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Author summary 
Terraforming Mars is widely discussed, yet lacks rigorous study. More research is 
needed—ranging from warming methods to biological engineering—to clarify feasibility, 
costs, ethics, and planetary impacts before any ambitious, large-scale attempts. 
 
Abstract 
Terraforming Mars has long captured the imagination, but has received surprisingly little 
rigorous study. Progress in Mars science, climate science, launch capabilities, and 
bioscience motivates a fresh look at Mars terraforming research. Since Sagan’s time it 
has been understood that terraforming Mars would involve warming to enable oxygenic 
photosynthesis by engineered microbes, then slow oxygen build-up enabling more 
complex life. Before we can assess whether warming Mars is worthwhile, relative to the 
alternative of leaving Mars as a pristine wilderness, we must confront the practical 
requirements, cost, and possible risks. We discuss what we know about Mars’ volatile 
inventories and soil composition, and possible approaches to warm Mars and raise 
atmospheric O2. New techniques have emerged that could raise Mars’ average global 
temperature by tens of degrees within a few decades. Research priorities can focus on 
understanding fundamental physical, chemical and biological constraints that will shape 
any future decisions about Mars. Such research would drive advances in Mars 
exploration, bioscience, and climate modeling. 
 
Main text 
Exploration of Mars is motivated by scientific, societal, and engineering goals, and the 
centuries-old dream (e.g., [1]) that people could one day live there. Missions to date 
reveal a hostile surface environment, featuring a deadly triple cocktail of extreme cold, 
the high ultraviolet radiation flux that reaches the surface, and lack of sustained liquid 
water [2]. Despite this harshness, advocacy for large-scale Mars settlement has 
continued for decades [3-6]. 
​ Proposed motivations for terraforming are diverse. Carl Sagan once wrote, "If we 
do not destroy ourselves, we will one day venture to the stars." Since Sagan’s time we 
have confirmed that Mars once had rivers and lakes but suffered a global climate 
catastrophe, so perhaps Mars can be seen as an environmental restoration challenge 
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[7, 82]. Some argue that a hospitable Mars is essential to achieve self-sufficiency, 
surpassing the limitations of isolated outposts [5-6]. Others are motivated by the 
scientific desire to learn about the universe, as the realization of humanity's dreams to 
explore the universe is assisted by expanded human presence [3]. An alternative view 
is that Mars should be left as a pristine wilderness, whether or not it contains life today 
[8]. Indeed, any movement of humans beyond Earth raises ethical issues: it is a trope of 
science fiction that even though humans have already restructured Earth's land surface, 
nitrogen cycle, etc, at planetary scale [9], attempts to do the same for other worlds will 
be seen as dysfunctional. 
​ An important part of the "should we?" question is "can we?" Research can shift 
ethical discussions from abstract speculation to grounded debates about specific 
technical possibilities. Before we can assess whether greening Mars is worthwhile, we 
must confront the practical requirements, cost, and possible risks. Recent 
advancements and private space capabilities demand that humanity engages with these 
technical and ethical questions head-on. Remarkably, the feasibility of terraforming 
Mars has not been comprehensively addressed since 1991 [10]. This Perspective 
outlines the research agenda necessary to determine whether making Mars hospitable 
to life is possible. This technical knowledge is a prerequisite for a larger, well-informed 
democratic dialogue about the possibility of deployment. 
​ Contemplating building a climate and ecosystem beyond Earth highlights gaps in 
our fundamental knowledge of these systems. Ongoing developments in three key 
areas have returned terraforming to the martian research agenda. First, our 
understanding of climate modeling and climate engineering, including for Earth, has 
recently advanced [11]. It is timely to investigate how these techniques might be applied 
on other planets. Second, progress in synthetic biology has improved our knowledge of 
extremophilic organisms and our ability to engineer their properties [12-13], opening 
new possibilities for tailoring life to thrive in the extremes of Mars. Third are numerous 
developments in space science. The emergence of Mars transport vehicles like Starship 
will broaden the scope of possible space missions by increasing the mass we can 
launch from Earth by >100× per Mars landing [14], and independent cost estimates 
suggest three-orders-of-magnitude improvement in cost to the surface [15]. Our 
understanding of the basic science of Mars has advanced, including understanding that 
a warmed Mars would retain volatiles for many millions of years [16]. Finally, new 
options for warming Mars have emerged, using ultralight materials [17], solar sails [18], 
or nanoparticles [19]. Thus, a fresh look at the research agenda for greening Mars 
[10,20] is timely. Restoring a habitable planet is harder than sustaining one, and thus 
Mars presents the ultimate sustainability challenge. 
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Fig. 1. Thresholds in making Mars suitable for life. A schematic of three phases of 
terraforming that would change two major planetary climate parameters — pressure 
and temperature — from their current values to an end state more suitable for 
complex life.  

 
​ We consider three thresholds in making Mars suitable for life (Fig 1). Each 
threshold motivates complementary research programs that should start now. Even 
though the later phases are further away in time, research on all three phases will 
illuminate the overall costs and overall benefits of terraforming Mars and thus contribute 
usefully to the "should we?" discussion. The first phase in greening Mars would involve 
abiotic environmental engineering to heat the planet, locally and/or globally. A future, 
warmer Mars would pass the threshold of creating conditions over large regional scales 
suitable for extreme life. In the second phase, some extreme species will be able to 
grow within the life-compatible area. As the first step, an autotrophic, (likely) anaerobic 
primary producer is needed, followed by ecological succession to diversify and stabilize 
the ecosystem [21]. A green planet with a flourishing biosphere including algae and 
plants would constitute a second threshold. The third phase aims at developing a 
biosphere with complex plant life and perhaps trees (but not necessarily animal life), 
with increased O2 content and atmospheric pressure. We now consider each phase in 
turn. 
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Short term. Thirty years ago, ref. [10] wrote "We suggest that a key goal for future 
exploration of Mars should be to determine the feasibility of terraforming that planet." 
Since then, humanity has sent dozens of missions to Mars. What have we learned? 
​ Mars’ thin atmosphere (~6 mbar CO2) results in a global average temperature of 
-70° C (despite local highs exceeding 20°C). This T and P precludes pure, stable 
surface liquid water across much of the planet, limiting biological potential. As Mars' soil 
has the nutrients and volatiles needed for life [23-28], increasing liquid water availability 
would enable scalable biological techniques for agriculture and ecological succession, 
improving Mars’s habitability for humans. 
 ​ Mars has less H2O than Earth, but still has at least enough ice to form a >300 m 
deep ocean over 107 km2 of the planet [29]. However, known H2O reserves are in the 
colder parts of Mars's surface [12, 30-31], with minimal confirmed water in warmer 
regions (2±1 wt% water-equivalent hydrogen in minerals, largely releasable at <350 °C 
[32]). Thus, for Mars to be livable, temperature must rise to the point where melting 
starts at relatively cold locations. These H2O-ice-bearing locations are high priorities for 
human missions as H2O can be processed for propellant [33], and their temperature 
likely needs to increase by at least 30°C to start to melt the ice. An added challenge for 
melting is that evaporitic cooling (where heat is absorbed as ice transforms from 
condensed phase to vapor) hinders ice melting on Mars, because of the large amount of 
energy required to transform ice into vapor [34]. 
​ Warming Mars could be achieved by increasing insolation (currently 130 W/m2, 
much less than for Earth) using solar sails as mirrors to collect and reflect additional 
light onto the planet [5], or by enhancing the greenhouse effect. Local enhancement 
methods include tiling the surface with silica aerogels (solid-state greenhouse effect) or 
nanocellulose [17,35], while regional/global approaches include engineered aerosols 
[19]. These techniques appear much more mass-effective than earlier proposals based 
on anthropogenic atmospheric warming on Earth (using fluorocarbon gases [36]). Mars’ 
low atmospheric thermal heat capacity ensures faster (global or local) warming 
responses to radiative balance changes compared to Earth. 
​ Further research is crucial to model warming's effects on Mars’s climate. Recent 
advances in Earth’s climate models can be applied to Mars (e.g., [37]); similarly, the 
challenge of expanding these models to a new planet could improve predictions for 
both. Many effects must be carefully modeled to generate realistic predictions. Warming 
will perturb water, CO2, and dust cycles [22, 38], reactivating feedbacks from wetter 
periods in Mars history and that could help or hinder near-future warming efforts. 
Atmospheric thickness will at least double as buried CO2 ice is released [39]. While 
H2O-vapor feedback is positive and cloud feedback likely positive (but of uncertain 
magnitude) [40], dust cycle intensification may warm the planet overall but lower peak 
temperatures [41]. Research is needed to track ground ice redistribution (toward the 
equator, or onto high ground?) as the water cycle intensifies [42-43] and to simulate 
dust cycle changes under warmer conditions [44]. Model intercomparisons are also 
needed [45].  

In addition, we must determine through laboratory and numerical experiments 
whether proposed warming approaches can (or cannot) work. The path to deployment 
is long, and requires forethought. For example, engineered aerosols require laboratory 
validation of key microphysical parameters, and wind-tunnel studies. A small-scale field 
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test at Mars would be needed to validate models, in turn requiring greenhouse-agent 
plume dispersal calculations and also monitoring instruments (which can also be used 
to enhance Mars weather/climate science). The need for small-scale field tests can be 
seen by considering the alternative: full scale deployment based on computer models 
only, which would be unwise. If all goes well, the next risk-aware step could be a 
temporary, moderate, and responsive global warming (still below the habitability 
threshold), to validate models of climate feedbacks. Any warming method (local or 
global) must be controllable, reversible within years, and biocompatible, factors that will 
shape deployment strategies [46].​   

 

 

Fig. 2. Energy sources and sinks on Mars. Major shortwave (yellow) and thermal 
infrared (red) fluxes are depicted as arrows. The thickness of the arrows is 
proportional to the flux. The climate of Mars is determined by the balance between 
incoming and outgoing sources of energy. Presently, the net absorbed energy is E = 
125 W/m2, resulting in a surface temperature of T  ≈ 210K. Adjustment of the energy 
sources and sinks thus alters average surface temperature. 

 
Together, advances in Earth's launch capacity, combined with proposed new warming 
techniques, could potentially raise Mars' temperature by 30°C well within the century, 
permitting liquid H2O for the first living organisms to grow on the surface. 
 
Mid-term. A warmer Mars could support extreme life, initiating ecological succession 
towards a diverse ecosystem that begins producing an oxygen-rich atmosphere [47-48].  

Engineering pioneer species capable of growth  despite Mars' unique mixture of 
five primary stressors - low pressure, oxychlorine species, low temperature, radiation 
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(including ionizing radiation and ultraviolet light), and low water activity (caused, for 
example, by high ionic concentrations in many locations) (Figure 3) - may be 
achievable. 1) The pioneer species would need to be anaerobic and tolerate low 
atmospheric pressures. Microbes can grow at Mars-like pressures of 7 mbar [12]. 2) 
Oxychlorine salts like perchlorate and chlorate are widespread on Mars. Fortunately, 
some O2-generating microbes can use perchlorate reduction for metabolism [49, 50]. 3) 
The pioneer species will need to grow at cold temperatures, with large day-night 
temperature swings. Organisms exist that can grow at -12° C [51] and tolerate daily 
freeze-thaw [52]. 4) Mars radiation (while a problem for humans) is not a problem for 
microbes. UV-C levels on Mars are high (~3 W/m2 of UV-C), but can be screened 
sufficiently while still allowing phototrophy [53-54]. 5) As Mars is heated, the first liquid 
water will be salty brines including mixtures of chloride and sulfate anions, potentially 
requiring halophilic microbes, which are plentiful on Earth.  

Mars gravity has been shown to be consistent with microbial growth [55]. Other 
Martian conditions are potentially suitable for microbial growth (Box 1). 

 
Box 1. Mars soil composition. Martian regolith is basaltic soil, composed primarily 
of silicate minerals. The pioneer organism's home - whether a surface pond, or 
ground water - will gain nutrients from Mars soil, whose major-element concentration 
is well constrained and globally uniform, and which has high concentrations of S and 
Cl relative to Earth soil [24-25]. Although the atmosphere lacks significant N2, the soil 
contains fixed nitrogen phases, principally nitrate/nitrite (110–300 ppmw) [23]. The soil 
at lander sites can (by Earth standards) have high ionic concentrations but be quite 
nutrient-rich, and ½ kg/m3 of organic carbon is reported from some Mars sediments 
[26]. Soil pH is 7.7±0.3 at 68°N [27]. Phosphate release rates during water–rock 
interactions on Mars are thought to be much higher than on Earth [28]. On Earth, 
Mars-like rocks (volcanic basalt) support diverse pioneering microbial communities 
[56].​  

 
Mars-adapted organisms may be developed through genetic engineering, 

directed evolution [57], and Mars-chamber experiments with extremophiles. This 
research has much overlap with existing science priorities. For example, soil sample 
return would refine the target habitat by allowing quantification of biocritical trace 
elements and possible toxins [58]. This research overlaps with Earth green 
biomanufacturing priorities [59].  
​ Candidate patchy water deposits at Mars' equator (e.g., [60]) could be watering 
holes well-suited to attract photosynthetic organisms and (inside protective membranes) 
people. At this stage, we envisage microbes supporting the food and oxygen needs for 
104 people per site [61], but with automation assisting with gardening/farming (the 
outside atmosphere will not be breathable). Life would only be possible within the 
warmest and wettest parts of the planet surface, at least initially. O2 from perchlorate 
reduction and photosynthesis could be initially confined within production environments. 
Once O2 is sufficient to support respiration in plants (and/or humans) within local 
membrane-bound environments, excess can be gradually released to the global 
atmosphere. 
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By the end of the second phase of terraforming, extremophiles could be at work 
to transform planetary chemistry. A warmed Mars with an oxygen- and food-producing 
ecosystem could allow many more people to live on Mars, and would lead the way for a 
more complex ecosystem and thicker atmosphere. 

 

 
Fig. 3. Present-day extremophiles in Mars-like conditions. A spider plot of known 
extremophiles and their properties, with higher tolerance farther from the center. 
Known extremophiles can tolerate conditions approaching or exceeding those found 
on Mars, including survival of Mars-like UV-C doses [80], Debaryomyces hansenii 
growth in 23% perchlorate salt [81], Psychromonas ingrahamii at -12°C [29], and 
Carnobacterium sp growth at 7 mbar [27].  

 
Terraforming and the search for extant Martian life. The idea of terraforming Mars 
emphasizes the motivation to support people living beyond Earth. There is some 
reluctance among planetary scientists to contemplate adding more Earth-derived life to 
Mars (beyond what is already added by landed spacecraft [62]), because Earth 
microbes might be confused for (or supplant) Mars-derived life, if it exists. This is 
mitigated by the recognition that landing humans on Mars will introduce orders of 
magnitude more Earth microbes to the Mars environment (a major finding of the 2019 
NASA Planetary Protection Independent Review Board; [62]). Therefore, with humans 
living on Mars in the near future, a concerted effort is needed to determine if Mars has 
life. This could be greatly aided by human outposts, and should include soil sample 
return, and sounding for deep aquifers [63]. If life is detected, then its scientific 
importance could warrant robust protections for its habitat. 
 
Long term. Once Mars possesses a planetary ecosystem, it would continue to develop 
over the long-term. One of us (McKay) has argued that the long-term goal for 
astrobiology should be to enhance the richness and diversity of life in the Universe [64]. 
What would a target atmosphere for Mars look like? Key in situ sources of volatiles 
include H2O and CO2. H2O can be used to create O2. CO2 will be released naturally as 
the planet warms, and can also be extracted from carbonates - but high levels of CO2 
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are toxic to humans [65]. Notably, Mars lacks an obvious source of in situ inert gas that 
might take the role of N2 in Earth’s atmosphere. A 0.1 bar O2 atmosphere could satisfy 
human habitability requirements, including breathability and reducing Mars surface 
radiation to Earth-airliner levels. O2 levels cannot rise too high however due to the 
growing risks of uncontrolled combustion. Together, a target atmosphere containing 100 
mbar O2 satisfies all these requirements: feasible to achieve entirely with in situ atoms 
and suitable for human habitation. This atmosphere could be generated within 1-2 years 
in 100-meter tall domes using photosynthesis or water electrolysis [66]. 

In addition to domed habitats suitable for humans without pressure suits, more 
species could inhabit the surface, albeit at lower pressure. As O2 builds up, more 
species could live on the surface, and the fraction of (potentially tented/domed) Mars 
surface area where humans could breathe would increase. An intriguing possibility is 
self-extending (similar to coral reefs) O2-impermeable membranes produced by life 
[17,67]. Organisms or their biofilms might also modulate planetary energy balance 
through albedo effects and solid-state greenhouse warming [17,68]. 

While rapid greening of Mars may be possible, establishing a global 0.1 bar O2 
atmosphere through photosynthesis alone would take millennia. Oxygenation via 
photosynthesis would involve complex biogeochemical cycles [69,70], including O3 
shield formation and organic matter sequestration.  

Historically, Mars has experienced relatively wetter and drier periods, at least 
regionally, with its extensive high-elevation surfaces that trap water as high albedo ice 
caps being a major factor [42]. Climate stabilization would require understanding water 
movement between oceans, high-elevation ice, and subsurface aquifers (and its impact 
on albedo and thus temperature), as well as potential water loss to the deep subsurface 
through taliks (layers of unfrozen water in permafrost, or permanently frozen ground). 
​ Thus, research needs include improved climate models and more spacecraft 
data to assess long-term climate possibilities. Future missions [63] to determine what 
lies beneath the ground ice that is known to exist over at least one-third of Mars’s 
surface - liquid water, or empty pore space, or more water ice - will be important for 
setting how large Martian lakes and seas can be. After the use of light to split water is 
well-established, oxygen build-up will require electron acceptors. Quantifying reservoirs 
of electron acceptors - including sulfates/Fe-oxides, and CO2 from various sources 
(≲100 mbar [71-72]) or carbonate - is essential, as if electron acceptors are in short 
supply then it will not be possible for humans to breathe unaided on the surface without 
expensive importation of volatiles from beyond Mars. It has long been recognized that 
currently unknown surface and subsurface reservoirs of CO2, H2O and nitrate are key to 
enabling a global biosphere on Mars [10,71]. Discoveries are ongoing: in 2023, the 
Curiosity rover discovered abundant carbonate not seen from orbit [73].  

If this stage succeeds, the planet would have a stable, favorable climate, and 
support a diverse planetary biosphere. The outcome would be something new and 
different - not a replacement for Earth, but an addition. 
 
The futures of Mars. New ideas for Mars' future have emerged that are sustainable, 
resilient, and ecologically minded [74]. Technologies developed for Mars habitation, 
such as desiccation-resistant crops, efficiently remediating soil, and improved 
ecosystem modeling [21], will likely benefit Earth. Rather than distracting from Earth's 
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problems, Mars terraforming research could provide insights for maintaining oasis 
Earth, expanding rather than diminishing our environmental responsibility. Mars 
terraforming research offers a vital testbed for planetary science, potentially validating 
theories or exposing knowledge gaps. Continued research promises significant scientific 
progress, regardless of whether full-scale terraforming occurs. 
​ While the possibilities are exciting, anything as big as modification of a planetary 
climate has major consequences, and would require careful thought once we reached 
the point where it was feasible. But until we do more research, we don’t even know 
what’s physically or biologically possible. Therefore, further Mars exploration is crucial. 
Priorities include quantifying H2O, N2, and CO2 reserves (e.g., searching for deep 
aquifers [63]), soil sample return, test missions for proof-of-concept of warming 
methods, and climate feedback studies. These align with existing mission priorities 
[75,58]: for example, ice deposit investigations [76] constrain the extent of resources 
whose abundance could fuel (or restrict) terraforming, and geologically-recent warm 
climates [40,77] are a natural analog for a near-future warmed Mars. Current Mars 
Exploration Program Analysis Group goals already support human exploration [75]. No 
abrupt change of course is needed: indeed, support for people living on Mars provides 
fresh rationale for many existing mission priorities, alongside precursor/test missions.  
​ Beyond our Solar System, rocky planets are common [78], but worlds that are 
ready for life will be rare. If people can learn how to terraform a world such as Mars, this 
may be the first step to destinations beyond. More speculatively, the technologies 
eventually determined to best enable terraforming will refine our ability to search for 
technosignatures [79]. 
​ Fully terraforming Mars would be (at least) a multi-century project. This is a vast 
timescale during which Earth's politics will change. What will not change are the 
physical, chemical and biological constraints - the science - that can be uncovered only 
through more research. 
​ When people start to live on Mars, "they will inevitably introduce orders of 
magnitude more terrestrial microorganisms to Mars than robotic missions have done or 
will do" [62]. The open question is whether we engage with Mars in an informed way, or 
an uninformed way. As large corporations and governments contemplate Mars 
terraforming, we suggest that science must have an important role to play. This is only 
possible if research accelerates appropriately to keep pace with Mars-access 
capabilities. 
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