal strength of about 0.1 GPa. the solid dots are silicate 

bodies and the open circles are icy. the data suggests that icy bodies are weaker than silicate objects 

although they have similar friction coeficients.
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Strength versus gravity70

interior and come to an understanding of how rocks break. Indeed, this is still an active area 

of research in the earth sciences. David Griggs (1911–1974) was one of the irst people to 

systematically investigate rock fracturing under high pressures and temperatures. Griggs’ 

interest in geologic processes began as a boy, when he accompanied his father, geologist 

robert Griggs, on a national Geographic expedition to study the deposits of the fam-

ous 1912 eruption of Mount Katmai in alaska (Griggs, 1922). from his experience in 

the ield, David decided to study how rocks break deep within the earth. He sought out 

Percy Bridgeman at Harvard university and signed on as his graduate student in 1933. 

Bridgeman’s laboratory was one of the few places in the world where pressures approach-

ing those deep in the earth’s crust could be attained.

Griggs eventually perfected an apparatus widely known as a Griggs’rig that could both 

compress and heat a small rock sample, typically a cylinder a few centimeters in length and 

diameter, while subjecting it to controlled differential stresses. continuing his work after 

World War II at ucla, and accompanied by a growing number of similarly motivated 

experimenters, he showed that, unlike metals, the fracture strength of rock is a strong func-

tion of both pressure and temperature.

It has long been known that metals and alloys, such as iron or steel, fail at similar stresses 

under both compression and tension. Ideal plasticity is a useful approximation to metal 

failure, in which half the stress difference at failure (equivalent to the shear stress through 

a coordinate rotation) is assumed to be a constant Y, the yield stress:
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figure 3.6 yield stress of a typical intact rock specimen (heavy line) described by the lundborg 

strength envelope, equation (3.23). note the substantial tensional strength (equal to Y0 / 2 by the 

Brace construction, which is, nevertheless, weaker than the extrapolation of the lundborg strength 

envelope, shown by the dotted line, would suggest) indicated on the negative pressure axis. Shown 

also as a heavy dashed line is the yield curve for a fractured rock specimen for which the shear 

resistance is entirely due to friction.
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3.4 The nature of strength 71

the yield stress of metals is, to a good approximation, independent of pressure and 

strain, although it declines with increasing temperature. Because of its utility in engin-

eering, the theory of failure of ideally plastic materials is highly developed, in spite of 

serious mathematical dificulties that stem from this very lack of dependence on strain 

(Hill, 1950).

experimental studies of rock fracture show, however, that the strength of rock depends 

very strongly on pressure, at least up to pressures approaching 5 GPa (50 kilobars). 

Many analytic representations of the failure strength of rock have been proposed; among 

them, one that seems to it many materials was suggested by lundborg (1968) for 

unfractured rock:
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(3.23)

where Y0 is the strength at zero pressure, often called cohesion, and YM is known as the von 

Mises plastic limit of the material. YM limits the maximum stress that can be achieved at 

arbitrarily high pressure. the lundborg form of the failure law is illustrated in figure 3.6 

and some representative values of the parameters are listed in table 3.3.

although the lundborg law, and others like it, gives a good description of the failure of 

rock over the full range of pressures from very low to very high, much more data has been 

collected in the฀low pressure regime where a linear version is generally adequate. thus, 

when p << YM,

 
σ s f MY f .p p Y0 + <<    for    

 
(3.24)

table 3.4 lists representative values of Y0 and ff for a small number of materials, ranging 

from a hard igneous rock (at crustal temperatures) to weak sedimentary rock.

table 3.3 Lundborg strength parameters for representative rocks

rock

friction  

coeficient, ff

cohesion,  

Y0(MPa)

Von Mises plastic  

limit, YM, (MPa)

Granite I 2.0 60 970

Granite II 2.5 50 1170

Quartzite 2.0 60 610

Gray slate 1.8 30 570

Black slate 1.0 60 480

limestone I 1.2 30 870

limestone II 1.0 20 1020

Sandstone 0.7 20 900

Data from lundborg (1968).
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Strength versus gravity72

the sloping, low-pressure portion of the failure law illustrated in figure 3.6 is superi-

cially similar to that of sand. However, in this case the pressure coeficient ff is less obvi-

ously related to friction, although it is often referred to as a coeficient of internal friction, 

presumably because it is dimensionless and relates strength linearly to overburden pressure, 

as does the true friction coeficient. numerically, it is also similar to the coeficient of rock-

on-rock friction, although the reader should not confuse the two: ff is the (approximate) 

linear slope of the strength envelope that deines the stress conditions under which intact 

rock fails, whereas fB is the (static or starting) coeficient of friction of a pre-existing planar 

rock fracture sliding over another. the difference between these two curves is responsible 

for the brittle–ductile transition that gives rise to discrete faults in rock, as will be discussed 

in more detail in Section 4.6.1.

extensive tables of the strength envelopes of rocks under various conditions can be found 

in Handin (1966) and lockner (1995). the ultimate strength limit of about 0.1 up to 1 GPa 

for real rocks is in fair agreement with the observed trend of topographic deviations on the 

larger planets illustrated in figure 3.5. It, thus, appears that we presently have a good irst-

order understanding of the strength properties of planetary bodies, although many details 

remain to be worked out.

the presence of pre-existing fractures in most large rock masses greatly complicates ana-

lyses of the strength of rock. the actual strength of a large volume of rock generally lies some-

where between that of intact rock and that deined by the coeficient of friction (the dashed 

line in figure 3.6). a constant value of the friction on a pre-existing fracture, fB  0.85 (up to 

a mean pressure p of about 100 MPa; the slope is somewhat less at larger pressure) is often 

known as Byerlee’s law after the researcher who showed that this value describes the friction 

of a wide variety of rock surfaces (Byerlee, 1978). In its exact form Byerlee’s law states:
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(3.25)

where σn is the normal stress across a fracture, σs is the shear stress and all stresses are in 

megapascals.

table 3.4 Low-pressure failure envelope for representative rocks

rock friction coeficient, ff cohesion, Y0(MPa)

Westerly granite @ 500°c 0.6 50

Pennant sandstone @ 25°c 0.97 35

limestone @ 25°c 0.75–1.6 3.5–35

Siltstone @ 25°c 0.55 21

chalk @ 25°c 0.38 0.9

Data from Handin (1966).
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3.4 The nature of strength 73

note that the mean pressure, p, in equation (3.23) is somewhat confusingly equal to the 

negative of either one-half of the sum of the maximum and minimum principal stresses, 

or (more correctly, if less frequently seen) to one-third of the sum of all three principal 

stresses. a similar equation is often written in which, in the location occupied by the term 

p in equation (3.23), a term for the normal stress acting across the failure plane appears 

instead. Byerlee’s law is strictly valid only for this normal stress. the disadvantage of this 

formulation is that the failure plane must be known before the equation can be applied. 

thus, for the present goal of deining a strength envelope, a formulation in terms of stress 

invariants (pressure and shear stress) is preferable. the wary user of data tables is careful 

to make sure which deinitions are in use before accepting a given coeficient of internal 

friction at face value!

the mean pressure, p, in the equation (3.23) must be modiied by subtracting the pore 

luid pressure, p → p − pf, when the rock is pervaded by a luid that itself is at some hydro-

static pressure pf. this modiication is very important when a luid such as water or oil on 

earth, or methane on titan, is present. It was irst introduced by terzaghi (1943) for soils, 

and by Hubbert and rubey (1959) for rocks. Its detailed implications are the subject of a 

large literature. It will be discussed further in Section 8.2.1, but sufice it to say now that 

high luid-pore pressures cause substantial weakening of rock through this pressure sub-

traction effect.

the coeficient Y0 in equation (3.23) is the zero-pressure strength or cohesion. 

Mathematically, it is the intercept of the strength envelope with the zero-pressure axis (see 

figure 3.6). Physically, it represents the adhesion of crystals in the rock to one another and 

can range from only a few megapascals for weak sedimentary rocks to several tenths of a 

gigapascal for intact granite. It is strongly affected by pre-existing cracks in the rock and 

drops to zero in a fully fractured rock mass. an extrapolation of this line to negative values 

of p intercepts the pressure axis (zero shear stress) at pT = −Y0 /ff. this intercept corresponds 

to the tensile strength of the rock. the linear extrapolation yields an overestimate of the 

actual yield stress by a factor of two to three: More sophisticated models based on crack 

theory (Brace, 1960) give a different, and more accurate, analytic form for tensile stresses 

that is indicated by the heavy yield curve on figure 3.6.

the slope of the failure curve decreases at large values of the average pressure, and the 

maximum shear stress that the rock can sustain approaches a constant YM, independent 

of pressure. this rollover occurs when the frictional stress of sliding on inter- and intra-

crystalline cracks approaches the intrinsic strength of the individual crystals. a full under-

standing of this process is still under development, but the general outlines are now in fairly 

good agreement with observations (ashby and Sammis, 1990). this change in the depend-

ence of the strength on pressure is known as the brittle–ductile transition, for reasons that 

will be discussed in more detail in the next chapter, Section 4.6.1. It occurs at, or near, the 

point where the failure curve for fractured rock crosses that for intact rock in figure 3.6.

the ultimate yield stress YM in equation (3.23) is, as shown in figure 3.6, still far 

below the frenkel limit because of intra-crystalline defects such as dislocations. although 

 independent of pressure, by deinition, it does depend strongly on temperature. there is 
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Strength versus gravity74

no universal law for this temperature dependence, which must be determined empirically, 

but it is clear that the strength must vanish at the melting temperature, Tm. using this hint, 

a widely used approximation to the temperature dependence is to multiply both Y0 and YM 

by the same factor:
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(3.26)

which assures that the strength falls to zero as the temperature approaches the melting 

point. the exponent in this relation is purely empirical, chosen to it a large body of data 

on both metals and rocks.

3.4.3 Creep: strength cannot endure

David Griggs and the low of rocks. When David Griggs began his now-classic work in 

1933 he was already the veteran of many geologic ield excursions and knew from personal 

experience that the rocks of the earth’s crust often show signs of large amounts of deform-

ation without fracture. this luid-like deformation had long been attributed to the high 

pressure and temperature within the inaccessible depths of the earth, but no one understood 

the rates or conditions under which this low occurred. Griggs began his lifework with a 

relatively simple apparatus that measured the slow deformation of rocks under an applied 

load as a function of time, initially working at room temperature and pressure (figure 3.7). 

although he found that most rocks deform elastically only for periods of time less than a 

year, he discovered a few that exhibited slow pseudoviscous low or creep according to a 

simple law relating the strain ε and time t:

 ε = A + B log t + C t (3.27)

where the constant A represents instantaneous elastic deformation, B a kind of decelerating 

creep now often called primary creep, and C is the rate of steady, long-term low. although 

the primary creep term is important for short-term low processes, such as the response to 

luctuating tidal stresses or the small strains that accompany planetary reorientation and 

spin changes, most geologic interest centers on the third, steady-state term, because it rep-

resents deformation that increases steadily with increasing time, apparently without limit. 

In this respect the low of rocks resembles that of more familiar viscous liquids, such as 

honey, motor oil or tar.

Sixty years of subsequent research by Griggs and a large cadre of laboratory geologists 

who recognized the importance of this research has shown that the rate of steady-state 

creep is a function of stress, temperature, and pressure, as well as rock composition, grain 

size, presence or absence of water, trace elements, and a host of other factors. Most creep 

experiments can be it by a formula of the form:
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3.4 The nature of strength 75

where Ac is a constant with dimensions (stress)–n time–1, σ is deviatoric stress, n a dimen-

sionless constant, Q* is activation enthalpy (this term incorporates most of the pressure 

 dependence because Q* = E* +฀pV*, where p is pressure and E* and V* are constants), 

R the gas constant, and T is absolute temperature. the dot over the strain ε, following 

newton’s luxion notation, indicates differentiation with respect to time.

It is often convenient to express the rate of steady-state creep, equation (3.28), in terms 

of an effective viscosity, even though it depends on the stress level. adapting the deinition 

of viscosity, equation (3.12), the effective viscosity ηeff is deined as:
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figure 3.7 Schematic representation of a creep experiment on rock, similar to Griggs’ 1933 room-

temperature measurements. (a) the test specimen, of original length l, is mechanically loaded (by a 

weight and a lever) while its delection is measured on a sensitive scale. (b) Schematic creep curve, 

showing strain as a function of time after loading. the curve shows three distinct portions after the 

initial elastic delection: a period of decelerating creep, a long period of steady creep and, for lab 

specimens, a inal acceleration just before rupture.
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Strength versus gravity76

this deinition of viscosity generalizes newton’s original deinition, which applies to the 

case n = 1. It has now become common to refer to the case n = 1 as “newtonian viscosity” 

and to use the term “viscosity” in the broader sense for any value of n, as long as it refers 

to a low law in which the strain rate is a function of stress.

unlike viscous liquids, the power n relating stress and strain rate is usually larger than 

1 for creeping rocks and minerals, justifying the use of the term “pseudoviscous” for this 

kind of low. Doubling the stress on materials such as ice or olivine may cause the creep 

rate to increase by a factor of 10, in strong contrast to ideally viscous materials in which 

the creep rate only doubles. It is also important to realize that creep rate depends exponen-

tially on the temperature. although rocks deform very slowly at low temperatures, as the 

temperature climbs toward the melting point the creep rate increases rapidly (by as much 

as a factor of 10 for each 100°c increase in temperature for many rocks). a useful approxi-

mation is that for most materials, creep rates become important over geologic time periods 

(millions of years, which implies ε ̇ steady ≈ 10−13 s−1 or less) when the temperature reaches 

one-half the melting temperature, T ~ 1/2Tm. a useful simpliication of the temperature 

dependence of the creep rate is to absorb the activation energy and melting temperature 

into a constant g and express the temperature as the dimensionless ratio T/Tm, the homolo-

gous temperature:
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= =
−ε σsteady .

 
(3.30)

table 3.5 gives typical values for Ac, n, Q*, Tm, and g for a few materials of geologic and 

planetary interest.

extensive tables, such as that of Kirby and Kronenberg (1987a, b) and evans and 

Kohlstedt (1995), have been compiled to categorize the creep of rocks, and theoretical 

models have been developed to explain this low behavior in terms of diffusion and dis-

location motion (e.g. evans and Kohlstedt, 1995; Poirier, 1985). However, for the purposes 

of this book the principal concept to remember is that at high temperatures rocks can low 

like liquids over geologic timescales.

J. C.Maxwell and the viscosity of “elastic solids.” observation and experiment have 

taught us that cool materials (that is, materials at temperatures well below their melting 

point) deform elastically under applied loads, while hot materials gradually low. elastic 

behavior is mostly recoverable: that is, when the load is removed the deformation reverses 

itself; while viscous low is not recoverable: when the load is removed the deformation 

remains. the alert reader might wonder how these very different types of behavior can be 

reconciled at intermediate temperatures: at what point does the elastic response stop and 

viscous low take over?

this important question received a deinitive answer from an unlikely source. Most 

people who recognize the name of nineteenth-century physicist J. c. Maxwell (1831–1879) 

think immediately of Maxwell’s equations that describe electric and magnetic ields, or 

perhaps of his contributions to thermodynamics and statistical mechanics. In fact, it was 

during his 1867 study of the viscosity of gases that Maxwell faced the puzzling dichotomy 
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3.4 The nature of strength 77

between the elastic and viscous behavior of solids (Maxwell, 1867). His insight came from 

what might seem like an annoying detail: the steel wire supporting the torsion pendulum 

he was using to measure gas viscosity exhibited viscous behavior of its own. He invented 

a theory of what are now known as viscoelastic materials to separate the viscosity of the 

pendulum wire from that of the gas.

Maxwell proceeded by postulating that the total deformation of his wire is the simple 

sum of the elastic plus the viscous strain, εtotal = εelastic + εviscous. He supposed that each strain 

would develop under the inluence of the same stress, obeying the equations previously 

stated for ideal elastic and viscous behavior. His equation, however, suffers a serious math-

ematical problem, because the viscous strain is not determined directly from the stress: 

the stress determines only the strain rate. It is possible to write the viscous strain as the 

time integral of the strain rate, but it is more straightforward to differentiate both sides of 

equation (3.10) with respect to time and sum the result to obtain the fundamental equation 

table 3.5 Creep properties of selected materials

Material

Ac

(MPa–n s) n

Q*

(kJ/mol)

Tm

(K)

g

= Q/RTm

olivine

Dry

Wet

 

1.2 × 102

2.0 × 103

 

3.0

3.0

 

502

420

2200 27

Diabase

Drya

Wetb

 

5.4–347

6 × 10–2

 

4.7

3.05

 

485

276

1100 53

Quartz

Dry

Wet

 

1.3 × 10–6

2.0 × 10–2

 

2.7

1.8

 

134

167

1996 8.1

Granite (Westerly)

Dryc

Wetc

 

2.5 × 10–9

2.0 × 10–4

 

3.4

1.9

 

139

137

1320 12.7

anorthosite 3.2 × 10–4 3.2 238 1400 20.5

Halite, nacl 6.3 5.3 102 1074 11.4

Water ice, Ih,d t > 258 K

 σ > 1 MPa

6.3 × 1028 4 181 273 80

Solid co2, 150 < t < 190e 4.4 × 103 4.5 31 217 17

limestone, Dry, Solenhofen ls 2.5 × 103 4.7 298 1520 23.6

Data is from evans and Kohlstedt (1995), except as noted:
a Mackwell et al. (1998)
b caristan (1982)
c Kirby and Kronenberg (1987b)
d Durham and Stern (2001)
e Durham et al. (1999)
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Strength versus gravity78

for a Maxwell viscoelastic substance, ε ̇ total = ε ̇elastic + ε ̇viscous. Inserting the deinitions of 

each term:

 ε ṫotal = σ̇ /2μ + σ/2η. (3.31)

this equation embodies both an elastic response for loads applied quickly and viscous 

low for long sustained loads. Its full solution is complex because volume strain and shear 

strain must be treated differently in each term of the full tensor equation. However, it is not 

necessary to actually solve this equation to attain an insight of major importance. Simple 

dimensional analysis shows that the ratio of the viscosity η to the elastic shear modulus μ 

has the dimensions of time. this ratio is known as the Maxwell timeτ M and it plays a funda-

mental role in the transition from elastic to viscous behavior. Its deinition is:

 

τ η
μM ≡ .

 

(3.32)

If a load is applied instantaneously to a Maxwell viscoelastic material, then held constant, 

the Maxwell time is equal to the length of time that passes before the accumulated viscous 

strain equals the instantaneous elastic strain. thus, for times shorter than the Maxwell time, 

the material response is dominated by the elastic deformation. for times longer than the 

Maxwell time, the response is essentially viscous. Maxwell supposed that even water must 

act as an elastic material on a short enough timescale, but he computed this time as about 

10–13 s – unobservably small in the late 1800s. However, he did later succeed in observing 

both elastic and viscous behavior in canada balsam (pine tree sap).

although equation (3.32) was derived from the equations for ideal elastic and viscous 

substances, a generalization of the idea of Maxwell time can be applied even to pseudovis-

cous materials that do not obey the equation of ideal viscosity: the generalized Maxwell 

time is the length of time over which creep must act for the total creep strain to equal the 

elastic strain. In the form of an equation:

 

τ
ε
εM = =

( )
.

elastic strain

(creep strain rate)

elastic

creep


 

(3.33)

the Maxwell time is often surprisingly short. this is because the elastic strain in most 

geologic materials is invisibly small – typically only about 0.0001, even for stresses near 

fracture. for this reason australian geologist S. Warren carey invented a term,which he 

called rheidity (carey, 1953), and for which he proposed a timescale of exactly 1000 τ M. 

although this rheidity concept adds nothing fundamental to the idea of Maxwell time, it 

does give an estimate of the time necessary for viscous or pseudoviscous low to become 

visible to the human eye.

Most children are familiar with the high-polymer material known as Silly PuttytM, which 

behaves as a brittle elastic material on a short timescale – it can be fractured by a hammer 

blow – but lows like a liquid when left undisturbed for a long period. It is less widely 

appreciated that all materials behave this way, if only the timescale is chosen appropriately. 

Water ice is another example: ice cubes in common experience are brittle elastic materials, 
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but it is obvious from glaciers that ice lows like a liquid over long timescales. table 3.6 

lists the Maxwell and rheidity times for a number of geologic materials.

Maxwell viscoelasticity neatly resolves other apparent paradoxes of earth science. 

William thomson, later lord Kelvin, used the difference between solid earth tides and 

ocean tides to show that the earth’s elastic modulus is similar to that of steel. Kelvin him-

self, and Harold Jeffreys after him, never accepted the idea that over long intervals of time 

the earth’s mantle could low like a liquid (england et al., 2007). However, our modern 

understanding of mantle convection and plate tectonics requires just that. the resolution of 

this conundrum is through Maxwell viscoelasticity: table 3.6 shows that the earth’s mantle 

(which is mainly composed of the mineral olivine) has a Maxwell time of about 100 years.

thus, the mantle behaves as an elastic solid with respect to the month-long tidal deform-

ation (or even the 22-month chandler wobble of its axis), and yet lows like a liquid during 

the 100 Myr timescale of mantle convection.

Ironically, lord Kelvin himself provided one of the most graphic illustrations of the 

role of viscoelastic low in the earth and other planets. Kelvin loved mechanical models, 

often stating that he could “never satisfy myself until I can make a mechanical model of a 

thing” (Kargon and achinstein, 1987). In his famous Baltimore Lectures of 1884, Kelvin 

described a classroom model in which he loated a layer of “Scottish shoemaker’s wax” on 

a beaker of water. He submerged a number of corks underneath the wax and set a few lead 

bullets on top (figure 3.8). over the course of a semester, the bullets sank into the visco-

elastic wax while the corks burrowed upward into it. By the semester’s end, the bullets had 

dropped to the bottom of the beaker and the corks had emerged on top. While he could not 

have found a better analogy for the geologic behavior of the earth, Kelvin himself used 

this model to illustrate his concept of the hypothetical aether, to show how the earth could 

move through the all-pervading aether apparently without friction, while light waves trav-

eled like elastic waves in this universal substance.

Maxwell’s model of viscoelastic low turns out to be only one of many possible vari-

ations. Depending upon how the elastic and viscous strains combine (coupled, more 

generally, with the possibility of plastic low), a variety of viscoelastic (or elasto-visco-

plastic) responses to stress are possible. Kelvin himself proposed a model in which elastic 

and viscous stresses are summed and the strains are then set equal. now known as the 

table 3.6 Maxwell time and rheidity time for various materials

Material

Shear modulus,

μ (GPa)

Viscosity,

η (Pa–s)

Maxwell time,

τM

rheidity time,

τr

Soda-lime glass @ 250°c 25 4.3 × 1011 17 s 4.8 hr

Glacier ice @ 0°c 4 ~1013 42 min 29 days

Halite @ 200°c 20 3 × 1016 17 days 48 yr

earth mantle from glacial 

rebound

50 1020 66 yr 66 000 yr
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Strength versus gravity80

Kelvin–Voigt model, it provides a better description of short-term low, such as primary 

creep (the B term in equation (3.27)), than does the Maxwell model (the C term in equation 

(3.27)). the Kelvin–Voigt model may provide a good description of low under short-term 

oscillatory stresses, such as tidal lexing, while the Maxwell model is more appropriate for 

steady, long-term deformation in which the total strain can increase without limit.

3.4.4 Planetary strength proiles

It should now be clear to the reader that the “strength” available to support topographical 

features on a planet is a complex issue. topographic loads can be supported by the resist-

ance to deformation exerted by cold solids, as well as by slow viscous or pseudoviscous 

deformation of warm solid materials. “Strength,” thus, depends on pressure, temperature, 

and the duration of the load, among many other modifying factors such as the pressure of 

included luids, presence or absence of chemical weakening agents such as water, and even 

the history of previous deformation.

Given this complex response of “solid” materials to differential stresses, can one make 

any simple generalizations at all about the ability of planets to support topographical fea-

tures? one simple observation is that strength generally decreases as temperature rises (and 

vanishes at the melting temperature). Most planets are warmer inside than on their out-

sides, although exceptions to even this apparently obvious situation occur during planetary 

accumulation and very large impact events. thus, a simple generalization is that most of a 

planet’s strength resides near its surface. this observation gives rise to the idea of a litho-

sphere, a relatively thin shell near the surface of planets large enough to have hot interiors, 

which embodies most of its long-term strength. the outermost part of the lithosphere is 

usually cool enough to exhibit brittle strength, while deeper portions resist loads by slow 

deformation (this deinition of the lithosphere is oversimpliied: It will be made more pre-

cise in the next chapter when the concept of Maxwell time is applied).

these ideas are used to construct strength proiles; envelopes that show the maximum 

differential stresses that can be supported as a function of depth in any given planet. Besides 

figure 3.8 lord Kelvin’s class demonstration. over the course of a semester, Kelvin showed that 

dense bullets would sink and light corks would rise through a layer of viscoelastic wax on top of a 

beaker of water. although Kelvin himself did not intend it as such, it provides an apt illustration of 

the long-term low properties of a planetary mantle.
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3.4 The nature of strength 81

the failure laws themselves, these proiles require knowledge (or estimates) of the tempera-

ture and pressure as a function of depth. Because many factors inluence strength, these 

curves are oversimpliications of the actual facts, and are useful only for general guidance 

to the strength levels available. there are also many variants of this kind of curve, each 

designed to show some especially pertinent relationship. to show the effect of strain rate, 

the strength proiles constructed here are assumed to relect deformation at some particular 

strain rate. the cohesive strength of cold rocks is neglected because it is assumed that 

beyond some small strain the rock will fracture, so that only frictional strength continues 

to act.

figure 3.9 shows computed strength proiles for Venus, the earth, the Moon, and Mars. 

In all of these curves the upper cold portion is assumed to follow Byerlee’s law, while 

the lower portion is controlled by the rheological properties of the common mantle min-

eral, olivine. each assumes that the lithosphere is stretched at a strain rate of 10–13 s–1, a 

typical plate-tectonic strain rate on the earth. Very similar curves would result for litho-

spheric compression, with slightly higher frictional strengths. lower strain rates decrease 
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figure 3.9 Strength proiles for the lithospheres of (a) Venus, (b) the earth, (c) the Moon, and (d) 

Mars. the upper parts of the curve are controlled by friction on pre-existing fractures and, thus, follow 

Byerlee’s law, equation (3.25). the lower portions are cut off by creep in olivine, with parameters 

listed in table 3.5. temperatures are computed from mantle heat low on the earth and by assuming 

an average chondritic composition for the other planets. thermal conductivity is taken to be 3.0 

W/m-K. the strain rate is 10–13 s–1, although the curves are only slightly different at 10–15 s–1.
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Strength versus gravity82

the stresses in the lower part of the lithosphere and push the cusp marking the transition 

between friction and pseudoviscous low to shallower depths. the sharpness of the cusp is 

artiicial: In reality the transition is probably gradual, but the low laws are not known well 

enough to represent this accurately.

the main lesson from these curves is that the maximum strength in a planet’s interior 

resides neither at its surface, due to the pressure dependence of rock friction, nor at great 

depths, due to the weakening effect of high temperatures. the maximum strength is at an 

intermediate depth, and it is at this depth that most of the forces that support long-term 

topography are exerted.

3.5 Mechanisms of topographic support

3.5.1 Plastic strength: Jeffreys’ limit again

Short-wavelength loads on a planetary lithosphere are supported by plastic strength, as 

described in Section 3.3.2. Stress differences reach approximately 1/3 of the vertical load 

and are supported at a depth comparable to the width of the load. the meaning of “short 

wavelength” is deined by reference to the thickness of the lithosphere. If the breadth of 

the load is comparable to or larger than the lithosphere’s own thickness, then new factors 

come into play and more sophisticated models, such as the lexural models discussed later, 

in Section 3.5.5, must be brought into play. these new factors generally decrease the ability 

of the lithosphere to support the load: Jeffreys’ theorem must always hold, but it does not 

guarantee that the stresses are not much larger than the minimum given by his limit. Direct 

support of a load by a strong material right underneath is always the most effective way to 

carry the weight of a topographic feature.

3.5.2 Viscous relaxation of topography

Just as a mound created on the surface of a dish of honey gradually relaxes to a lat sur-

face, so topographic features formed on the surface of a planet whose interior materials 

obey a viscous or pseudo-viscous low law will eventually relax to a lat plain. Because of 

the complexity of the full non-linear pseudoviscous creep law determined for real rocks, 

most analyses of the viscous relaxation of topography approximate the actual low law as 

newtonian (at present, numerical methods are rapidly superseding such crude approxima-

tions, but there is still much to be learned from “back of the envelope” computations using 

newtonian viscosity). the viscosity determined from such an analysis is then termed an 

“effective viscosity,” ηeff, and its value must be accompanied by an estimate of the stress at 

which it is determined. although such a procedure is not exact, and in some special cases 

may be seriously misleading, it often yields useful insights into the mechanical behavior of 

a planetary body, so long as the user understands what the effective viscosity really is, and 

does not mistake it for what it is not.
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3.5 Mechanisms of topographic support 83

Viscous relaxation acts to gradually erase any deviation from a “level” planetary sur-

face (that is, from a surface coinciding with a gravitational equipotential surface). thus, 

both elevations and depressions will gradually fade away with time. How much time this 

requires depends on the viscosity. If the viscosity is large enough, even a few billion years 

is not enough to erase the topography and we can speak of the surface elevations as “per-

manent,” even though, in principle, there is no such thing as a solid and all materials even-

tually creep to relax their deviatoric stresses.

the irst estimates of the earth’s viscosity derived from the early nineteenth-century 

observation by Swedish naturalist celsius that some shorelines around the Baltic Sea are 

rising as rapidly as one meter per century. Hotly contested at the time, it is now accepted 

that central Scandinavia, formerly depressed by the weight of continental ice sheets, is 

gradually rebounding to its pre-ice age position. a still larger area in north america is cur-

rently rebounding from the former weight of the laurentide ice sheets, which melted away 

about 11 000 yr ago. although detailed analyses of the implications of this uplift have been 

ongoing for the past 60 yr, it is easy to perform a irst-order estimate of the viscosity of the 

earth’s interior that gives a value for its effective viscosity close to the most sophisticated 

modern determinations.

following in the spirit of Jeffreys’ computation in Box 3.1, it is possible to balance the 

stress created by a depression (or elevation: the analysis is identical except for the sign) 

of time-dependent depth h(t) against the rate of deformation implied by the ideal viscous 

stress relation. Jeffreys’ theorem tells us that this stress difference is of order 0.3ρgh. the 

strain rate ε ̇s is of order h ̇/w, where w is the breadth of the depression. Inserting these fac-

tors into the deinition of viscosity, equation (3.12), yields a irst-order differential equa-

tion for h(t), h ̇(t) = −[0.3 ρghw/ηeff]h(t), whose solution is:
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(3.34)

In this equation h0 is the initial depression due to the weight of the ice and τ R is the time-

scale for relaxation. It is this relaxation timescale that yields an estimate of the effective 

viscosity, which is thus given by:

 ηeff = (0.3 ρgw) τR. (3.35)

as one might intuitively expect, the relaxation time grows longer as the viscosity 

increases, and it decreases as the crustal density or gravity increases. Perhaps the least 

intuitive result is that the relaxation time depends inversely on the width of the load w. a 

physically intuitive way of appreciating this result is to realize that as w increases, the depth 

over which the low occurs also increases. for a given pressure gradient, the low is faster 

in a wider channel, leading to a faster relaxation rate. thus, for a given viscosity, broad 

loads relax faster than narrow ones. the important implications of this result will shortly 

be highlighted in more detail.
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In addition to the viscous half-space assumed in the relaxation computation just outlined, 

a second important limit is that of a thin viscous channel underlying the load. following 

through a derivation similar to that above yields an equation similar to (3.34), except that 

the inverse load width 1/w is replaced by w2/d3, where d is the depth of the thin channel 

(this derivation requires the equation for the parabolic velocity proile driven by a pressure 

gradient in a thin layer, a topic of so-called lubrication theory). In this case the relaxation 

time is proportional to the load width, squared. a more general analysis of the relaxation 

of an axisymmetric crater of arbitrary proile on a substrate whose viscosity is a more com-

plex function of depth can be found in Section 8.4 of Melosh (1989).

Performing an actual estimate of the viscosity beneath the canadian shield, take 2700 

kg/m3 as the average crustal density, 9.8 m/s2 as the acceleration of gravity, suppose the 

load is 3000 km across and that it relaxes over a timescale of 6000 yr. this yields an order-

of-magnitude viscosity estimate of 5 x 1021 Pa-s, nearly identical to the current best esti-

mate for the earth’s lower mantle. to interpret this estimate, remember that most of the 

stress generated by a broad load is supported at a depth of about 1/3 the load width; that is, 

about 1000 km deep in this case, or near the top of the earth’s lower mantle. furthermore, 

this is an effective viscosity that applies to a stress level of about 0.3 ρgh0 or around  

20 MPa, assuming that h0 was about 2 km.

although the idea of using the duration of topographic support to estimate planetary 

viscosity was irst applied to the earth, planetary geologists were quick to apply this idea 

to the planets. ralph Baldwin, in his epochal 1963 book, The Measure of the Moon, made 

the irst estimates of the Moon’s viscosity based on the persistence of its non-hydrostatic 

tidal bulge and on the depths of lunar basins. In 1967 ron f. Scott, a soil mechanics  

engineer at caltech, was inspired to show how lunar surface viscosities could be estimated 

from the shape of relaxed lunar craters. He created a number of model crater shapes in a 

pan of viscous tar and allowed them to relax, recording how their shapes changed with 

time. three of his time steps are shown in figure 3.10. the most prominent characteristic 

of these changes is the dependence of relaxation rate on the size scale of the feature. thus, 

large craters relax faster than small ones, so long as the viscous substrate is deeper than 

the diameter of the crater. furthermore, the small-scale crater rims persist long after the 

larger-scale crater bowls have relaxed, just as equation (3.34) suggests (other factors, such 

as the presence of a shallow lithosphere, may account for the persistence of crater rims on 

real planets, as opposed to craters in pans of uniform-viscosity tar).

although Scott and others thus showed how viscous relaxation affects crater morph-

ology, it has not yet been conclusively demonstrated that viscous relaxation has actually 

occurred in craters on any of the terrestrial planets or moons. Processes such as impact ero-

sion or lava inilling often obscure any depth changes caused by viscous low. the absence 

of relaxation does give useful lower limits to the viscosity, but this does not constitute a 

numerical measurement. However, the icy moons of the outer Solar System tell a different 

story. figure 3.11 shows a 500 km wide crater, odysseus, on the Saturnian satellite tethys, 

contrasted with an unrelaxed 130 km wide crater, Herschel, on Mimas. odysseus’ loor has 

clearly relaxed to conform to the equipotential surface of the satellite, while its still-sharp 
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figure 3.10 Viscous relaxation of model craters produced in asphalt of viscosity about 105 Pa-s. 

the largest crater is about 10 cm in diameter and the smaller craters about 2 and 0.2 cm. (a) 0.1 

minute after the craters were molded into the surface. (b) after 30 minutes the larger crater loor has 

rebounded and the middle-sized crater loor is beginning to rise. all of the crater rims are still sharp. 

(c) after 18 hours the large and middle crater and their rims have relaxed, while the smallest crater is 

still evident. Image selection from Scott (1967).
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rim and central peak attest to the size-dependence of viscosity. If the age of the crater were 

known, these two observations would produce a tight bound on the viscosity of the moon, 

and by implication (from laboratory measurements of the low law of ice) give an estimate 

of the internal temperature of tethys. Much effort by planetary scientists is currently being 

expended on viscosity estimates of this kind, with the ultimate goal of estimating internal 

temperatures and even temperature gradients.

an important, but often overlooked, point refers back to Jeffreys’ theorem: topographic 

loads are typically supported at a depth comparable to the width of the load. thus, the vis-

cosity deduced from the relaxation of a feature of breadth w applies to a depth comparable 

to w itself (or, slightly better, about w/3, as indicated in table 3.1). the fact that a narrow 

crater rim relaxes more slowly than the crater bowl itself is, thus, due to both the scale 

dependence of the relaxation time in equation (3.34) and also to a possibly different (gen-

erally larger) viscosity at shallower depths below the narrow rim. In effect, topography of 

breadth w “probes” the viscosity at a depth of about w/3. When suficiently detailed data on 

crater relaxation proiles are available this effect can be used to invert for the depth depend-

ence of viscosity and, by inference from creep measurements on the (presumed known) 

underlying material, for the subsurface temperature gradient.

one of the major surprises of the past few decades is the existence of substantial top-

ography on the planet Venus. Shortly after its 730 K surface temperature was discovered, 

but before its surface had been imaged by spacecraft-borne radar systems, material science 

expert J. Weertman (1979) predicted that any mountains on Venus would have long since 

relaxed away and that its surface must be a vast, gently undulating plain. on earth, the 

temperature contour that deines the bottom of the elastic oceanic lithosphere is similar to 

(a) (b)

figure 3.11 large craters on moons of Saturn (a) the loor of the 500 km diameter crater odysseus 

on tethys has mostly relaxed to conform with the spherical shape of the satellite. naSa cassini 

image PIa 08400. (b) the 130 km diameter crater Herschel on Mimas shows little sign of viscous 

relaxation. naSa cassini image PIa 12570.
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Venus’ surface temperature, so this prediction seemed very reasonable. the discovery of 

large topographic variations on Venus, irst by the Soviet Venera 15 and 16 radar missions 

and then by the uS Magellan mission, was thus greeted with consternation. to this day we 

do not fully understand why the crust and upper mantle of Venus are so strong. the most 

common assumption is that high temperatures have cooked all of the water out of its near-

surface rocks, thus eliminating the major weakening agent affecting terrestrial and Martian 

rocks. However, even the total elimination of water and the assumption of a low thermal 

gradient can barely explain the existence of the 13 km high Maxwell Montes, the highest 

elevation on Venus.

3.5.3 The topographic advantages of density differences: isostatic support

Most of the long-wavelength topography on the silicate planets and moons is a direct con-

sequence of the difference in density between a crust and underlying mantle. Where no 

density differences exist, such as on the icy moons of Jupiter or Saturn, elevation differ-

ences tend to be of short wavelength. the resulting concept of isostasy has long been a 

staple of geological explanation on earth. It has found broad application to the earth-like 

planets. the basic idea of isostatic equilibrium is that high topography is high because it is 

underlain by rocks that are less dense than average. elevation correlates with either density 

itself (Pratt isostasy) or with the thickness of a layer of lesser density (airy isostasy). the 

crust is supposed to be in loating equilibrium, so that at some depth below the surface (the 

depth of isostatic compensation) the pressure of the overlying rock layers is the same along 

an equipotential surface.

a key component of the idea of isostatic equilibrium is that at the depth of isostatic 

compensation, deviatoric stresses vanish and pressure is the only force available. this 

concept accords well with the observational facts indicating that as the temperature rises, 

rock strength declines and creep rates increase. Initial stresses, even those applied nearly 

instantaneously by, say, the formation of an impact crater, relax rapidly on a geologic time-

scale and bring topography into a state of isostatic equilibrium. this idea puts a premium 

on determining the depth of this level of compensation. If its depth can be determined, for 

example, using the methods discussed in the next section, this information can be con-

verted to an estimate of the planet’s interior temperature.

Geodesist colonel George everest accidentally initiated the discovery of isostasy in 

1847, while he was triangulating the “Great arc” in India. as he approached the massive 

Himalayan mountains he found that he could not get good agreement between his trian-

gulated positions and astronomical measurements of latitude. J. H. Pratt, archdeacon of 

calcutta, who was familiar with newton’s law of universal attraction, suggested that the 

mountains delected the vertical, although the observed delection was much less than what 

he irst calculated. Pratt then supposed that the rocks underlying the Himalayas might be less 

dense than those underlying the Indian peninsula. Pratt announced his conclusions in 1855, 

the same year that G. B. airy, the astronomer royal of Great Britain, suggested that varia-

tions in the thickness of a low-density crust loating on a denser substratum could account 
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for everest’s observations. four years later Pratt published his own theory of isostasy in 

which he attributed variations in the elevation of surface features to lateral variations in the 

density of the crust above a level of “compensation,” at which the density is uniform.

Geodetic observations in the late 1800s could not discriminate between the Pratt and airy 

models. In the early twentieth century the uS coast and Geodetic survey oficially adopted 

the Pratt model because of its computational simplicity, but when the developing ield of 

seismology revealed deep roots beneath the alps and Himalayas, the weight of opinion 

swung in favor of airy isostasy for most of the twentieth century. Most recently, however, 

it has been shown that Pratt isostasy dominates california’s southern Sierra nevada. the 

elevation of the western uS’s colorado Plateau now appears to be due to low densities in 

the mantle, not the crust. furthermore, precise gravity measurements from the Magellan 

spacecraft have shown that the Pratt mechanism, with the low densities supplied by some 

combination of high temperature and a low-density mantle residuum, may support the vol-

canic uplands of Venus (Smrekar et al., 1997). evidently, the Pratt and airy mechanisms 

are end members of a continuum and the determination of crustal and mantle density and 

thickness must be pursued independently, insofar as that is possible.

the application of the idea of isostasy to planetary topography is simple, which is part of 

its appeal. figures 3.12a and 3.12b illustrate the idea of isostatic balance between two crustal 

columns in both the Pratt and airy limits. for simplicity, these examples assume constant 

densities for both the crust and mantle, but it is easy to generalize these examples by inte-

grating a depth-dependent density from the surface down to the depth of compensation.

for the Pratt hypothesis, figure 3.12a, the pressure at the depth of compensation, dc, be-

neath the plains and highlands crustal blocks is given by:

 [ρcpt + ρm(dc − t)]g = [ρch (t + hP) + ρm (dc − t)]g (3.36)

the contribution from the depth of compensation, as well as the mantle density and the 

acceleration of gravity all cancel out, so that the topographic elevation on the Pratt hypoth-

esis, hP, is given in terms of the crustal thickness below the plains, t, by:

 

h tP

cp ch

ch

=
−



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ρ ρ
ρ

.

 

(3.37)

for the airy hypothesis, figure 3.12b, the density of the crust ρc is the same in both 

crustal columns, but the thicker crust sinks with respect to the thinner crust and produces 

a root beneath the highlands of thickness tR. Performing the same type of pressure balance 

as for the Pratt case,

 [ρct + ρm(dc − t)]g = [ρc(t + hA + tR) + ρm(dc − t − tR)]g. (3.38)

again beneiting from many cancellations, including the crustal thickness itself, the inal 

expression for the elevation in terms of the depth of the root is:

 

h tA
m c

c

R=
−





ρ ρ
ρ

.

 

(3.39)
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3.5 Mechanisms of topographic support 89

Because of these cancellations, the depth of isostatic compensation does not contribute 

directly to the topography for either Pratt or airy isostasy. this is both a blessing and an 

annoyance: Insofar as the depth of compensation cannot be directly measured, we lose an 

important piece of information about the low in a planet’s interior. We must thus resort to 

indirect methods to learn about internal temperatures.

Isostatic equilibrium, although often assumed to be the inal state of topographic 

 relaxation in much of the geological literature, is not, in fact, the most stable end state: the 

minimum energy of any self-gravitating body is attained only when the density decreases 

monotonically outwards from the center of mass. thus, even when the topography is fully 

compensated there is a tendency for low-density material to spread over adjacent denser 

rocks, and for mountain roots to spread laterally. Stress differences, thus, still exist in a 

state of full isostatic compensation. calculation of these stress differences and their impli-

cations for low in the crust of the earth is now a part of terrestrial geodynamics (Sonder 

and Jones, 1999).

although isostasy does contribute greatly to topographic support, it cannot evade the 

principal part of Jeffreys’ theorem: Stresses of order ρgh must still develop somewhere 

beneath the load. the advantage of the isostatic support mechanism is that it shifts the lo-

cation of the maximum stress differences from a depth comparable to the width of the topo-

graphic load to the region above the depth of compensation, where the rocks are cooler, 

stronger and, thus, more capable of bearing the load. Vertical topographic loads are con-

verted into horizontal loads acting near density or thickness gradients. It is even possible to 

convert topography into detailed horizontal stress maps, assuming that isostasy is strictly 

valid (artyushkov, 1973; fleitout and froidevaux, 1982; Molnar and lyon-caen, 1988). 

thus, planet-wide elevation differences, such as the hemispheric dichotomy of Mars or the 

plains highlands

d   – tc

t
d  c

hP

m
ρ

cp
ρ ch

ρ

plains highlands

t
d  c

hA

d   – t – tc R

tR

At + h   + tR

c
ρ

c
ρ

a) b)

t + hP

figure 3.12 Isostatic compensation of topography is possible where a low-density crust overlies 

a higher-density mantle. (a) Pratt isostatic compensation, in which highlands are underlain by less 

dense crustal material than lowland plains. (b) airy isostasy, in which the crust is the same density 

everywhere, but is thicker under highlands than plains. the dimensions deined in this igure are used 

in equations described in the text. the horizontal dashed line near the bottom of both igures is the 

depth of compensation, below which no stress differences are postulated to exist.
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Strength versus gravity90

center of mass-center of igure offset of the Moon can be supported by modest stresses in 

the cooler, stronger outer layers of the planet, rather than by long-term strength at great 

depths.

3.5.4 Dynamic topography

Slow viscous or pseudoviscous deformation can do more than just eliminate pre-existing 

topographic features. Stresses generated by forced low can actually create topography. 

When this occurs, the resulting elevations and depressions are referred to as dynamic top-

ography. Slow lows in the interior of planets may be generated by a number of proc-

esses, but the most common are driven by density differences, where the density deviations 

from the mean are due either to temperature differences (the process is then referred to as 

thermal convection) or to compositional differences (compositional convection). the slow 

convective lows that drive plate tectonics in the earth are a combination of both types of 

difference.

the most striking dynamic topographic features on the earth are the deep submarine 

trenches that mark the sites of subduction zones. at subduction zones the cold, dense, and 

relatively stiff tectonic plates sink into the warmer, less dense mantle at rates up to about 

10 cm/yr. as the plates sink, they undergo a sharp bend, changing their attitude from nearly 

level to plunging at angles that may exceed 45°. the cool, highly viscous material of the 

plates thus undergoes a large amount of stretching on the upper part of the bend, coun-

terbalanced by compression at depth. this stretching creates stresses that literally suck 

the overlying surface downward, resulting in the observed topographic troughs. the depth 

of the trough is readily estimated from the deinition of the effective viscosity, equation 

(3.29), along with Jeffreys’ theorem:
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(3.40)

where v is the velocity of motion (subduction, in this case) and w is the distance scale over 

which bending occurs.

unfortunately, we cannot accurately determine the effective viscosity from irst princi-

ples, but we can invert the formula and determine how large it must be to give the observed 

ca. 5 km of trench depth as the plate bends through a radius w ~ 200 km. the result, about 

2 x 1021 Pa-s at a stress of about 50 MPa, is at least reasonable – it is almost two orders 

of magnitude greater than that of the underlying asthenosphere and in moderately good 

agreement with extrapolated laboratory measurements of the creep rate of olivine at this 

stress level.

one of the major complications in making this kind of estimate precise for subduction 

zones is that the much stiffer brittle-elastic plate that tops the tectonic plates interferes with 

the viscous low deeper within the plate. Indeed, many models for subduction zones focus 

exclusively on the elastic plate and neglect viscous low entirely. Such models, which were 
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3.5 Mechanisms of topographic support 91

among the earliest explanations of subduction zone topography, suffer from the predic-

tion of enormous extensional stresses in the strongly bent elastic plate (up to 5 GPa, far in 

excess of any measured rock strength) and neglect seismic data that indicate that the elastic 

plate is extensively fractured and, thus, unlikely to support any extensional loads at all. 

nevertheless, this kind of elastic-viscous coupling is common in planetary tectonics and 

will be discussed in more detail in the next chapter.

the other likely source of dynamic topography on the earth (with its unique plate tec-

tonics) and the other planets is associated with rising (or descending) convective plumes. 

arising from deep within a planetary interior, buoyant plumes approach the surface and 

exert viscous stresses on the overlying cool rock layers. these stresses account for a sub-

stantial portion of the uplift associated with the plume’s arrival (the rest is associated with 

the plume’s low density). equation (3.40) can also be used to estimate the dynamic portion 

of the topography associated with a plume of horizontal dimension w rising at a velocity v, 

provided an estimate of the effective viscosity can be made.

Because dynamic topography can develop even when temperatures are too high to per-

mit much static rock strength, it has been suggested that a vigorous plume rising from 

deep within the Venusian mantle might cause the astonishingly high elevations of Maxwell 

Montes and Beta regio on Venus. the estimated plume velocities must be quite high, on 

the order of meters per year, and if the low luctuates with time, one might expect to see 

the elevation of Maxwell Montes luctuate in concert with the low. Pursuing this idea, the 

Magellan radar altimeter repeatedly measured the height of Maxwell throughout the dur-

ation of the mission, seeking for measurable luctuations. unfortunately, none were found 

and the reason for Maxwell’s high elevation remains unresolved.

3.5.5 Floating elastic shells: lexural support of topographic loads

a small, cool planet or moon may possess considerable long-term strength right down to 

its center. However, as interior temperatures rise, strength declines and the ability of a large 

planet to support long-duration, non-hydrostatic loads comes to reside exclusively near its 

surface. this gives rise to the concept of a lithosphere, a cool outer rind whose strength 

is controlled by increasing pressure near its top and by slow viscous creep near its base. 

the mechanical behavior of such a lithosphere can be very complex: Its upper portion 

responds to loads both by elastic deformation and plastic failure, while its underside lows 

on long timescales. However, a drastic but surprisingly effective approximation neglects 

the viscous deformation altogether and treats the lithosphere as an elastic plate loating on 

a perfectly luid substratum. loads on the surface lex the lithosphere downward and are 

supported by a combination of elastic stress from the lithosphere itself and the buoyancy 

of the displaced luid below. the lithosphere thus supports loads in the same way that a 

skater on a frozen pond is supported by the lexure of the layer of ice. Indeed, Heinrich 

Hertz, otherwise renowned for his discovery of radio waves, irst published the equations 

describing the effect of a point load on loating ice in 1884 and so initiated the mathemat-

ical study of lithospheric support.
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flexural models of topographic support were irst proposed around 1900, when most 

scientists supposed that the interior of the earth is literally molten and that the continents 

simply loat on a liquid interior like ice on a frozen pond. although it is now clear from 

the propagation of seismic shear waves and the slow rate of post-glacial rebound that the 

earth’s interior is actually a hot, viscoelastic solid, the relaxation of differential stresses 

at high temperatures still makes the elastic lexure approximation a good one for loads of 

long duration.

the bottom of the elastic lithosphere is now understood to be the depth at which the 

Maxwell time equals the duration of the load to be supported. Surface rocks behave elas-

tically above this depth and low gradually below it. Because the duration of the load enters 

into the lithosphere thickness, this concept is a bit fuzzy: for a load lasting only a few min-

utes, as might be applied by a meteorite impact, the entire mantle of the earth is the litho-

sphere. for glacial rebound over 10 000 yr, the effective lithosphere is about 100 km thick, 

whereas for a mountain chain built over 100 Myr the lithosphere thickness might be only a 

few tens of kilometers. However, because the creep rate of most rocks is a strong function 

of temperature, the effective lithosphere thickness varies only by a small amount for loads 

lasting from a few million to a few billion years. under these circumstances the lithosphere 

can be approximated as having a constant thickness determined by its composition and the 

near-surface thermal gradient.

the equations describing the response of such a loating elastic shell are very complex. 

In their simplest form, for a thin lat plate of uniform thickness, they obey a fourth-order 

partial differential equation called the biharmonic equation. However, these equations need 

not be solved to attain a qualitative idea of how topographic loads are supported by an 

elastic lithospheric shell. the most important concept deriving from these equations is 

embodied in a factor with dimensions of length called the lexural parameter, α, which is 

deined as:
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where t is the thickness of the lithosphere and ρm is the density of the mantle underlying 

the lithospheric plate. E is young’s elastic modulus, ν is Poisson’s ratio, and g is the accel-

eration of gravity. a representative value of α for the earth’s oceanic lithosphere is about 

53 km, derived from the delection caused by the Great Meteor Seamount in the atlantic 

ocean (Watts et al., 1975). It is generally a few times larger than the lithosphere thickness 

itself, which in this case is about 16 km.

the lexural parameter describes the tradeoff between elastic lexure and buoyancy 

in supporting a concentrated load. loads of breadth smaller than the lexural parameter 

are mainly supported by elastic stresses that develop in the warped lithosphere, whereas 

broader loads must be supported by buoyancy; that is, by isostatic forces. flexure thus ills 

the gap between topographic loads much narrower than the thickness of the lithosphere, 

which are supported essentially on an elastic half-space, and very broad topographic loads 

that are supported by isostasy.
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there is, however, a price to be paid for the advantages of lexural support. Plate 

lexure creates bending stresses, and for broad loads these stresses are usually much 

larger than the minimum required by Jeffreys’ theorem. In the absence of isostatic sup-

port, for a sinusoidal load of wavelength λ elastic plate lexure theory gives a maximum 

stress of:

 
σ

π
λ ρmax = 3

2 2

2

2t
ghc .

 
(3.42)

thus, because of the factor λ/t, squared, stresses build rapidly when the width of the 

load becomes substantially broader than the plate thickness. this equation suggests that as 

the load breadth increases, the lexural stress increases without limit. However, this does 

not occur when a low-density crust overlies a denser mantle: at long wavelengths isostasy 

takes over and the stresses actually decline as 1/λ2 after the stress peaks at a wavelength 

of 2 π α .

the surprisingly high stresses that develop in an elastically lexed plate are reduced 

somewhat when plastic yielding occurs and spreads the stresses over a larger volume, but 

the lesson is that lexure cannot support very broad loads. Indeed, in locations where the 

topography suggests that lexural support is important, it is common to observe tectonic 

evidence of rock failure.

the lexural parameter α is often directly observable. the size of the region depressed 

by a concentrated load is governed by the lexural parameter. thus, the island of Hawaii is 

surrounded by a broad shallow moat where the elastic lithosphere of the Paciic ocean loor 

is lexed downward by the weight of the volcanic pile. Similarly, the ice shell of europa 

is lexed downward by the weight of the ridges crisscrossing its surface, creating shallow 

troughs lanking the ridges (figure 3.13). the gigantic artemis corona on Venus is par-

tially surrounded by a moat similar to that around Hawaii, and also may be due to a lexing 

(or, perhaps, subducting and lexing) lithosphere.

one of the goals of planetary surface studies is to ind evidence for such lexural depres-

sions lanking topographic loads and, from their breadth, use equation (3.41) to determine 

the thickness of the lithosphere. this thickness, in turn, can be used to estimate the near-

surface temperature gradient, and, hence, planetary heat production.

3.6 Clues to topographic support

With all of the different mechanisms that can contribute to topographic support, the ques-

tion naturally arises, how can we tell which mechanism, or what combination of mecha-

nisms, is actually supporting the topography of a given planet? Some irst-order guesses are 

easy: long-wavelength loads are generally supported by isostasy, short-wavelength loads 

by lexure. limits to the strength of materials provide some clues. However, how can we 

know, in a particular case, what mechanism is actually in play?
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Box 3.3 Flexure of a loating elastic layer

Determining the deformation of the surface of a loating elastic plate under a given load is both 

an old problem and a dificult one. Heinrich Hertz (of radio-wave fame) irst offered a solution 

in 1884 (Hertz, 1884). His interest was not planetary lithospheres, but rather the form of the 

surface of a frozen pond under the weight of an ice skater. the weight of the skater (what we 

would now call a concentrated load) is supported both by the bending of the ice layer itself and 

by the buoyancy of the underlying water displaced by the delection of the lower surface of the 

ice layer. Hertz’s solution relied on centuries of mathematical study of the delection of beams 

and the creation of an effective theory of elasticity. His work on the delection of a loating 

plate found immediate application to railway engineering, where the bed of the tracks forms a 

support similar in many ways to a dense liquid layer.

In more recent times, the well-known geophysicist Don anderson relates (personal 

communication, 1971) that his irst introduction to plate tectonics took place courtesy of the 

united States air force, which required him to use Hertz’s theory to determine how close 

together airplanes might be parked on an ice loe before the ice ruptured. currently, the theory 

of plate lexure is widely applied in geodynamics to investigate the structure and evolution of 

planetary lithospheres. It is the principal subject of at least one modern monograph (Watts, 2001) 

and is discussed as part of thousands of papers on both terrestrial and planetary geophysics.

a serious student of terrestrial or planetary geophysics should, thus, be familiar with both the 

derivation and many applications of the lexural equations. However, the passage of time has not 

made this subject much easier than it was for Hertz, and a full derivation would be out of place in 

a broad overview (indeed, the correct application of the lower boundary condition between elastic 

and luid materials presents a subtlety so obscure that, of all the books I know, only one (cathles, 

1975) treats it correctly!). the equations are, happily, linear for small vertical delections w of 

the centerline of the plate. they are, however, fourth-order differential equations that, thus, have 

four parameters that must be determined from the boundary conditions. the most frequently 

used version of the full equations assumes that both the plate and the load are uniform in the y 

direction, hence, the solution depends only on the horizontal distance x:
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where N is a horizontal force applied in the x direction (taken to be positive in compression), ρa 

is the density of the underlying luid layer, g is the acceleration of gravity and q is an applied 

surface load (force per unit area). D is the lexural rigidity, deined in terms of the young’s 

modulus E, Poisson’s ratio ν and plate thickness t as:
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(B3.3.2)

a typical solution to this equation is given by figure B3.3.1, which shows the delection 

of the lithosphere under a load of uniform thickness a that extends arbitrarily far to the left of 

the center, x = 0 and ininitely far perpendicular to the page. this might represent the edge of 

a very broad plateau with a straight edge. the density of both the load and the lexed plate is 

ρl, while that of the underlying luid layer is ρa. the formula for the vertical delection of the 

center of the lithosphere in this case is:
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In these equations the horizontal scale of the delection is determined by the lexural 

parameter, α, deined in the text. to ind the actual topography one must be careful to add 

in the thickness of the overlying half of the plate, plus the load. the lithosphere is delected 

downward by a distance of 
ρ
ρ

l

a

a

2
 right under the edge of the load, while far to the left it 

achieves the delection required by isostatic equilibrium, 
ρ
ρ

l

a

a .

note, in figure B3.3.1, the very slight reversal of the vertical delection that crests at a 

distance of 3πα/4 (labeled “bulge” in the igure). noted by Hertz in his solution, this small-

amplitude reverse delection is characteristic of lexural solutions. on earth, this slight bulge 

is readily apparent on topographic maps of the great oceanic trenches where the oceanic 

lithosphere is subducted into the mantle. a few hundred kilometers seaward of every trench 

there is a small rise, termed the “outer rise,” that seems to represent the lexure of the 

oceanic lithosphere. the lexural trough surrounding each of the Hawaiian islands is likewise 

accompanied by a slight outer rise farther from the island loads.

the above results are valid only for a lat elastic plate. When the lithosphere has a 

substantial curvature it is technically called a shell and the solutions for topographic support 

must include membrane stresses from the stretching or compression of the plate in addition to 

lexural stresses. this case is examined in some detail by turcotte et al. (1981).
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figure B3.3.1 Delection of a loating elastic plate by a sharp-edged load with the same density 

as the plate. the horizontal dimension is in units of the lexural parameter α, while the elevation 

is in units of half of the lithosphere thickness. the dashed line is the neutral sheet of the plate. 

the load uniformly depresses the plate on the left, but near the edge of the load the plate is lexed 

down with a curvature comparable to the lexural parameter. a very low bulge develops beyond 

the main lexure. equation (B3.4.3) in Box 3.3 describes the delection of the neutral sheet.

Box 3.3 (cont.)
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this question would be easy to answer if we could directly determine the stresses acting 

in a planet’s interior. unfortunately, stresses are dificult to measure even in the laboratory. 

In situ stress measurement techniques do exist, however, and are sometimes used at shal-

low depths in the earth (engelder, 1993), but such data do not yet exist for any other planet. 

earthquakes also give clues about stress magnitudes and directions, but even in the earth 

their interpretation is presently somewhat controversial, and for other planets the necessary 

seismic data sets do not exist (apart from some intriguing, but limited-term, data on lunar 

seismicity). associations of tectonic features, to be discussed in more detail in the next 

chapter, may give clues about regional stress distributions and this is an important source 

of information. However, the most direct information on topographic support comes from 

measurements of the acceleration of gravity.

3.6.1 Flexural proiles

the most direct method of determining lithospheric thickness is to observe a topographic 

lexural proile. as discussed above, such proiles are commonly observed around vol-

canic islands in the earth’s oceans (fig 3.14), and have been noted on Venus and europa. 

figure 3.13 is a good example of such a proile, irst discovered in 2005 (Hurford et al., 

2005). upon observing new images of the surface of a terrestrial planet or satellite, one of 

the irst efforts of any geophysically oriented planetary scientist is to seek evidence of such 

surface deformation. once found, the wavelength of the observed topographic lexure is 

readily expressed in terms of the lexural parameter α, equation (3.41), and with a few add-

itional assumptions it yields the thickness of the elastic lithosphere. Still more assumptions 

give an estimate of the planet’s heat low, a number that is dificult to determine remotely 

in almost any other way. the amplitude of the lexural delection yields the magnitude of 

the load via the full lexural equations described in Box 3.3.
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figure 3.13 flexure of the lithosphere adjacent to a ridge on europa. the plot shows the topography 

determined by the method of photoclinometry applied to a Galileo image of europa. note the 

prominent trough lanking the ridge and the low bulge beyond the trough. this trough and bulge 

topography is the expected shape for a loaded loating elastic plate of thickness 350 ± 50 m. after 

figure 4 in Hurford et al. (2005).
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3.6.2 Anomalies in the acceleration of gravity

to irst order, the gravitational acceleration of a large planet or satellite is directed toward 

its center of mass and varies as the inverse square of the distance from that center, out-

side of the body itself. However, small but signiicant deviations from an ideal spheroidal 

ield (for a rotating body) are readily detected either on the surface or from orbiting satel-

lites. this is not the place for a detailed discussion of this large area of research (see, e.g. 

lambeck, 1988), but a few important results require brief discussion.

Deviations of the gravitational acceleration of a body from an ideal assumed ield are 

known as anomalies. free-air anomalies are probably the easiest to understand: they are 

simply the difference between the expected gravitational acceleration and the observed 

acceleration at some conventional elevation above the surface. Gravity anomalies are gen-

erally reported in units of gal (short for galileo: 1 gal = 1 cm/s2). the excess gravitational 

acceleration produced by an ininitely wide sheet of density ρ and thickness h is given 

by:

 Δg = 2π Gρh. (3.43)

thus, the gravitational acceleration exerted by a broad sheet of basalt 1 km thick is about 

125 mGal. although this is a very small acceleration compared with the surface acceler-

ation of the earth (9.8 m/s2, or 980 000 mGal), such anomalies are readily detected by the 

orbital perturbations of low-lying satellites. Indeed, accuracies of 0.1 mGal are presently 

achievable.

the importance of free-air gravity anomalies is that, to irst order, isostatically com-

pensated topography has no anomaly. Because the extra mass of surface topography is 

compensated by a low density at depth, the net excess mass below the surface of isostati-

cally compensated topography is zero, and so is the gravity anomaly. this simple conclu-

sion is not quite true for loads of limited lateral extent, in which case detailed modeling is 

required, but it works as a general rule of thumb. topography supported by strength in the 

form of lexure or supported dynamically is not compensated by underlying low densities 

depression

topographic
load

bulge

buoyancy

neutral
sheet

elastic flexure

figure 3.14 flexure of a loating elastic plate subjected to a topographic load. the weight of the load 

is supported by a combination of lexural stresses developed by bending of the plate and buoyancy 

generated by the depression of the lithosphere into the luid mantle below. this schematic drawing 

indicates the neutral sheet in the plate by a dashed line.
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Strength versus gravity98

and so exhibits free-air gravity anomalies, which may be quite substantial. for example, 

free-air gravity anomalies over the dynamic topography of subduction zone trenches may 

drop below –300 mGal. flanked by smaller positive anomalies along the volcanic arc, they 

constitute the largest free-air gravity anomalies on earth.

anomalies in the acceleration of gravity (both excesses and deicits) can be interpreted 

as equivalent topographic loads (positive or negative) and, thus, sources of stress in the 

lithosphere. a rough-and-ready method of estimating such stresses is to replace the gravity 

anomaly, Δg, by a broad layer of suficient mass to create the same anomaly, then to equate 

the weight of this extra load to the applied stress. this yields an equation for the equivalent 

stress σgrav of the gravity anomaly:

 

σ
πgrav = g g

G

∆
2  

(3.44)

where G is newton’s gravitational constant. In the case of the 300 mGal anomalies observed 

in terrestrial oceanic trenches, this corresponds to a stress of about 70 MPa – close to the 

crushing strength of rock. on the moon, the same anomaly would only imply a stress of 

about 12 MPa: although the mass anomaly is the same on the moon, its lower acceleration 

of gravity implies a smaller stress.

an important episode in the history of lunar exploration was the unexpected (and, at 

the time, unwelcome!) discovery of strong mass concentrations on the lunar nearside. 

termed “mascons” after they were discovered in 1968, they are circular anomalies of up 

to about 500 mGal that are associated with basalt-illed impact basins. the apollo mis-

sion planners went to great trouble to compensate for the effects of these anomalies in the 

manned apollo orbits. the mascons’ effect on satellite orbits is so strong that they crashed 

the apollo 16 subsatellite PfS-2 onto the lunar surface only a month after the astronauts 

released it.

It is now understood that isostatically uncompensated lava within the circular nearside 

impact basins creates most of the mascon anomalies, with an additional contribution from 

an uplifted mantle plug underneath the basins (neumann et al., 1996). the effect of the 

lava’s enormous weight is clearly visible in the Humorum basin, where adjacent craters tilt 

inward toward the sagging basin center and the stresses generated by the load have frac-

tured the crust in great circumferential faults.

a second commonly employed type of gravity anomaly is the Bouguer anomaly. It is 

computed from the free-air anomaly by subtracting an estimate of the gravitational attrac-

tion of the topography above (or below) the reference geoid. the resulting anomaly relects 

the mass deicit (or excess) below (or above) the topographic elevation (or depression). for 

more details on this and other types of gravity anomaly, see the book by Garland (1965). 

Isostatically compensated mountainous terrain, such as the alps in europe, exhibits small 

free-air anomalies and strong negative Bouguer anomalies, relecting the low-density root 

compensating the weight of the mountains. If it is further assumed that the density anom-

alies are entirely due to variations in the thickness of a constant-density crust, then grav-

ity anomalies can be inverted to create maps of crustal thickness. Such maps have been 

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9780511977848.004
Downloaded from http:/www.cambridge.org/core. University of Chicago, on 04 Jan 2017 at 02:46:58, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511977848.004
http:/www.cambridge.org/core


3.6 Clues to topographic support 99

produced for the earth, Moon, and Mars, but it should be understood that a great many 

assumptions enter into such maps unless they are constrained by seismic data.

Because isostatic compensation by a loating lithosphere depends on the breadth of the 

load, a useful approach is to compute the fourier transforms of both gravity anomalies and 

topography. comparison of the amplitude of the gravity anomaly to topographic height as 

a function of wavelength on a so-called admittance diagram may then be used to estimate 

the thickness of the elastic lithosphere. unfortunately, subsurface loads easily confuse this 

method; more recent work focuses on correlations between gravity anomalies and topog-

raphy as a function of wavelength. this kind of study yields maps of lithosphere thickness, 

which have been compiled to date for the earth, Venus, and Mars.

3.6.3 Geoid anomalies

a somewhat different type of gravity anomaly is the ratio between geoid height and topo-

graphic elevation (or depression). the geoid, by deinition, coincides with a gravitational 

equipotential surface, whereas the acceleration of gravity is proportional to the potential 

gradient perpendicular to this surface. the geoid and gravitational acceleration anomalies, 

thus, contain different types of information. It can be shown that geoid height variations 

depend on the near-surface density gradient, rather than the density itself. thus, the Geoid 

to topography ratio, or Gtr, allows estimates of the depth of isostatic compensation as 

well as of the type of compensation, whether of the airy, Pratt, or mixed type.

over the earth’s oceans the geoid can be measured directly by precision observations of 

the shape of the sea surface. over the land areas of the earth and over planets with solid 

surfaces it can be constructed from careful tracking of gravitational perturbations of satel-

lite orbits.

the geoid of Mars is utterly dominated by the huge tharsis dome, which affects a region 

about 5000 km in diameter and appears to overlie an enormous lens of low-density material 

in the Martian mantle. Because of the uncompensated load, the tharsis dome causes such 

a large geoid distortion that it obscures efforts to determine that planet’s moment of inertia 

and thus the size and mass of its core (neumann et al., 2004). on Venus the Gtr of high-

land features is much larger (tens of m/km; Smrekar et al., 1997) than those of terrestrial 

features (typically less than 5 m/km in the oceans). these large ratios indicate much larger 

depths of isostatic compensation than observed on the earth (a paradox, considering the 

much thinner lithosphere on Venus because of its high surface temperature!). furthermore, 

the Gtr varies widely from one highland feature to another, suggesting a highly variable 

depth of compensation. the major geoid anomalies on earth are associated with subduc-

tion zones. However, unlike the acceleration anomalies, which are negative in the trenches 

and positive over the lanking volcanic arcs, the geoid anomalies are broad positive welts 

that follow the trend of the subduction zones. these anomalies are generally attributed to 

the cold, dense subducted slabs slowly sinking into the mantle.

the great importance of gravity anomalies for understanding topographic support is the 

principal reason that planetary geophysicists are eager to establish polar orbiters about as 

many planets and satellites as possible. the earth, Venus, and Mars have been well covered 
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by such orbiters. our Moon is not so well understood because we cannot directly measure 

the range to a satellite over its farside. High-precision lunar gravity measurements of the 

farside will require missions that incorporate at least two satellites tracking one another. 

recently, the successful Japanese Kaguya mission has produced the best and most com-

plete lunar gravity ield, including the farside. at the time of writing, the MeSSenGer 

mission is on its way to orbit Mercury in 2012 and we are eagerly awaiting the data on 

Mercurian gravity that will result from successful completion of that mission. In the future 

we can hope for missions that orbit, and track, spacecraft around the major moons in the 

outer Solar System.

Further reading

G. K. Gilbert achieved a great deal of insight into the relationship between temporary 

loads on the earth’s surface and the viscous response of the underlying mantle in his 

famous monograph on lake Bonneville (Gilbert, 1890), which can still be read with 

proit. the history of the investigation of the strength of the earth and gravity anomalies, 

Box 3.4 The ambiguous “lithosphere”

the term “lithosphere,” as introduced in this chapter, refers to that part of a planet’s interior 

that responds elastically to applied loads. Because of the time-dependent response of rock 

materials to applied stress, the lithosphere’s size and location is somewhat ill deined, as it 

depends on the duration of the load under consideration and the rheology of the material of 

which it is composed. It is, nevertheless, a useful concept because the extreme variations in 

the effective viscosity of most planetary materials make the uncertainties in the lithosphere’s 

boundaries small in relation to the size of the elastic region itself for timescales of geologic 

duration.

However, the ambiguities of the term “lithosphere” only begin with this deinition. 

numerous geophysicists over the past 70 years have complained that the same term is 

promiscuously applied to three disparate concepts (anderson, 1995), but to little avail: the 

word “lithosphere” is employed by large segments of the geophysical community to mean 

either the elastic portion of a planet’s interior (the “elastic lithosphere”), the portion of the 

earth above the seismic low-velocity zone (the “seismic lithosphere”), or the cold boundary 

layer of a thermally convecting cell (the “thermal lithosphere”). It is wise to be cautions when 

encountering the term “lithosphere” and to ask oneself which usage is intended!

another frequent confusion is between “lithosphere” and “crust.” the outer regions of 

planets are frequently differentiated into an outer, less dense crust that overlies a deeper 

interior zone often called the “mantle,” in analogy to the divisions of the earth’s interior. the 

distinction between the crust and mantle is purely chemical: they are composed of materials 

with different average densities. In contrast, the elastic lithosphere is a mechanical division. 

In the earth’s ocean basins, the elastic lithosphere comprises both the oceanic crust and upper 

mantle, while on the continents the elastic lithosphere may include only the upper portion of 

the crust (and this is often underlain by a second lithosphere at the top of the mantle).
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among other things, is well told by Greene (1982). long a classic in the ield, the book 

Fundamentals of Rock Mechanics by J. c. Jaeger has gone through many editions. It was 

out of print for many years, but a new edition has recently appeared that updates its nota-

tion and includes many new measurements (Jaeger et al., 2007). the ideas behind our 

modern understanding of material strength are engagingly told in a semi-popular book 

(Gordon, 2006), while the details of brittle fracture theory are explored by lawn and 

Wilshaw (1993) and for rocks by Paterson and Wong (2005). the nature and theory of 

dislocations is well described in Hull and Bacon (2001) and Weertman and Weertman 

(1992). Gilman (1969) applies dislocation mechanics to the plastic deformation of solids. 

Harold Jeffreys devoted much of his life to understanding the relation between strength 

and topography of the earth. He wrote a ine, although now somewhat dated, popular 

book (Jeffreys, 1950), but his enduring masterpieces are the third and fourth editions of 

The Earth (Jeffreys, 1952, 1962). later editions of this book exist, but by the ifth edition, 

the aging Jeffreys was on a campaign to stamp out the upstart theory of plate tectonics and 

these later editions are rather polemic. the best treatment of the relation between grav-

ity, the geoid, and the shape of the earth is lambeck (1988). a clear, detailed discussion 

of rheology applied to the earth is ranalli (1995), although a more recent book focused 

on the detailed mechanisms of deformation and low is Karato (2008). the now-classic 

book on the application of theories of elasticity and viscosity to geodynamic problems is 

turcotte and Schubert (2002). this book has become a standard text for advanced courses 

in geodynamics. the lexure of the lithosphere and its relation to isostatic support is now 

well covered at book length by Watts (2001).

Exercises

3.1 Strength vs. gravity

a) Phobos, the innermost satellite of Mars, is an irregular, potato-shaped body with 

extremes of radius, rmin ≈ 10 km and rmax ≈ 14 km, and mean density 1900 kg/m3. If 

these extremes are the maximum that Phobos’ strength could support, how large is the 

strength of its rock? If the strength of Phobos’ rock is similar to that of the Moon’s, 

about 10 MPa, how large could the extremes of Phobos’ radii be? What do you think 

this means?

b) If asteroids are incoherent “rubble piles”, the maximum slope that can exist on their 

surface is the angle of repose for rock debris, about 30˚ for most types of rock. estimate 

the maximum difference in elevations possible on a non-rotating rubble-pile asteroid 

and compare this to the actual difference in dimensions of known asteroids.

extra credit: Suppose the asteroid is rotating at the limit for breakup. now estimate 

(crudely: to do this exactly is a very hard problem) the maximum possible difference in 

the asteroid’s dimensions. for a more sophisticated approach to this problem see Minton 

(2008).

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9780511977848.004
Downloaded from http:/www.cambridge.org/core. University of Chicago, on 04 Jan 2017 at 02:46:58, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511977848.004
http:/www.cambridge.org/core


Strength versus gravity102

3.2 Viscous low

use the formula, similar to the one derived in Section 3.5.2, for the relaxation time τ of a 

disk-shaped load on a viscous half-space with viscosity η:

τ = 5η/ρgR

where ρ is the rock density, g is the surface acceleration of gravity, and R is the radius of 

the disk.

a) the Imbrium mascon (R = 500 km) is not isostatically compensated (relaxed). the last 

lavas on its surface are ca. 3 × 109 yr old. Derive a lower limit for the Moon’s present-

day viscosity.

b) lake Bonneville (ancestral Great Salt lake in utah) relaxed almost completely in the 

1500-year interval between the Bonneville and Provo stages, when much of its water 

drained out to the northern columbia river drainage. Its radius R ≈ 100 km. What is the 

viscosity of the mantle beneath utah? compare this to the viscosity (1021 Pa-s) of the 

average mantle. What does this mean?

c) over the last 3 × 109 yr (probably), 100 km diameter crater basins on Ganymede 

have relaxed completely, but their 10 km wide rims are still clearly visible. What 

does this imply about the viscosity of Ganymede? Is there more than one possible 

interpretation?

3.3 Warmed-over Uranian moons

tiny Miranda, radius 236 km and surface temperature about 70 K, has a shape that is in-

distinguishable from that of an equilibrium tidal ellipsoid, with a maximum tidal bulge of 

about 7.1 km. using the fact that Miranda must have relaxed into this shape over the past 

4.5 × 109 yr, derive an upper limit for the viscosity of its interior (you may need to know 

G = 6.67 × 10–11 nm2/kg2 and the mean density of Miranda is 1200 kg/m3).

3.4 The ultimate limit to core formation

use frenkel’s estimate of the ultimate strength of a solid, YF = μ/2π, to estimate the max-

imum radius, rmax, of an iron sphere that can be supported in the earth’s mantle. Some 

relevant data are ρ (iron) = 8000 kg/m3 (at mantle pressures), ρ (mantle) = 5000 kg/m3,  

and μ = 2.5 × 1011 Pa.

reference (consult this after you have solved the problem!): G. f. Davies (1982).

3.5 Global isostasy

a) Suppose that the Moon’s center of mass (cM) is 1.6 km closer to the earth than its 

center of igure (cf), as was determined by the clementine mission. Model the Moon’s 

interior as a mantle of density 3300 kg/m3 and a crust of density 2800 kg/m3. If the 

crustal thickness on the nearside is 60 km (determined by the apollo seismic experi-

ment), how thick must the farside crust be to explain the cM–cf offset?
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b) another way to estimate the Moon’s crustal thickness is to note that the loor of the 

gigantic, 2600 km diameter, South Pole-aitken basin lies about 8 km below the best-

itting sphere representing the lunar mean elevation. If we make the reasonable assump-

tion that this impact cleared away all of the overlying crust, leaving bare mantle on the 

loor of the basin, use isostasy to estimate the Moon’s mean crustal thickness. If this 

answer differs from (a) above, what may be the reason?

3.6 Supporting Maxwell

Maxwell Montes is the highest elevation on Venus, rising 11 km above the planet’s mean 

radius and extending over a 500 km diameter region. It is possible that Maxwell is sup-

ported dynamically by viscous stresses induced by a rising mantle plume impinging on the 

overlying lithosphere. If this is correct, use order-of-magnitude estimates to deduce the 

velocity of the plume necessary to support Maxwell. you may assume the mean viscosity 

of the mantle is 1019 Pa-s, similar to the earth’s asthenosphere. If this velocity luctu-

ates by 10% over the year that Magellan observed the altitude of Maxwell’s summit, how 

large would the variations in elevation be? Do you think these elevation changes would be 

detectable?

3.7 Flexed Venusian lithosphere

the northern edge of Ishtar terra on Venus is an enormous scarp, 4 km high, that stands 

near 30°, the angle of repose. Just north of the plateau edge is a deep trough that is bounded 

still farther away by a low rise that crests about 50 km away from the deepest part of the 

trough. use the theory of a sharp-edged load on a loating elastic plate to estimate the 

Venusian elastic lithosphere thickness. How does this agree with other estimates of litho-

sphere thickness?

you may need to recall that the acceleration of gravity on Venus is 8.6 m/s2, and may 

assume that the elastic constants of the Venusian crust are approximated by E = 1.6 × 1011 

Pa and ν = 0.25.
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