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The principal purpose of this paper is to examine whether membrane stresses can support topographic 
loads on planetary elastic lithospheres. It is found that the ability of a spherical shell to support loads 
through membrane stresses is determined by the nondimensional parameter r = Ed/ApgR 2 where d is the 
thickness of the elastic lithosphere, AO is the density difference between the mantle and crust, and R is the 
radius of the planetary body. When this parameter is large membrane stresses can fully support topo- 
graphic loads without flexure, and when it is small the influence of membrane stresses can be neglected. 
Solutions of the equation governing the behavior of a spherical shell are obtained for a topographic load 
expressed in terms of spherical harmonics. Spherical harmonic expansions of the measured gravity and 
topography for Mars and the moon are compared with the theory. It is found that for Mars the support of 
topography is primarily due to membrane stresses for n < 8 and for the moon for n < 17. For Mars the 
data for 4 _< n _< 7 give •- = 0.5. For the moon the data have considerable scatter that is attributed to the 
mascons but generally correlate with •- = 0.5. If bending stresses are neglected, the governing equation 
for the deflection of the spherical shell is Legendre's equation. A general solution is obtained for an ax- 
isymmetric load. This solution is applied to the Tharsis region on Mars. The 60-65% compensation of 
this region requires that •- = 0.6. The well defined fracture pattern surrounding the Tharsis region is at- 
tributed to tensional membrane stresses. 

INTRODUCTION 

It is now widely accepted that planetary bodies have thin, 
near-surface shells that behave elastically on geological time 
scales. Beneath the shell, the elastic lithosphere, the mantle 
behaves as a fluid. Assuming that the spherical shell with 
radius R has a constant thickness d the equation for the verti- 
cal displacement w (measured positive downwards) is [Kraus, 
1967] 

DV6W + 4DV4w + EdR2V2w + 2EdR2w 

= R4(V 2 "[' 1 - v)œ (1) 

where D = Ed3/12(1 - •) is the flexural rigidity, E Young's 
modulus, v Poisson's ratio, and p the pressure on the shell 
(positive directed inwards). The Laplacian operator V 2 is de- 
fined by 

a 2 a a 2 

V := - •-•+ cotq• •+csc•½ •-• (2) 
with q• the polar angle (colatitude) and • the azimuthal angle 
(longitude). 

We assume that topography of height h is added onto the 
shell; the weight of the topography is one contribution to the 
pressure p. If the shell is not infinitely rigid the weight of the 
topography will cause a downward displacement of the shell 
w. This downward displacement will depress the Moho at 
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which there is a de•nsity contrast Pm -- Pc; the result is an up- 
ward (negative) pressure. The additional mass of the topogra- 
phy, however, also causes an upward displacement of the 
geoid hg; the pressure contribution of this upward dis- 
placement is --pmhg. This latter effect is only important for 
loads whose wavelengths are of the order of the radius R. The 
pressure is therefore given by 

p ---- g[pch - pmhg- (Pm- Pc) TM] (3) 

In writing the term --(Pro -- POW it is implicitly assumed that 
crust with density Pc fills the region between 0 and w. The 
height h is the actual height of the topography above the ref- 
erence sphere of radius R. The actual amount of crustal rock 
that must be added is h + w. For convenience a new variable 

is introduced 

h = h - P._•_m hg (4) 

Our formulation includes both membrane and bending 
stresses. 

For loads which have a wavelength small compared with 
the radius R it is appropriate to neglect both the curvature and 
hg so that (1) to (3) reduce to 

1 

R-• ova + (Pm -- Oc)gW = Ocgh (5) 

Solutions to this equation decrease exponentially in a distance 
a = [4D/(pm - pc)g] •/4 which is the flexural parameter. 
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Topography which has a wavelength small compared with 
the flexural parameter can be supported by the flexural rigid- 
ity of the elastic lithosphere and is not compensatedß Topogra- 
phy which has a wavelength large compared with the flexural 
parameter is not supported and is fully compensated in the 
flat earth limit. Solutions of (5) as a function of wavelength 
have been obtained by Banks et al. [1977] and were compared 
with the cross correlation of gravity and topography for the 
United States given by Dorman and Lewis [1972]. A similar 
correlation for Australia has been given by McNutt and 
Parker [1978] and for Africa by Banks and Swain [1978]. 

In this paper we wish to determine whether some fraction 
of the topographic load can be supported by the membrane 
stresses in the elastic lithosphere. If the curvature of the sur- 
face is neglected then loading is entirely supported by bending 
stresses. However, once curvature is introduced the horizontal 
membrane stresses can support the load. 

HARMONIC ANALYSIS 

In order to study the roles of membrane stresses and bend- 
ing stresses in supporting topographic loads it is convenient to 
introduce the dimensionless parameters 

Ed 

'r •- a2g(p m _ Pc) (6) 

o m R4g(Pm __ Pc) - 12(1- t, 2) (7) 
The parameter r is a measure of the rigidity of the spherical 
shell if bending resistance is neglected. The parameter o is a 
measure of the resistance of the shell to bending. Using these 
parameters and the variable/• defined in (4), we rewrite (1) as 

[o(va+4v4)+I.(V2+2)]w_.(V2+ 1_•,)( Pc 
(8) 

Our object is to obtain w as a function of//. In order to do this 
we expand w and//in spherical harmonics 

ti = •,, •2 ti. mPnm (COS • ) (9) 
n• l m•O 

I 02 a 1 02 (1 - + (1 - f) 04/ + n(n + 1)1 
ß sin rn, = 0 (14) 

If we introduce 

• = COS qb (15) 

in spherical coordinates the Laplacian operator is related to 
Legendre's equation by 

02 a 1 02 

7 2 = (1 - •2) •-• _ 2• • + (1 - •2) a• (16) 
using (2) and (15). Combining (13), (14), and (15), we obtain 

V2[P. rn(O cos rn•b] = -n(n + 1)Pnm(•) COS rn•b (17) 

V2[Pnrn(O sin rn•b] = -n(n + 1)Pnm(• ) sin rn•b (18) 

as long as the Laplacian operator is expressed in spherical po- 
lar coordinates. 

Substitution of (9), (10), (11), (12), (17) and (18) into (8) 
gives 

{o[--n3(n + l) 3 q- 4n2(n + 1) 2] + .[--n(n + 1) + 2]} Wo, rn 

I Pc =[--n(n+ 1)+(1-/,)] (prn_ Pc• l•c. - Wc.m I (19) 
{o[-n3(n + 1) 3 --5- 4n2(n + 1) 2] --5- r[-n(n + 1) + 2]} Ws.m 

I Pc ----[--n(n + 1) + (1 -- v)] (tOr n __ L,m -- W,,m I (20) 
Because the functions P. rn (cos •) cos m4• and P. rn (cos •) sin 
m• are orthogonal the coefficients of each of these terms in 
the infinite expansion must be identically equal to zero. From 
(19) and (20) we find that the ratios of the coefficients are 
given by 

Wcnm Wsnm 

Prn -- Pc o[n3(n d- 1) 3 --4n2(n + 1) 2] + ,r[n(n + 1) -- 2] + n(n + 1) - (1 -/•)' (21) 

where 

W = • • WnmPnm (COS ½) (10) 
n= 1 mtO 

]•nm •--- ]•cnm COS m42 + ]•snm sin m42 (1 1) 

Wnm = Wen m COS m•b + W sn m Sin rn•b (12) 

and Pnm are the associated Legendre polynominals of degree n 
and order m. However, the associated Legrendre polynomials 
satisfy Legendre's equation so that 

This is a simple algebraic expression for the ratio of the de- 
flection coefficients Wcn m and Wsn m to the loading coefficients 
•cnm and •snrn' 

It is now necessary to determine the elevation of the geoid 
h s caused by the additional mass of the topographyß The grav- 
itational potential at a radial position r of a sphere of mass M 
with a mass distribution of topography, p,,h, at the surface r = 
R and a mass difference due to the deflection of the Moho, (Pm 
-- pc)W, at a radial position r = R - bc where bc is the thickness 
of the crust is [Jeffreys, 1976, 5.06.1] 

I 02 a 1 02 ] (1-•2)•-2•+ (1-•2) a• +n(n+ 1) 
ß Pnm(O COS m4• -- 0 (13) 

u=- GM-4•rG •2 •2 
l' nt I m•O 

n+2pchnm - (R - bc)n*2(pm - pc)Wnm t ß (2n + 1)r •+' Pnm (COS (•)) (22) 
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We expand the radial position of the geoid in terms of spheri- 
cal harmonics according to 

r = R q- • • h.•.P•m (cos <•) (23) 
n-- 1 rn.-0 

where hgnm is related to hgcn m and hgsn m as in (11). 
The value of the potential on the reference geoid is 

GM 

U--- -•- (24) 

We substitute (23) and (24) into (27) and set coefficients of or- 
thogonal functions equal to zero. The elevation of the geoid 
will be significant only for low degree terms so that is is ap- 
propriate to assume (1 - be/R) n+2 -- I when determining hgcnm 
and hgsnm. With this approximation and assuming that h•/R << 
1 we obtain (note that it is appropriate to set r n+l -- R "+l to a 
consistent order within the summations) 

h gcrtm • 
(2n + 1)• 

-- -- 'OWcm] (25) 

where • is the mean density of the planetß An identical result 
relates h• ... h ... and w ... Substitution of (4) and (25) into 
(21) gives 

Wc•.____•_m = Ws•m = P._•___c C• (26) 
hcnm hsnm Pro--Pc 

where 

C•= 1-(2n+l)• 

- • (32) ß 1 (2n+ 1)• +r n(n+ 1)-(1-v 
The gravity anomaly at r = R due to a spherical harmonic 

distribution of mass at the surface r = R and at the Moho r = 

R - bc has been given by Jeffreys [ 1976, 5.06.2]. The result is 

Agcnm = 47rG{;n•q-ll)!pchcnm - (Pm - •Oc)ll bc'n+2 -] 
(33) 

with a similar result for Agsn m. Substitution of (26) into (33) 
gives 

n + bc •+= - 

In the limit of an infinitely rigid lithosphere r --> oo (C,--> O) 
this reduces to 

Agcnmoo = 4rrG n+ll) 2n + pchcnm (35) 

Only the topography contributes to the surface free-air gravity 
anomaly since there is no deflection of the spherical shell and 

.3P___ m ,[ øIn3( n Cn= {1-(2n + q- l) 3 -- 4n2(n + 1)21 + r[n(n + 1) - 2] + n(n + 1) - (1 - v) _ _3pro. ,•--1 (27) 
n(n + 1) - (1 - v) (2n + 1 

We will show that it is appropriate to refer to C• as the degree 
of compensation for degree n. 

In the limit of a lithosphere with no strength (r --• 0, o --• 0) 
C• --• 1 and (26) reduces to 

Wc. = (28) 

The load is isostatically compensatedß In the limit of a rigid 
lithosphere (r --• oo, o --• oo) C, --• 0 and there is no com- 
pensation and no deflection 

Wc•m ---- 0 (29) 

Thus Cn as defined in (27) is identically equal to the degree of 
compensation defined as 

Cn = (Wcnm/hcnrn) (30) 
(Wcnm/hcnm)O 

For short wavelength loads n(n + 1) >> 1 (27) reduces to 

1 

C,, = 1 + o[n2(n + 1)2] (31) 
In this limit bending stresses dominate. This result can also be 
obtained directly from (5) using (17) or (18) and (26). 

For relatively small planetary bodies and small values of n 
it is appropriate to neglect bending stresses compared with 
membrane stresses. In this limit, o --• 0, we obtain 

the Moho. In the limit of a lithosphere with no strength r --> O, 
o --> 0 (C,--> 1) and (34) reduces to 

AgcnmO--4rrG(2;•ll}Pchcnmll--(1- -•}n+21 (36) 
If (1 - bc/R) "+2 --• 1, then Age, too -• O, the result usually ob- 
tained for isostatic compensation of topography. We can also 
write 

Agnmoo -- Agnm 
C• = Ag•mo• - Ag•mo (37) 

which can be taken as a definition of the degree of com- 
pensation. 

In order to compare with observations we wish to obtain 
the ratio of the gravitational potential anomaly due to topog- 
raphy to the height of the topography. The potential anomaly 
at r -- R due to a sperical harmonic distribution of mass at the 
surface r-- R and at the Moho r = R - bc from (22) is 

bc )n+2 4•rGR I iOchcnrn -- (lOrn -- Pc) 1 - Wcn m (2n+ 1) '•- 
(38) 

And substitution of (26) gives 

bc n+2 

4•rGRpc (l__•;•_)Cnlhcn m AUc•m = - (-•n • ]• I1- (39) 
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TABLE 1. Planetary Properties Relating to the Present Value of the 
Stiffness Parameter •o 

Earth Mars Moon 

Radius R, km 6378 3395 1738 
Surface gravity g, ½m/s 2 1000 380 165 
Mean density •, g/cm 3 5.517 3.94 3.34 
Mass that contains radio- 

active isotopes, M, g 4.1 X 10 27 6.42 X 10 26 7.35 X 10 25 
Thickness of the elastic 

lithosphere, d, km 50 90 207 
ro 0.016 0.27 5.4 
o 8.74 x 10 -8 1.69 x 10 -5 6.81 X 10 -3 

with a similar result for A Usnm. Since this result is independent 
of the order rn it is often convenient to introduce a root mean 

square nondimensional nth degree gravity potential according 
to 

R 
AU. --- • (AU•.• 2 + AUs.•2) '/2 (40) GM • 

and similarly for the topography 

1 

Hn • • • (hcnm 2 + hsnm2) 1/2 (41) 
m 

And combining (39), (40), and (41) gives 

AUn 3pc [ H.-(2n+l)• l- 

This result will be compared with the observed ratios of gravi- 
tational potential to topography. 

APPLICATION OF THE HARMONIC SOLUTION TO THE 
MOON AND MARS 

It is our object to determine whether membrane stresses 
support topographic and other loads on the earth, Mars, and 
the moon. In order to do this we first estimate the present 
value of r for these planetary bodies. In all cases we take E -- 
6.5 x l0 II dyn/cm 2, v: 0.25, and Pm -- Pc = 0.5 g/cm 3. The 
values of the radius R and the surface gravity g are given in 
Table 1. The major uncertainty involves the thickness of the 
elastic lithosphere d. For the earth based on a wide range of 
flexural problems [Watts et al., 1980; Caldwell and Turcotte, 
1979] it is estimated that the mean value of the elastic litho- 
sphere is 50 +_ 25 kin. The base of the elastic lithosphere is be- 
lieved to be defined by the temperature at which creep proc- 
esses in the mantle rock relieve the elastic stress. 

In order to estimate the present thickness of the elastic lith- 
osphere on Mars and the moon it is assumed that the thick- 
ness is inversely proportional to the surface temperature gra- 
dient d • (dT/dy)o -l. In order to estimate the surface 
temperature gradient on Mars and the moon it is assumed 
that these bodies, as well as the earth, are in a steady state 
heat balance. The surface heat flow is attributed to the decay 
of radioactive isotopes. Further, it is assumed that the concen- 
tration of the radioactive isotopes on the three bodies is the 
same. The result is (dT/dy)o • Mr/R 2 where Mr is the mass in 
which the radioactive isotopes are distributed. For the earth 
Mr is taken to be the mass of the mantle and for Mars and the 

moon Mr is taken to be the mass of the entire body. Values are 
given in Table 1. The present thickness of the elastic litho- 

spheres on Mars and the moon estimated from the relation d 
,• R2?Mr and the value d -- 50 km for the earth are also given 
in Table 1. The corresponding values of v and o are given. Be- 
cause of the uncertainties in the thickness of the elastic litho- 

sphere these values must be considered to be uncertain by at 
least a factor of 2. Nevertheless, several conclusions can be 
made. Membrane stresses on the earth do not support topo- 
graphic loads. Membrane stresses on the moon are capable 
today of fully supporting topographic and other loads. On 
Mars membrane stresses can partially support topographic 
loads. In the past the thermal gradients and the thickness of 
the elastic lithosphere may have been considerably less than 
they are today. Regional variations can also be important. 
Therefore the values of Vo given in Table 1 should be'consid- 
ered only as estimates. 

Earth 

In order for membrane stresses to support topographic 
loads on the earth the elastic lithosphere would have to have a 
thickness of about 1000 kin. There is no reason to believe that 

the earth ever had such a thick elastic lithosphere. It is there- 
fore concluded that membrane stresses do not support topo- 
graphic or other loads on the earth. However, the earth does 
have an ellipticity e -- 3.35 x 10 -3. When the surface plates 
change latitude due to continental drift their radius of curva- 
ture must change. As a result membrane stresses in the plates 
are generated [Turcotte, 1974]. These stresses do not, however, 
support topographic loads. 

There is also strong evidence that topography and gravity 
on the earth are not correlated. The major topographic fea- 
tures are the continents. There are essentially no gravity 
anomalies associated with the continents. Major gravity 
anomalies such as the gravity low south of India have no top- 
ographic expressions. Therefore correlations of gravity and to- 
pography on the earth are unlikely to yield useful results. 

Mars 

We next consider Mars. Unlike the earth, topography and 
gravity on Mars are strongly correlated. The normalized 
coefficients for the gravitational potential have been given by 
Christensen and Balmino [1979]. The normalized coefficients 
for the topography have been given by Bills and Ferrari 
[1978]. Following Lambeck [1979] the ratios of the root mean 
square nth degree coefficients given by (40) and (41) are given 

AU n 
H n 

0.4 

0.5 

0.2 

0.1 

0.0 

o Mars 

2 o 
I 

0.5 

o 

I I I I I I I I I I I I 

2 4 6 8 I0 12 

Fig. 1. Dependence of the ratio of the root mean square nth de- 
gree coefficients of gravitational potential and topography on the 
spherical harmonic degree n from (27) and (42) compared with the 
Martian data. 



TURCOTTE ET AL.: ROLE OF MEMBRANE STRESSES 3955 

in Figure 1. Also included in Figure I are the predicted values 
for several values of ? from (42) and (27). For each value of ? 
the value of o is obtained from (6) and (7). Taking E -- 6.5 x 
10 • dyn/cm 2, Pm -- Pc = 0.5 g/cm 3 and R and g from Table 1 
the thickness of the elastic lithosphere is determined from (6); 
then with v -- 0.25 we determine o from (7). Since the thick- 
ness of the crust on Mars is not known it is assumed that bc/R 
-- 0. As long as the Martian crust is thinner than 50 km the 
error introduced is less than 10% for degree 7 or less. In the 
range n -- 4 to 7 the data correlate with • -• 0.5. The scattered 
values for n -- 8 to 12 reflect the uncertainties in these coeffi- 

cients. The value for n = 2 is undoubtedly related to rotation 
and is not relevant to our analysis. 

We conclude ? -- 0.5 may be a good approximation for the 
rigidity of the Martian elastic lithosphere. The thickness of the 
elastic lithosphere corresponding to this value of ß is h -- 175 
km. It is seen from Table 1 that this is about twice the pre- 
dicted value. There are several possible explanations for this 
fact9r of two difference. One is that the density difference that 
we have used between mantle and crust is too large. Another 
is that the extrapolation of the thermal gradient from the 
earth to Mars may be in error. Mars may have a lower con- 
centration of radioactive isotopes or they may not be uni- 
formly distributed. 

It is of interest to determine the relative importance of 
bending and membrane stresses in supporting topographic 
loads on Mars. For ? -- 0.5 the value for o from (7) is o -- 1.09 
X 10 -4. The corresponding values of C from (27) as a function 
of n are given in Figure 2. Also included in Figure 2 are the 
values of C obtained from (32) assuming ß -- 0.5 (o = 0) and 
from (31) assuming o -- 1.09 x 10 -4 ('r = 0). We see that the 
load is primarily supported by membrane stresses for n < 8 
and is primarily supported by bending stresses for n > 8. In 
the range n -- 4-7 that we have been primarily interested in, 
membrane stresses dominate. The transition, n -- 8, corre- 
sponds to a wavelength of 2700 km. 

Moon 

One of the surprising results from early lunar exploration 
was the large gravity anomalies associated with some lunar 
mare. These local gravity anomalies in excess of 200 mgal 
were attributed to mascons, regions of excess density beneath 
the lunar surface. It is clear that the lunar elastic lithosphere 
has been able to support this excess mass for more than 2 x 
109 years. This support must be due to either bending or mem- 
brane stresses. Although we have shown that the present lunar 
elastic lithosphere is sufficiently thick so that membrane 
stresses can support the load of the mascons today, it is likely 
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l-' =0.5 /m 

i i i i i i i i i i i • i i i i 2 4 6 8 I0 ! 14 16 
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Fig. 2. Dependence of the degree of compensation C, on n for 
Mars with •- -- 0.5: b, bending stresses only; m, membrane stresses 
only; b + m, bending and membrane stresses. 
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o 2_5, 
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Fig. 3. Dependence of the ratio of the root mean square nth de- 
gree coefficients of gravitational potential and topography on the 
spherical harmonic degree n from (27) and (42) compared with the lu- 
nar data. 

that the lunar lithosphere was thinner in the past. Since the 
rate of decay of radioactive isotopes was about twice the pres- 
ent value three billion years ago, the thickness of the elastic 
lithosphere may have been even less near the mascons at the 
time of their formation due to local heating. 

Since the mascons are not the result of topographic loading 
their presence will interfere with any general correlation of 
gravity and topography on the moon. The normalized coeffi- 
cients for the gravity potential to degree sixteen have been 
given by Ferrari [1977] and the topography coefficients to de- 
gree twelve have been given by Bills and Ferrari [1977]. These 
results are given in Figure 3. Also included in Figure 3 are the 
theoretical values from (42) and (27); the thickness of the lu- 
nar crust is taken to be 60 km. It is seen that there is consid- 

erable scatter although a number of the results lie close to the 
r -- 0.5 result. The peak in the ratios of the coefficients near n 
= 6 is attributed to the mascons. The mascons have a positive 
gravity anomaly but no topography anomaly. This limited 
correlation with r = 0.5 can be attributed to the partial com- 
pensation of the lunar topography when it was being formed. 
For the moon r -- 0.5 corresponds to a lunar elastic litho- 
sphere with a thickness h -- 19.2 kin. This is not an unreason- 
able value if the topography was created early in the evolution 
of the moon. 

We next determine the relative importance of bending and 
membrane stresses in supporting topographic loads on the 
moon. For r -- 0.5 the corresponding value of o = 5.42 x 10 -6. 
The dependence of C, on n from (27) is given in Figure 4. 
Also included in Figure 4 are the values of C, obtained from 
(32) assuming r -- 0.5 (o = 0) and from (31) assuming o -- 5.42 
x 10 -6 (r -- 0). We see that the load is primarily supported by 
membrane stresses if n < 17 and is primarily supported by 
bending stresses if n > 17. The transition, n -- 17, corresponds 
to a wavelength of 642 km. 

The mascons are not the only features on the moon associ- 
ated with large free-air gravity anomalies. The Appennine 
Mountains on the moon are a region elevated topography 
with an amplitude of about 2 km and a horizontal extent of 
several hundred kilometers. It has been argued by Ferrari et 
al. [1978] that the Appennines are not compensated. We sug- 
gest that the topography of the Appennines has been sup- 
ported by membrane stresses for some three billion years. 

VARIATION OF PARAMETERS 

We have shown that topographic loads on the moon are 
primarily supported by membrane stresses if their horizontal 
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On 
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n 

Fig. 4. Dependence of the degree of compensat!on Cn on n for the 
moon with •- = 0.5: b, bending stresses only; m, membrane stresses 
only; b + m,' bending and membrane stresses. 

exte.nt is greater than about 320 km (haft the wavelength) and 
on .Mars if their horizontal extent is greater than about 1300 
kin. Alt•hough the harmonic analysis provides useful results, it 
is difficult toapply it to 16calized loads. In this section We will 
obtain an analytic solutibn for the surface displacement and 
stress field for an axisymrffetric load (0/04•--'0) assuming 
membrane stresses support the load. We will also assume the 
horizontal extent oE. the loa,d is rel,atively small so that h s -• 0 
and/• = h. • ' 

Assuming o -- •, a/a½ -- 0 and h = h, (8) and (2) simplify to 
give 

w 

_ pc o 2 a ) - (tOm -- Pc) (1 + 7) 0-• + cot • + 1 - v h (43) 
Introducing (15) as well as 

z=w-{ pc ) h (44) Pro--Pc (1 +7) 
0 

Pro-'Pc (1 4-7) 2 

1-/,+27 
(46) s(s+ 1)= I +7 

substitution into (43) yield s 

d2z dz 

(l--f 2)•-•--2f•+s(s+ l)z=-ah (47) 

A solution of (48) is written in the form 

z = A(•)Ps(•) + B(•) Q,(•) - .•- cot (s•r)P,(•) (49) 

where A(•) and B(•) are unknown functions that must be de- 
termined. The r.•nge of •! is -1 < • < 1; P(•) i•:singular at • -- 
-1 and Q,(•) is singular' at • = _+ 1. In order to examine these 
singuiarities we give the asymptouc form s of P,(•) and Q,(•) 
near f = + 1 [Erdelyi, 1953] ' ,? 

as/---> 1: 

Qfff) ---> - « In 

Ps(O • 1 (50) 

•- -- -- •-'y- •b(s + 1) (51) 

•r 1 

Q,(•) - • cot (s•r)P,(•) • - • In 

I ,1/' 

-- •-¾ -- •(s + l) -- •- COt (s•r) (52) 

asf• --1' 

P,(f) --> 

(53) 

cos (s•r) Ii n Q'(O "-> 2 • + + ¾ + 244s + 1) - •r tan (s•r) 

(54) 

Q'(•) - 7 cot (s•r)Pff•) • -2 sin (s•r• (55) 

where ¾ -- 0.577 is Euler's constant and 44s + 1) is the loga- 
rithmic derivative of the gamma function [Abrarnowitz and 
Stegun, 1965]. The reason that the combination Qff•) - (•r/2) 
cot (s•r)Pff•) •as introduced in (49) was to avoid the singular 
behavior of Pff-l) and Qff-l) as s. hown in (55). The combi- 
nfition is not singular at • = -1. ' 

We next take the derivative of (49) wi. th respect to • with 
the resull 

The left side of (47) is Legendre's equation of degree s and or- 
der 0. In the limit •- ---, oo• .e • 1. In the, limit, = 0, s = -« + 
«[1 + 4(1 - v)] 1/2. A typical value of v for the lithosphere is 1/ 
4 and for this case s -- 1/2. 

Two independent solutions of the homogeneous Legendre's 
equation are the Legendre functions P•(•) and Qff•). The val- 
ues of Ps(•) for fractional degi'ee have been tabulated by Gray 
[1953]; Q,(•) can then be ob[ained from the relation 

Q,(O = 
2 sin (s•r) 

[cos (s•r) •',(O - •',(-81 (48) 

We now obtain a gene•ral solution of the inhomogeneous Leg- 
e. ndre's equation, (38), using the method of variation of pa- 
rameters. 

4 2 dB] dB -- - - cot /', + 

+ - 5-ot(,0 

We require that 

2 cot (s•r) P, + -•- Q, = 0 
so that (56) reduces to 

I •r BI dPs dQ, - 5-cot() 
, 

(56) 

(57) 

(58) 
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Again taking the derivative of (58) with respect to • gives 

a•zldA•r •_ldPsdBdQs •-•-- -•-- •-cot(s•r) -•+ d• d• 

+ •-•ot•)• •+• a• • 
Substitut•g (58) and (59) •to (•2) not• that 

(• - •) • - 2• + s(s + • )• . o 

• dQ• ( • - •) - 2• • + s(s • • )• • o 
gives 

(1-•) • •cot(sO +• •-ah 
(62) 

Eliminating dA/d• from (57) and (62) gives 
dB :' P•ah 
-•-= (1 - •2)[Qs(dP•/d•)- P•(dQffdOl (63) 

The Wronskian of the orthogonal functions P, and Qs is de- 
fined as [Abramo½it• and Stegun, 1965] 

integral in (69) be -1. Substitution of (66) and (69) into (49) 
gives 

z --- aP•(O Q•(l•') - •- cot (s•r)P•(•') ] h(•') d•' 
+ a Q•(0 - •- coi (s•r)Ps(•) P•(•')h(•') d•' (70) 

When the topography. h(•) has been specified the dis- 
placement w can be obtained from (44) and (70). A numerical 
integration is required. 

In many cases a topographic load is applied over a small 
fraction of the planetary body: If the load is applied in the re- 
gion q• < q•o with q•o << 1,it is possible to considerably simplify 
(70). The asymptotic fo,mas of P•(•) and Q•(•) from (52) and 
(53) can be used in evaluating. the integrals. Making the ap- 
propriate approximations in (70) and combining them with 
(44) and (45), we obtain 

w -- Pc 1 h + • P• (cos q•) 
•)m--•)c (1 +r) (1 

ß - 7 tn 7• - ½(s + l) - 5- cot (s•) h(½')½' 

•r •ot (s•r)P• (cos q•) h(rk')rk' drk' + Q• (cos ½) 

dQs dP• 1 
w[P,(•), Q,(•)]--- P• -•-- Qs -•-- 1 - •2 (64) 

Substitution of (64) into (63) gives 

dB 
• = -aP•h (65) 

and this is integrat61t to give 

B-- a P•(•')h(•') d•' (66) 

The solution for z in (49) m'ust not be singular at •'= 1. Since 
from (57) Q•(0 is singular as • -• 1 it is necessary that B(1) = 
0. This condition requires [hat the upper limit of the integral 
in (66) be + 1. 

Eliminating dB/dt• from (57) and (62) gives 

dA [Q• - (•r/2) cot (s•r) PJah 
-•-= (1 - •2)[ps(dQffd•) - Q•(dP•/dOl (67) 

Substitution of (64) yields 

d• -- Q•- •-cot (s•r) Ps ah (68) 

(71) 

As a specific ex//rop•e we assume that 

h = hoe -{•/•ø>2 (72) 

with q•o << 1. We wish tO determine Wo, the amplitude of w at q• 
= 0. SubStitution of (72) into (71) with • = 0 yields 

WO= Pm--Pc (1 +r) hø4• (1 +r) -- •-ln 7¾ 

rr hoe-{%•'o)=•p ' (73) - ½(s + 1) - •- cot (s•r) ark' 

Noting that q•o is small the leading terms after integration are 

Pc ) ho r(l + v) • W0 = ]0 m -- ]0 c (1 + *) 1 -- 8(1 + r) '•ø2 In ,•o 2 (74) 
And neglecting the second term the general result is obtained 
that 

w = (75) 
Pm--Pc 

Introducing the definition of the degree of compensation C, 
from (26), we obtain 

And this is integrated to give 

.4 = a Q•(f') - •' cot (srr)P•(li') l h(li') dli' (69) 
The solution for z in (49) must also not be singular at • -1. 
Since from (53) P•(•) is singular as • -• -1 it is necessary that 
A(-1) -- 0. This condition requires that the lower limit of the 

1 
(76) C=i+ r 

This result is also obtained from (32) in the limit n --• oo. This 
simple result is valid for intermediate values of n, n large com- 
pared with unity but suffi6iently small that membrane stresses 
support the topographic !Oad. 

We next derive expressio•ns for the distribution of mem- 
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brane stress. The two components of membrane stress are re- 
lated to the pressure on the shell by [Turcotte, 1974] 

(77) 

d 

• [(sin qb)o•,] = (cos qb) o,• (78) 
Elimination of o,• gives 

do, R 
d• + 2(cot •)% = • (cot •)p (79) 

Integration of this first-order d•erential equation us•g an •- 
tegration factor yields 

% = d sm: • sm •' cos •'p(•') d•' (80) 
The constant of Mtegration has been set equal to zero M order 
to avoid sMgular behavior at • = 0. Substitution of (80) Mto 
(77) gives 

½, = (½) -sm ½ sm ½' cos ½'p(½') de' 
As a specific example we consider the topographic load given 
• (72). Substitution of (72) and (75) •to (3) with h s • 0 gives 

r gp•hoe_{,/,o? (82) 

Substitution of (82) •to (80) and (81) yields 

60 d(1 + ,)% 1 {•o)2[ • R,p•gh =7- 1- (83) 

Rtp•gh - • -- (1 - e -(ø/•ø?) (84) 
The dependence of the two components of the non- 
d•ensional membrane stress on position is given M Figure 5. 
The polar component % is always positive (compressional) 
but the az•uthal component % is positive (compressional) 
for 0 < • < 1.12•o and negative (tensional) for • > 1.12•o. At 
the transition poMt h/ho = 0.326. The maxxurn value of the 
tensional az•uthal stress is 6, = -0.108 and it occurs at •/•o 
= 1.73. 

APPLICATION OF THE VARIATION OF PARAMETERS 
SOLUTION TO MARS 

We will apply the variation of parameters solution to the 
problem of the support of the Tharsis region on Mars. Bills 
and Ferrari [1978] have concluded that C = 0.6-0.65 for the 
Tharsis region. From (76) this gives •- = 0.54-0.67; this is in 
good agreement with the value •- = 0.5 obtained from the har- 
monic analysis and the spectral correlation of the observed 
gravitational potential and topography. 

We further assume that the topography of the Tharsis re- 
gion can be represented by (72) taking ho = 10 km and •o = 
30 ø. The width of the load is therefore 60 ø or 3550 km. If this 

is associated with the wavelength of a spherical harmonic it 
corresponds to n -- 6. As seen from Figure 4 this is in the 
range of n in which membrane stresses dominate over bending 
stresses. If we take pc = 2.8 g/cm 3, ? --- 0.54, and d = 180 km 
the maximum stress at the center of the load from (65) is 3.5 

0.5 

0.4 

0.3 

0.2 

¸.l 

-0.1 

Fig. 5. Dependence of the nondimensional membrane stress com- 
ponents from (83) and (84) on the angular distance from the center of 
the load. 

kbar. With q•o = 30 ø the azimuthal stress is tensional at dis- 
tances greater than 1990 km from the center of the load. The 
maximum value of the tensional stress is % --- -750 bars and it 
occurs 3075 km from the center of the load. The tensional 

azimuthal membrane stresses surrounding Tharsis may be an 
explanation for the extensive radial fracturing observed in 
that area. 

CONCLUSIONS 

We conclude that membrane stresses play an important role 
in the support of topographic loads on the moon and Mars. 
The correlation of observed gravitational potential anomalies 
with topography on Mars is explained by membrane stresses 
in the elastic lithosphere. These stresses can explain the unex- 
pected large gravity anomaly associated with the Tharsis up- 
lift. The tensional, azimuthal membrane stresses are likely to 
be responsible for the extensive set of radial fractures sur- 
rounding much of the Tharsis region. 

The strong gravity anomalies associated with the mascons 
on the moon mask any systematic correlation of the observed 
gravitational potential anomalies with topography. Never- 
theless, we expect membrane stresses to play an important 
role in the support of topographic loads on the moon. 
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