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Abstract
Geomorphology is concerned with the shaping of Earth’s surface. A major
contributing mechanism is the interaction of natural fluids with the erodible
surface of Earth, which is ultimately responsible for the variety of sedi-
mentary patterns observed in rivers, estuaries, coasts, deserts, and the deep
submarine environment. This review focuses on fluvial patterns, both free
and forced. Free patterns arise spontaneously from instabilities of the liquid-
solid interface in the form of interfacial waves affecting either bed elevation
or channel alignment: Their peculiar feature is that they express instabilities
of the boundary itself rather than flow instabilities capable of destabilizing
the boundary. Forced patterns arise from external hydrologic forcing affect-
ing the boundary conditions of the system. After reviewing the formulation
of the problem of morphodynamics, which turns out to have the nature of
a free boundary problem, I discuss systematically the hierarchy of patterns
observed in river basins at different scales.
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Transport capacity:
rate at which a stream
is capable of carrying
sediment under
equilibrium conditions
(no net erosion nor net
deposition)

1. PHENOMENOLOGICAL INTRODUCTION

Let us start our journey with a broad, phenomenological introduction to sedimentary patterns.
They are the expressions of the interaction between flowing fluids and the erodible surface of Earth.
Seeking to be somewhat systematic, one may use various paradigms to organize field observations
while wandering through fluvial environments.

First, a fundamental distinction may be made among erosional, depositional, and equilib-
rium patterns: The rate at which sediment is supplied to the system is respectively smaller than,
larger than, or equal to the rate at which the system is capable of transporting it. Erosional pat-
terns develop typically in the upper parts of river basins where sediment is produced. Hillslopes
(Figure 1a) and meanders in rocks are just two examples. Depositional patterns occur at the foot
of mountains or hillslope incisions (subaerial alluvial fans) and at river mouths (fluvial deltas)
(Figure 1b): In the depositional case, the ultimate mechanism of pattern formation is a break in
flow velocity, hence in the transport capacity of the stream. Bed forms, under steady forcing (e.g.,
fluvial ripples, dunes, and bars), are examples of equilibrium patterns.

A second important paradigm is the distinction between free and forced patterns. The former
ones arise spontaneously, from the instability of the liquid-solid interface in the form of interfacial
waves affecting the boundary: Bed forms and river planforms are most often expressions of a free
response. On the contrary, erosional and depositional patterns are forced by hydrologic factors at
the boundary of the fluvial reach.

A third major paradigm involves the key concept of spatial and temporal scales. Patterns can
be classified as small-, meso-, or large-scale depending on their typical wavelengths, scaling with
flow depth, channel width, or some larger scale. Patterns of different spatial (and temporal) scales
may coexist but usually require distinct theoretical tools for investigation, in particular, distinct
spatially and temporally averaged descriptions of sediment transport.

Finally, patterns may be recognized in various characteristics of the channel boundary. The
instability of the bed interface affects bed elevation (bed forms). Similarly, the straight align-
ment of fluvial channels is typically unstable to planform perturbations arising from a complex
interaction between outer-bank erosion (a mechanism whereby the floodplain loses sediment to
the channel) and inner-bank deposition (a mechanism of floodplain reconstruction). As a result,
planform patterns develop, either building up channel sinuosity (meandering) (Figure 2a) or

2081

a b

Figure 1
(a) Erosional pattern: landscape near Orland, California, with rhythmic sequences of valleys spaced roughly 100 m apart. Figure
courtesy of J. Kirchner. (b) Depositional pattern: the Wax Lake fluvial delta, Louisiana. Red lines show predictions (Parker & Sequeiros
2006) of its progradation in time. Figure courtesy of G. Parker.
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Morphodynamics:
a novel discipline
concerned with the
understanding of
processes whereby
sediment motion is
able to shape Earth’s
surface

ba

Figure 2
(a) Forced (steady) bar at the inner bend of a meander very close to neck cutoff, a process occurring when two meander branches merge,
cutting the meander loop. Historical bend development can be traced by the sequence of so-called scroll bars showing up in the flood
plain adjacent to the inner bend. (b) Multiple row (migrating) bars in the Waikariri River, a braiding river of New Zealand (courtesy of
B. Federici).

forming an interconnected network of curved channels (braiding) (Figure 2b). Finally, so-called
sorting patterns may be recognized in the spatial arrangement of the grain-size distribution of
poorly sorted sediment mixtures: Their expression is the development of stationary or migrating
rhythmic sequences of coarser and finer material (Figure 3b,c).

2. MORPHODYNAMICS: A FREE-BOUNDARY PROBLEM

We are concerned with the gravitationally driven motion of water bounded by a free surface and
by an erodible medium. The flow, referring to a fixed Cartesian reference frame (x1, x2, x3) with

TIDAL PATTERNS

Equally fascinating, sedimentary patterns are displayed in tidally dominated environments. In particular, lagoon
networks originate from inlets where the channel bottom is typically composed of fine sediments (medium-fine
sand). Proceeding landward, channel width, depth, and sediment size decrease, whereas the tide is allowed to expand
into typically muddy and shallow regions (tidal flats) adjacent to the main and secondary channels. Lagoon patterns
present analogies with fluvial patterns as well as distinct features. First, equilibrium is quasi-static rather than
dynamic. Second, interface instability is of Floquet type because of the oscillatory character of tidal flow. Patterns
are mostly symmetrical and hardly develop fronts. Deviations from symmetry as well as pattern migration are driven
by residual currents and/or flood-ebb dominance of the basic state. Third, cohesion as well as bioturbation and
wind turbulence play a major role in the process of sediment resuspension in mudflats. Fourth, a major interaction
with ecology is needed to understand the equilibrium of salt marshes, sinks of sediment whose efficiency depends
on the survival of halophytic vegetation, which in turn depends crucially on sea-level rise and sediment availability.
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a

b

c

Figure 3
(a) Smaller dune migrating over the stoss side of a larger dune in bimodal sand mixtures (red is fine sand, and yellow is coarse). Figure
courtesy of M. Colombini. (b) Longitudinal streaks are small-scale bed forms aligned with the channel axis. If sediment is
heterogeneous, streaks cause a sorting mechanism whereby finer (coarser) material accumulates in the crests (troughs). This is clear in
the panel, which shows ripples developed on the fine streaks. Flow is from bottom to top (Colombini & Parker 1995). Original
photograph from Gunter 1971. (c) Close-up of the bed.

x3 vertical coordinates pointing upward, is defined in the domain η < x3 < h, where η(x1, x2, t)
and h(x1, x2, t) are the elevations of the bed interface and of the free surface, respectively, and t is
time. The erodible medium fills up the region x3 < η.

2.1. Evolution Equation of the Bed Interface

The interface separating the fluid from the adjacent erodible medium is a free boundary allowing
for the exchange of sediment particles between the two media: Particles are hydrodynamically
entrained by the stream, are then advected by the flow, and settle back over the bed owing to
their excess weight. As the near-bed concentration of the flowing mixture is much lower than the
packing concentration cM of the underlying granular medium, the stream loses (gains) sediments
if the elevation of the bed interface increases (decreases). Allowing also for tectonic uplift U and
subsidence S, which play a role in patterns characterized by sufficiently large temporal scale, the
following statement of the mass conservation of the solid phase must be satisfied:

c Mη,t + E − D = U − S, (1)
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Entrainment: process
whereby a fluid,
moving over a
cohesionless or
cohesive granular
medium, is able to
detach particles from
the boundary

where E(D) is the entrained (deposited) sediment flux, namely the rate at which the volume of
sediments per unit horizontal area is entrained from (deposited on) the bed. A sedimentary envi-
ronment is erosional (depositional) if E > D (E < D), whereas morphological equilibrium implies
E = D. Needless to say, equilibrium may have to be understood in some (spatially or tempo-
rally) averaged sense. Simple continuity arguments allow the expression of the rate of aggrada-
tion (degradation) experienced by the bed (E − D) in terms of the sum of the rate of change of
the average sediment content of the water column plus the horizontal divergence (∇h·) of the
depth-integrated sediment flux per unit width averaged over turbulence qs. Denoting by C the
depth-averaged sediment concentration, the fundamental equation of morphodynamics takes the
form

c Mη,t + (DC),t + ∇h · qs = U − S, (2)

where D is the local and instantaneous flow depth. This is a generalized version of the classi-
cal Exner equation (Exner 1925), which is obtained from Equation 2 by setting U = S = 0.
Progress with Equation 2 requires the evaluation of qs and C. Rigorous theoretical predictions of
these quantities would require numerical simulations of particle entrainment, transport, and de-
position in a high–Reynolds number rough turbulent shear flow, an effort still beyond present
theoretical and computational capabilities despite recent promising attempts (Schmeeckle &
Nelson 2003). Progress in understanding morphodynamics, however, has been achieved on the
basis of experimental observations. Some elementary knowledge required to follow the present
review is summarized below.

2.2. Sediment Transport

The mechanical processes responsible for sediment transport vary in different parts of river basins.
It is convenient to distinguish regions where transport is supply limited from those where the
stream is typically able to express its whole capacity of conveying sediments.

The transport capacity of fluvial streams. Experimental observations suggest that a uniform
free-surface flow over a cohesionless plane bed is unable to entrain sediments below a critical value
τ∗c of the ratio between measures of hydrodynamic (destabilizing) and gravitational (stabilizing)
forces acting on sediment particles, the so-called Shields stress τ∗ (Shields 1936). This quantity
reads [u2

∗/(s − 1)gd ], where u∗ is the friction velocity, s is the relative particle density, d is an
effective particle diameter, and g is gravity. The value of τ∗c is a function of grain size through
the particle Reynolds number Rp (≡

√
(s − 1)gd 3/ν), with ν as the kinematic viscosity. For values

of τ∗ exceeding τ∗c , particles are entrained, either individually or collectively, by the spatially and
temporally intermittent generation of turbulent sweeps in the near-wall region (Drake et al. 1988).

Particles then move (mostly saltating) close to the bed forming a layer a few grain diameters
thick, eventually coming to rest to be entrained again after some time. This is called bed-load
transport, in which particles have a distinct dynamics driven by, but different from, the dynamics
of fluid particles. Observations and saltation models suggest that, under equilibrium conditions,
the intensity of the bed-load flux per unit width qs is a monotonically increasing nonlinear function
of the excess Shields stress �(τ∗ −τ∗c ), typically expressed in the form of a power law. Alternatively,
on the basis of physical observations, one may estimate the sediment pickup rate E in terms of
the local value of the Shields stress and the sediment deposition rate D in terms of a distribution
function f of the step length of saltating particles (Nakagawa & Tsujimoto 1980). Hence,

E = E(τ∗ − τ∗c ); D =
∫ ∞

0
E[τ∗(s ) − τ∗c ] f (s ; �) ds , (3)
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where s is the distance from the pickup point, and � is the mean value of the step length. At
equilibrium (i.e., if τ∗ is spatially constant), the latter expression reduces to the equality E = D.

The direction of bed-load flux is aligned with the direction of the local average bottom stress,
provided the bed is horizontal. Bed-load transport on weakly sloping beds feels the effect of gravity
in two respects: On the one hand, a positive (negative) longitudinal slope reduces (increases) the
critical Shields stress (Lysne 1969); hence it enhances (reduces) the intensity of bed-load transport.
On the other hand, a deviation of the direction of bed-load transport from the longitudinal
direction is driven by the lateral slope (Parker 1984). With the help of the weak slope assumption,
one finds

qs = �(τ∗ − τ∗c )
[(

1 − rx

τ∗ − τ∗c
η,x

)
x̂ − ry√

τ∗
η,y ŷ

]
, (4)

where x̂ and ŷ are horizontal unit vectors aligned with and orthogonal to the bottom stress,
respectively, whereas rx and ry are empirical constants.

As the Shields stress exceeds a second threshold value τ∗s , again a function of grain size through
the particle Reynolds number Rp, sufficiently intense ejection events allow particles to escape the
near-wall logarithmic barrier. Provided particles are small enough and the suspension is sufficiently
dilute, particles are then nearly passively advected by the stream (i.e., their dynamics is distinct
from that of fluid particles only in their tendency to settle). This is called transport in suspension.
Entrainment and deposition fluxes are then expressed in the form

E = Ws c e (τ∗); D = Ws c |η, (5)

where Ws is the settling speed of sediment particles, c|η is the local value of near-bed concentration,
and ce is the value of near-bed concentration that would be experienced in a uniform flow charac-
terized by the same value of bottom stress: Hence, the net flux exchanged by the stream with the
granular medium is proportional to the excess near-bed concentration relative to its equilibrium
value. The latter quantity is an empirically known monotonically increasing function of the local
Shields stress. The value of c|η is obtained from the solution of an advection-diffusion equation
for concentration, requiring closure assumptions for turbulent diffusion (see Garcia 2008 for a
recent assessment of the state of the art).

For very large values of the Shields stress, suspensions become highly concentrated, and a
distinct bed interface is no longer distinguishable: These extreme forms of sediment transport
occur impulsively in hillslope incisions, where material accumulates for a variety of reasons (e.g.,
landslides or volcanic eruptions) and gives rise to so-called mudflows, debris flows, and lahars.
Erosive and depositional patterns associated with these phenomena are excluded from the present
overview.

Detachment-limited sediment transport. Landscape evolution is driven by the mass movement
and detachment of material from the land’s surface. In soil-mantled landscapes, the dominant form
of mass movement is creep, caused by bioturbation, frost heaving, and wetting-drying cycles. The
associated unit sediment flux qsm can be related to the topographic gradient through a Fick law
with morphological diffusivity Dm (Culling 1965). The transport rate in the channelized portion
of the landscape is limited by the rate of detachment and sediment entrainment by the overland
flow: In other words, transport is not at capacity, but rather is detachment-limited, such that no
redeposition of eroded sediment occurs. The detachment-driven entrained flux Ed = ∇ · qs d is
modeled as proportional to the excess shear stress relative to a cohesive threshold τ c (Howard
1994). Hence, the morphodynamics of landscape evolution is modeled assuming

∇ · qs = −Dm∇2η + kd (τ − τc )(τ > τc ). (6)
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Sedimentary patterns ultimately arise from the evolution of the bed interface. Equation 2, along
with the appropriate form of the hydrodynamic equations required to determine the fluid stress
at the boundary, poses a free-boundary problem for the unknown pattern of the bed interface. It
is then instructive to analyze some general properties of Equation 2.

2.3. Properties of the Free Boundary Problem

A first property arises from purely dimensional arguments. In fact, perturbations of bed elevation
scale with flow depth D0; an appropriate horizontal scale (e.g., l ) is set by the geometry of the
particular pattern investigated. The intensity of the sediment flux per unit width qs may vary widely
depending on the environment and hydrodynamic conditions: However, in fluvial as well as in tidal
environments, the depth-averaged sediment concentration hardly attains values as large as 10−3;
hence the scale Qs0 is at most of the order of (10−3 U0D0), with U0 scale for the depth-averaged flow
velocity. It follows from Equation 2 that the bed interface evolves on a morphological timescale
tM of the order of (or larger than) 103l/U0. This scale must be compared with the hydrodynamic
response time tH , namely the time required for surface waves to propagate over the horizontal scale
l. Typically, long waves travel with speed (F0 ± 1)

√
g D0, where F0 is the local Froude number;

hence tM is at least a factor 103(1 ± F−1
0 ) larger than tH . Physically, this implies that, except

for near critical streams (F0 � 1), the flow adjusts quasi-instantaneously to the evolution of the
bed interface. In other words, provided flow perturbations are driven only by bed perturbations,
morphodynamics may be decoupled from hydrodynamics. On the contrary, decoupling is not
allowed close to criticality or whenever the flow field varies on an externally imposed timescale tE

comparable with tM : The latter case is relevant to the morphodynamic response of fluvial streams
to flood propagation.

A second important property of Equation 2 is that it allows for the growth and migration
of interfacial waves that arise from instabilities of the bed interface itself rather than from flow
instabilities that can destabilize the boundary. The basic mechanism underlying such instabilities
can be illustrated considering small-amplitude perturbations of some steady, basic bed elevation
η0: These perturbations drive linear perturbations of the bottom stress, hence of the sediment
flux, which may lag relative to bottom perturbations depending on a variety of hydrodynamic
and sedimentological factors. Equation 2 constrains these perturbations to satisfy the dispersion
relationship

ω = λ · qη exp(−iφ), (7)

where λ is a two-dimensional (2D) real wave-number vector, ω is complex frequency, qη = qs ,η|η0

is the real amplitude of the perturbation of sediment flux driven by perturbations of bed elevation,
and φ is its phase lag. Both qη and φ are functions of the basic state and of the perturbation
wave number; hence instability may arise, depending on the hydrodynamic and sedimentological
conditions within a specific wave-number range. The above mechanism was originally proposed
by Kennedy (1963) for the case of 2D fluvial dunes (Section 4).

A third related issue is that interfacial waves are essentially vectors of morphodynamic infor-
mation; hence their migration speed determines the rate and direction of propagation of such
information.

Fourth, a significant feature most often displayed by interfacial waves is a tendency toward
wave peaking and the possible occurrence of fronts with slopes close to the angle of repose of
the granular medium. Depositional fronts occur in fan deltas, quasi-equilibrium fronts develop
in most bed forms, and hillslope incisions are just an expression of the tendency of landscape
evolution to develop erosional fronts.
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3. MORPHODYNAMIC EQUILIBRIUM: THE BASIC STATE

The profile of rivers attains equilibrium, adjusting to the function of conveying downstream water
and sediment supplied by the watershed. At the basin scale, this is a complex process that falls
outside the scope of the present review, as it involves the interaction between the river itself and
the adjacent environments (e.g., hillslopes, floodplain, and the ocean) (Sinha & Parker 1996).

However, at the reach scale and for temporal scales short enough that neither subsidence
nor tectonic uplift play a significant role, equilibrium is readily understood. In fact, although
rivers are not steady systems, their states evolve in response to quasi-steady seasonal forcings
punctuated by strong flood fluctuations; however, their longitudinal profiles maintain their shape
over geomorphic time; i.e., they have a quasi-equilibrium profile. Hence, let us consider a turbulent
plane and unidirectional stream subject to steady forcing, namely given the flow rate and sediment
supply. Under these conditions, at morphological equilibrium (∂/∂t = 0), the Exner equation
suggests that the sediment flux per unit width qs, aligned with the flow, must keep spatially constant:
Therefore, recalling Equation 4, the mean bottom stress, as well as the sediment size and the bed
slope, must not vary; i.e., the flow must be uniform. This simple result is instructive. In fact,
coupling the uniform Chézy law to a bed-load transport relationship for qs, one readily finds
that the equilibrium slope is uniquely determined by the given unit discharge, sediment size, and
sediment supply, decreasing monotonically with the former and increasing monotonically with
the latter two. Thus, a river responds to an increased sediment supply and/or to bed coarsening
by steepening its course, whereas an increased flow discharge drives bottom flattening.

4. QUASI-EQUILIBRIUM PATTERNS: SMALL SCALE

A variety of small-scale patterns arise from instabilities of the uniform equilibrium state. They
are beautifully described in early work (Allen 1984). It suffices here to recall that patterns may
be subcritical (e.g., ripples, dunes, bed-load sheets) or supercritical (e.g., antidunes, roll waves).
Moreover, all these bed forms may be 2D (straight crests) or 3D (curved crests). Fluvial ripples
and dunes migrate invariably downstream, whereas antidunes typically (not invariably) migrate
upstream. Ripples, dunes, bed-load sheets, and roll waves are strongly asymmetrical (Figure 3a),
whereas antidunes are fairly symmetrical.

All the above bed forms have crests orthogonal to the local flow direction. This is not the case
for sand ribbons and longitudinal streaks, stationary bed forms exhibiting crests parallel to the
main flow (Figure 3b).

4.1. Two-Dimensional Ripples, Dunes, and Antidunes

The theory of small-scale patterns in fluvial streams and the modern field of theoretical morpho-
dynamics stem from a seminal paper (Kennedy 1963) on dune-antidune formation in erodible
channels that proposed the basic instability mechanism outlined in Section 2. Later contributions
pointed out a number of stabilizing and destabilizing effects (e.g., gravity, suspension, friction, par-
ticle inertia, and nonequilibrium bed-load transport). The picture emerging from an early review
(Engelund & Fredsøe 1982) can be summarized as follows. Dune instability arises from a balance
between the stabilizing effect of gravity and the destabilizing effect of friction (Engelund 1970,
Smith 1970). This picture was based (Fredsøe 1974) on a realistic estimate of the longitudinal effect
of gravity (Equation 4) coupled with the simplest slip-velocity turbulent closure, which sharply
underestimates friction. On the contrary, using a more refined flow model, the destabilizing effect
of friction increases sharply, and one is forced to assume an unrealistically large gravitational effect
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Figure 4
(a) Dune instability plot (Colombini 2004), comparing the unstable regions in the Froude-number versus wave-number plane with
observations (Guy et al. 1966). The dashed lines correspond to nonmigrating perturbations. (b) The unified marginal stability curve for
bars of any mode m, showing critical conditions for bar growth and resonant conditions characterized by vanishing speed and vanishing
growth rate.

(Richards 1980). Antidune instability turns out not to be significantly affected by gravity; hence a
different stabilizing effect (suspension) was invoked to balance the destabilizing effect of friction,
but antidunes are known to develop also in the absence of a suspended load. The issue was then
not wholly settled.

Progress made since this assessment in 1982 encompasses various lines of research. With
regard to the mechanism of dune-antidune instability, some deficiencies of previous linear theories
were overcome (Colombini 2004), based on the finding that the phase of the perturbations of
shear stress (relative to bed elevation), which drives the instability process, varies rapidly close
to the bed. Hence, evaluating the shear stress exerted by the fluid at the top of the saltation
layer (as appropriate) rather than at the bed interface (as in previous contributions) introduces an
unexpectedly significant effect: The stabilizing role of gravity on bed-load transport is no longer
crucial for dune instability, whereas antidune instability is no longer crucially determined by the
suspended load. Dunes and antidunes form in the context of an identical conceptual framework,
and predictions for the most unstable wavelengths agree satisfactorily with observations in both
regimes. Figure 4a illustrates marginal stability curves bounding two regions of instability, the
lower (upper) region corresponding to dune (antidune) instability. The figure also shows vanishing
wave speed; dunes are found to migrate downstream, whereas antidunes migrate upstream, in fair
agreement with observations.

Later work (Colombini & Stocchino 2005) clarified another issue left open by linear theories:
The decoupled approach leads to a resonant behavior (see Figure 4b). The artificial charac-
ter of this resonance was demonstrated through a coupled potential-flow theory (Coleman &
Fenton 2000). However, due to the irrotational assumption, the only unstable region found was
a narrow strip adjacent to the resonant line. On the contrary, a fully coupled rotational analysis
(Colombini & Stocchino 2005) leads to a fairly conclusive picture: The artificial resonance as well
as the near-resonant unstable region disappear, whereas the dune-antidune instability regions are
practically unaffected by coupling. At high Froude numbers, however, the existence of fast-moving
sediment waves associated with the roll-wave instability emerges only in the context of a coupled
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approach, confirming results obtained in the framework of shallow-water theories. The roll-wave
and antidune modes are simultaneously unstable for sufficiently large values of the Froude number,
suggesting that nonlinear effects are responsible for mode competition in that regime.

A third issue, raised to question the actual relevance of linear instability theories (Coleman &
Melville 1994), deserves attention. Detailed experimental observations of incipient dune formation
in both fine and coarse sand demonstrate the initial development of low-amplitude, short bed forms
(sometimes called dune wavelets) with characteristics independent of the Shields stress. These are
then subject to a coalescence process whereby larger-amplitude, longer, and stage-dependent dunes
eventually develop, in sort of an inverse cascade. It is claimed (Coleman & Melville 1996) that
linear theories would be relevant only to explain the formation of dune wavelets associated with
the high wave-number peak detected in the growth-rate curve (Richards 1980). This argument is
not wholly convincing as this peak corresponds to extremely short perturbations, scaling with bed
roughness, which do not fit observations. The relation between these forms and ripples is unclear:
They were observed in smooth-transitional regimes (Coleman & Melville 1994). Moreover, the
transient character of dune wavelets is also unclear: Coleman & Melville (1994, their figure 4)
suggest that dune development reaches a first quasi-equilibrium state, lasting a few minutes,
after approximately 200 s from the start of the experiment. This temporary equilibrium then
loses stability, and dunes eventually develop. Is the latter process an expression of a secondary
bifurcation? The matter needs further work to be settled.

Certainly the role of nonlinearity is crucial to determine the final equilibrium shape of dunes.
In the only attempt to view this problem in the framework of stability and bifurcation theory
(Colombini & Stocchino 2008), a Landau-Stuart-Hopf amplitude equation was derived for weakly
nonlinear dunes (antidunes) within a neighborhood of the maximum (minimum) of the corre-
sponding marginal stability curve. The authors found that tricritical points (i.e., points where the
bifurcation shifts from subcritical to supercritical) exist along both marginal stability curves. In
situations of practical interest, dune bifurcation is supercritical, and an equilibrium amplitude is
reached, whereas antidune bifurcation is subcritical. The authors’ conclusion is of conceptual inter-
est: “Dunes of finite, though small, height evolve towards an asymmetric shape and reach an equi-
librium amplitude even in the absence of flow separation. The acceleration/deceleration of the flow
associated with the sequence of contractions and expansions above the dune is critical in controlling
the shape of the bed surface through nonlinear interactions.” Criticism is occasionally leveled to-
ward weakly nonlinear theories on the grounds that they would rule out a crucial part of the physics
of finite-amplitude flow perturbations, namely separation at the dune crest. This would be justified
if separation were an essential feature of dune formation. On the contrary, “low-angle dunes are
common and may often represent the most abundant dune shape: it appears increasingly likely that
many large rivers are characterized by dunes with leeside slopes lower than the angle of repose”
(Best 2005). In other words, even in the fully developed regime, separation is not an essential fea-
ture of dunes. Conversely, it is well-known that flow does not separate from the crests of antidunes.

This notwithstanding, separating dunes are an equally common bed form and pose a quite
interesting and challenging problem, which has been investigated both experimentally and nu-
merically. The first sound model for the flow past a train of fully developed dunes (McLean &
Smith 1986) has been followed by a number of numerical contributions using various turbu-
lent closures to model a quite complex flow structure, including a separation zone forming on
the leeside, a free shear layer developing at the boundary between the separation zone and the
free stream, a wake region growing and dissipating downstream, and an internal boundary layer
growing downstream of the reattachment zone. Parallel to numerical simulations, increasingly
detailed laboratory investigations of flow past fixed bed dunes (Best 2005) have provided useful
data. Recent successful attempts to incorporate this knowledge into a rational morphodynamic
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Sorting: the process
whereby particles of
different sizes arrange
spatially into
sequences of coarser
and finer patches

framework (Giri & Shimizu 2006) have employed an advanced closure scheme, a computational
grid sufficiently refined in the near-bed region, and a correct free-surface condition (no rigid lid).
The latter simulations were also able to reproduce the initial formation of dune wavelets and
their coalescence into longer and slower fully developed dunes, with wavelengths and amplitudes
comparing reasonably with observations.

4.2. Dune Superimposition and Amalgamation

Smaller amplitude dunes (or ripples) are commonly observed on the stoss side (and often on
low-angle leesides) of larger dunes. The migration of these forms, sometimes called sand sheets
(Venditti et al. 2005a), over larger dunes is the cause of pronounced temporal fluctuations of sedi-
ment transport observed at the dune leeside. Moreover, the interaction of a dune with an upstream
faster-moving companion may lead to amalgamation, the new pattern having a height lower than
that obtained from a simple superposition of the two original bed forms. Again, the mechanistic
basis of coexisting patterns of different scales has not been investigated. Qualitative suggestions
propose that they might be a response to nonuniform and unsteady flow, as well as of hystere-
sis effects within a flood hydrograph (Best 2005). However, this interpretation conflicts with the
observation (Venditti et al. 2005a) that sand sheets may coexist with dunes under steady conditions.

4.3. Three-Dimensional Dunes

The issue of why and when 3D dunes form is unsettled. This applies, in particular, to the peculiar
pattern of the so-called Barkhan dunes observed also under supply-limited conditions. Labora-
tory observations suggest that, in a sufficiently wide channel and provided the experiment is long
enough, 2D dunes evolve invariably into 3D patterns. More precisely, “once 2D bedforms are
established, minor, transient excesses or deficiencies of sand are passed from one bed form to an-
other. The bed-form field appears capable of absorbing a small number of such defects but, as the
number grows with time, the resulting morphological perturbations produce a transition in bed
state to 3D forms that continue to evolve, but are pattern-stable. The 3D pattern is maintained by
the constant rearrangement of crestlines through lobe extension and starving downstream bed-
forms of sediment, which leads to bifurcation” (Venditti et al. 2005b). Surprisingly, no published
stability theory is available to check the existence of a morphodynamic Squire theorem whereby
dune perturbations with spanwise structure would be less unstable than their 2D counterparts.

4.4. Sand Ribbons and Sand Streaks

Sand ribbons appear in the form of long, parallel streaks of sand aligned with the channel axis
characterized by regular-spacing scaling with flow depth. It has long been speculated that this
might be a rare example of hydrodynamically forced bed-form instability, triggered by sidewall
vortices that would excite bottom perturbations that would then propagate away from the walls.
The need for a sidewall forcing mechanism was associated with the idea that small, longitudi-
nally uniform, spanwise perturbations could not be linearly excited spontaneously in an infinitely
wide channel, as a laterally and longitudinally uniform basic state provides no coupling with
linear perturbations of axial vorticity. However, this is only true if turbulence anisotropy is ne-
glected. On the contrary, it has been conclusively shown (Colombini 1993) that, allowing for
anisotropy, coupling arises and turbulence-driven secondary flows are able to sustain the growth of
sand-ribbon perturbations. The latter instability is reinforced by sorting in heterogeneous sedi-
ments (Colombini & Parker 1995) (Figure 3b,c).
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Figure 5
(a) Alternate bars observed in the laboratory. Figure courtesy of W. Bertoldi. (b) Numerical simulations (Federici & Seminara 2003) of
the development of alternate bars show the convective nature of bar instability. Persistent perturbations localized at the initial cross
section generate wave groups that reach asymptotically an equilibrium amplitude.

Pool: deep part of the
cross section of a river;
pools are stationary in
outer bends but may
migrate when
associated with bed
forms

Braiding rivers: river
morphology consisting
of an interconnected
network of curved
channels separated by
migrating bars

5. QUASI-EQUILIBRIUM PATTERNS: MESOSCALE

Mesoscale patterns, called bars, have wavelengths scaling with channel width and heights scaling
with flow depth. Free bars form in straight or weakly curved channels and display themselves
in the form of migrating alternate sequences of pools and riffles separated by diagonal fronts.
They may be arranged in single rows (alternate bars) in sufficiently narrow channels (Callander
1969) (Figure 5) or in multiple rows in sufficiently wide channels, where they give rise to the
development of braiding patterns (Fujita & Muramoto 1985) (Figure 2b). Bars may also be forced
by various mechanisms: Curvature in meandering channels determines rhythmic sequences of
pools at the outer bend and riffles at the inner bends (Figure 2); flow divergence promotes the
formation of central bars and a tendency of the stream to bifurcate; and nonuniform boundary
conditions (Figure 6) force the spatial development of nonmigrating bars, otherwise quite similar
to free bars.

5.1. Free Bars

Given their scaling, the hydrodynamics of free bars can be adequately modeled using the shallow-
water equations. The subject is fairly settled (Tubino et al. 1999). In a classical normal-mode
analysis, the number of rows of bar perturbations is represented by the order m of the lateral
Fourier mode, with m = 1 corresponding to single-row (alternate) bars: Both odd and even
modes satisfying the no-flux condition at the sidewalls are allowed. A linear instability theory then
leads to an algebraic dispersion relationship of the form (Blondeaux & Seminara 1985)

ω = N
−λ4 + in3λ

3 + n2λ
2 + in1λ + n0

λ3 + id2λ2 + d1λ + id0
= ω(λ; β, τ∗ds ). (8)

Here, λ is the dimensionless real longitudinal wave number scaled by the channel half-width;
ω is the dimensionless complex growth rate; and coefficients of Equation 8 are functions of the
dimensionless parameters characteristic of the basic state, namely the aspect ratio β, the Shields
stress of the basic uniform flow τ∗, and the ratio of grain size to flow depth ds. Equation 8 applies
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Figure 6
Laboratory observations (Zolezzi et al. 2005) of bottom perturbations in the straight reaches located
downstream and upstream of a 180◦ bend reveal that morphodynamics influence both the downstream and
the upstream reach in superresonant channels. Flow direction is clockwise.

to any mode m, provided λ, β, and ω are replaced by λ/m, β/m, and ω/m, respectively. This
suggests that the actual scale appropriate to mode m is a factor m smaller than the channel width.
Recognizing β as control parameter for bar instability (for given values of τ∗ and ds), one finds that
instability occurs above a threshold value (β c) of the control parameter with the most unstable wave
number (λc). The threshold condition depends on the dominant form of sediment transport. For
dominant bed load, (a) the value of β c ranges from about 5 to 6; (b) the most unstable wavelength
ranges typically about six channel widths; and (c) the bar speed varies along the marginal stability
curve (e.g., it is positive at critical conditions, decreases for increasing β along the left branch of
the curve, and vanishes at β = βR to become negative for values of β > βR) (Figure 4b). We note
that the point (βR, λR) defines a free response of the bed in the form of stationary alternate bars:
In a sinuous channel, curvature forces essentially the same response, an observation at the basis
of the resonance-driven bend instability theory of meander formation (Blondeaux & Seminara
1985, Seminara 2006). Similar results are found when suspended load is dominant (Federici &
Seminara 2006, Tubino et al. 1999) although bars form more easily (lower β c) and lengthen (lower
λc). Linear results are in fair agreement with laboratory and field observations (Colombini et al.
1987).

The physical mechanism of bar instability is of the type discussed in Section 2. Here, the major
destabilizing effect is friction, whereas the lateral effect of gravity plays a stabilizing role. Recalling
Equation 4, it is not surprising to find that the stabilizing effect increases as τ∗ decreases and/or
m increases, which explains why higher-order modes are excited for increasingly higher values of
the control parameter. The effect of suspended load depends on the ratio of the particle-settling
distance to the bar wavelength and turns out to be destabilizing (stabilizing) in the small (high)
wave-number range.

Nonlinearity adds a number of important features. Landau (Colombini et al. 1987) and
Ginzburg-Landau (Schielen et al. 1993) evolution equations, derived for the amplitude of weakly
nonlinear alternate bars, show that periodic equilibrium solutions bifurcate supercritically; non-
linear bars tend to form diagonal fronts and migrate more slowly than linear bars; and the group
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Point bar: stationary
sediment deposits
typically located at
inner bends

velocity of meander trains is larger than their phase speed (anomalous dispersion) (Schielen et al.
1993). Equilibrium amplitudes can thus be predicted theoretically and compare reasonably well
with laboratory observations. Strongly nonlinear results, obtained through numerical solutions of
the fully nonlinear problem (Federici & Seminara 2003, 2006), confirmed the convective nature
of bar instability (Figure 5) and showed that nonlinearity lengthens and slows down (by a factor of
one-third to one-fourth) linear bars. As bars develop in space, care must be taken in interpreting
laboratory observations, which likely depend on the size of the experimental facility. The non-
linear evolution of higher-order modes into braiding has been investigated experimentally in a
fundamental paper (Fujita & Muramoto 1985) that found that the higher-order modes selected
in the initial stage coalesced into lower-order patterns (again an example of an inverse cascade),
which then amplified until the bed emerged and the initial multiple-row bar pattern evolved into
an interconnected network of curved channels separated by no-longer-active bars. This process
awaits a full interpretation.

5.2. Bars Forced by Curvature

In meandering rivers, a distinct process occurs: the formation of stationary, rhythmic sequences
of riffles and pools associated with channel curvature. Various factors contribute to this process.
First, the centripetal acceleration of fluid particles moving along curvilinear trajectories cannot be
simply provided by the (vertically uniform) lateral pressure gradient established by a lateral slope
of the free surface. Hence a centrifugal secondary flow, directed outward close to the free surface
and inward close to the bed, is needed to provide the excess (defect) of centripetal force required
in the upper (lower) part of the cross section. We let C0, D0, L, and r0 denote the characteristic
values of flow conductance, flow depth, meander wavelength, and radius of curvature of channel
axis, respectively. Then, the intensity of this secondary flow is O(δ), the parameter δ (≡ C0D0/r0)
measuring the intensity of centripetal effects relative to dissipation. Mild (sharp) bends are then
such that δ � 1 (δ 	 1).

If the bed is nonerodible, a free-vortex effect prevails initially, with shorter longitudinal tra-
jectories in the inner part of the bend than in the outer part. As a result, flow at the inner bend
accelerates relative to the outer bend, a purely metric effect with intensity measured by the pa-
rameter B/r0 with B channel width. Hence, for a given channel curvature, metric effects decrease
in narrow bends. Conversely, for a given channel width, metric effects are enhanced in strongly
curved bends. Proceeding downstream, the secondary flow generates a net outward transfer of
momentum, and the thread of high velocity progressively moves outward. However, for convective
transfer to be effective, the basic longitudinal flow must have a lateral dependence. This is a second-
order effect in the context of linear models, where perturbations are sought in a neighborhood of
a uniform basic state.

Bed erodibility modifies this picture, as secondary flow acts also on grain particles, which are
forced to deviate from the longitudinal direction. Sediment is then transported toward the inner
bends where a point bar builds up at the expense of the outer bends where pools develop. As
a result, a topographical component of the secondary flow is generated, which is dominant in
finite-amplitude bends (Dietrich & Smith 1983) and drives an additional contribution to sedi-
ment transport and bed topography. The continuity equation suggests that the intensity of this
topographic steering is O(λ) (≡2πB/L). Hence, a long (short) bend generates a fairly weak (strong)
topographically induced secondary flow.

However, in mild and long erodible bends, the perturbations of bed topography are by no
means necessarily small relative to the average flow depth. In fact, an estimate of the lateral bed
slope is readily obtained, with the stipulation that the lateral component of the sediment flux qn
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Morphodynamic
influence: process
whereby the presence
of any morphological
constraint (e.g., a
bend) may be felt
upstream and/or
downstream

vanishes, a condition strictly valid for fully developed flow and topography in constant-curvature
channels. From Equation 4, one readily finds that the relative amplitude of bed perturbations is
O(γ ) with γ ≡ β

√
τ∗(δ, λ). Hence, mild (δ � 1) and long (λ � 1) bends may be nonlinear as

long as the aspect ratio of the channel is sufficiently large (β 	 1) and the Shields stress is not too
small.

The tools usually employed to relax the linear constraint are typically numerical. And, indeed,
numerical models have been proposed to predict flow and bed topography in meandering channels
with finite curvature and arbitrary width variations. However, sufficiently mild and long bends
are amenable to a nonlinear analytical treatment taking advantage of a slowly varying assumption
(Bolla Pittaluga et al. 2009). The basic idea is to allow for finite-amplitude bed deformations
in the basic state, assuming that the basic flow is a locally uniform flow in a channel with an
unknown, albeit slowly varying, shape of the cross section. An expansion of the solution in powers
of δ then brings at first order the crucial role of momentum redistribution driven by the lateral
structure of the basic state. The analysis leads to a nonlinear integro-differential equation for bed
elevation, which can be solved for given channel geometry. Results for a periodic train of so-called
sine-generated meanders, characterized by the sinusoidal distribution of channel curvature, can
be compared with outcomes of linear theories (Blondeaux & Seminara 1985), showing interesting
features, which are discussed in the next section.

5.3. Stationary Bars as Vectors of Morphodynamic Influence

Let us now pose a fundamental question that can be illustrated by a constant-curvature erodible
bend connected to straight reaches located both upstream and downstream. A bar-pool system
develops in the bend and determines a nonflat stationary bed profile at the initial cross section of the
downstream straight reach: How does the downstream reach respond to this boundary condition?
In other words, does the presence of the bend exert a morphodynamic influence downstream?
Similarly, how does the bar-pool system merge into the uniform configuration of the straight
reach upstream? Does the presence of the bend exert a morphodynamic influence upstream?

A linear answer to these questions is contained in the dispersion relationship (Equation 8)
showing that a uniform turbulent open-channel flow over an erodible bottom is also able to
support linear stationary (i.e., nonmigrating) bars, which do not amplify/decay in time but may
amplify/decay in space. Their characteristics are obtained by allowing λ to be complex and setting
ω to vanish in the dispersion relationship. For each lateral mode m, four solutions for the com-
plex wave number λ are obtained (Olesen 1983). Typically, two of them describe nonoscillatory
spatial perturbations that decay fairly fast. The other two solutions describe oscillatory spatial
perturbations that decay more slowly, spreading their influence over a significant length. A careful
examination of these solutions reveals that their signs change, for each mode m, as a threshold value
βRm of the aspect ratio of the channel is exceeded. The picture that emerged (Zolezzi & Seminara
2001) may be summarized stating that perturbations of bed topography are felt only downstream
in sufficiently narrow channels with β < βR1 (subresonant channels), whereas they significantly
affect the upstream reach in wider channels, such that β > βR1 (superresonant channels). The
latter findings have been confirmed (Zolezzi et al. 2005) by laboratory observations (Figure 6).
When a significant fraction of sediments is transported in suspension, the resonant values of the
aspect ratio decrease (Federici & Seminara 2006).

In the nonlinear regime, the indefinite growth of the exponentially growing mode is inhibited,
and an equilibrium amplitude is asymptotically reached. This has been shown by a weakly nonlinear
theory of stationary bars valid in a neighborhood of the resonant conditions (Seminara & Tubino
1992).

www.annualreviews.org • Fluvial Sedimentary Patterns 57

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
0.

42
:4

3-
66

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

B
er

ke
le

y 
on

 0
2/

08
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV400-FL42-03 ARI 13 November 2009 11:49

6. QUASI-EQUILIBRIUM PATTERNS: LARGE SCALE

We now consider the response of the equilibrium state to long perturbations, distinguishing
between perturbations of bed elevation and planform perturbations.

6.1. Free Patterns: Bed Forms

Let us consider uniform free-surface flow in a straight rectangular channel, with a cohesionless
bottom of uniform grain size, constant width, slope, and discharge. We denote the associated
uniform flow depth by D0, speed by U0, sediment flux per unit width by qs0, Froude number by
F0, and flow conductance by C0. Linear perturbations of this basic state in the form of 1D normal
modes satisfying de Saint Venant and Exner governing equations obey the following dispersion
relationship (Lanzoni et al. 2006):

iω3 − 2ω2(iλ + 1) − iω
{

iλ[3 + �(c M − 1)] − λ2
[

1 − 1
F 2

0
− �c M

F 2
0

]}
+ iλ3 �

F 2
0

= 0. (9)

Here � is a dimensionless parameter proportional to the ratio tH/tM between hydrodynamic
and morphodynamic timescales, hence a typically small parameter except close to the critical
conditions; λ is the dimensionless wave number scaled by l0 = C2

0 D0; and ω is the dimensionless
angular frequency of the perturbation, scaled by l0/U0. The above relation defines, in general,
three complex eigenmodes, ωj( j = 1, 2, 3). Assuming that λ and F0 are finite and expanding
ωj in powers of � (decoupled approach) at leading order, one finds a classical result: One of
the eigenvalues vanishes, and the remaining two reduce to those found in the fixed bed case.
The former is associated with perturbations that are invariably stable and migrate downstream;
the latter is unstable for F0 > 2 and perturbations migrate downstream: This mode describes the
classical roll-wave instability. At the next order, small morphodynamic corrections for the two
hydrodynamic modes and a third morphodynamic nontrivial mode arise. This is invariably stable
and upstream (downstream) migrating under supercritical (subcritical) conditions. However, in the
short wave limit (λ → ∞), both the wave speed and the negative growth rate of the morphodynamic
mode become unbounded as F0 → 1, a consequence of the decoupled approach becoming singular
in this limit. This singularity can be removed by coupling hydrodynamics and morphodynamics,
through an expansion in suitable powers of � in a neighborhood of criticality (Lanzoni et al.
2006). Under supercritical conditions, the morphodynamic mode may be unstable and migrates
downstream. A very weak instability of this kind had been previously detected numerically (Lyn
& Altinakar 2002).

The nonlinear evolution of 1D perturbations was investigated numerically by means of a quasi-
conservative fully coupled algorithm (Siviglia et al. 2008). In particular, the nonlinear response
to an initial short bottom perturbation (a hump) subject to a supercritical flow deviates from
the linear one: The linear growth predicted by the coupled linear theory does not persist in the
nonlinear regime; the morphodynamic influence is felt both upstream and downstream through the
formation of a secondary hump migrating downstream; and nonlinearity gives rise to wave peaking.
Similar features arise in the subcritical regime. On the contrary, long subcritical perturbations in
the nonlinear regime do not differ significantly from linear perturbations: No secondary hump is
generated, and nonlinearity is unable to produce sharp fronts.

Of greater interest is the response of an erodible bed to the propagation of hydrodynamic
fronts. Experimental observations (Bellal et al. 2003) suggest that the propagation of a hydraulic
jump on an erodible bed undergoes two stages. Initially the jump migrates fairly fast and is unable
to excite a significant morphodynamic response. Later the jump has slowed down sufficiently for
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Figure 7
Nonlinear morphodynamic response to the propagation of a hydraulic jump (Siviglia et al. 2008). The jump
overshoots the location where a steady jump would exist on a fixed bed (F0 = 1.27, � = 0.04, C0 = 18.3).

hydrodynamic and morphodynamic timescales to be comparable. At this stage, a sediment front
is generated by the sharp reduction of the transport capacity of the stream through the hydraulic
jump. The front then migrates downstream, and progressively the hydraulic jump disappears,
leading to a final uniform equilibrium state. This picture is perfectly reproduced by numerical
simulations (Figure 7).

6.2. Free Patterns: Planforms

Erodible channels respond to bank erosion by propagating planform waves, which, in meandering
rivers, consist of variations of channel alignment. The framework employed to predict the planform
evolution (Ikeda et al. 1981) is based on the stipulation that the channel, identified through its
centerline, moves in the normal direction with a migration speed ζ . The following nonlinear
integro-differential equation is then found to govern planform evolution (Seminara et al. 2001):

∂θ

∂t
− ∂θ

∂s

∫ s

0
ζ

∂θ

∂s
d s = ∂ζ

∂s
, (10)

where θ (s, t) is the angle that the local tangent to the channel axis forms with the valley axis, and
s is the intrinsic longitudinal coordinate. The mathematical formulation of planform evolution is
completed once an erosion law is established to relate the migration speed ζ to the stream hy-
drodynamics. Formulating an appropriate integrated and a continuous description of the actually
intermittent process of bank collapse and sediment removal from the bank foot (Darby et al. 2002)
is a quite complex problem, which still requires attention. A simple rule that has had an enormous
impact on the field (Ikeda et al. 1981) is based on the assumption, somehow substantiated by field
observations, that an appropriate measure of lateral migration is the differential excess of flow
speed at the outer and inner banks, the implication being that the material eroded at outer banks
is redeposited at inner bends, as observed in the field.
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Neck cutoff: process
occurring when the
planform evolution of
meandering rivers
leads two branches of a
meander loop to
merge

Meander formation is then explained through a planform stability analysis, assuming a straight
basic configuration and investigating the conditions for the growth of small normal-mode
perturbations of the type θ1 exp i (λs − ωt). As assessed in a recent survey paper (Seminara 2006),
a number of features emerge. Small-amplitude meanders behave as linear oscillators, which res-
onate for values of wave number λ and aspect ratio β, equal to λR and βR, respectively. Hence,
at the linear level, the free stationary bar discussed in Section 5 is resonantly excited by curva-
ture. Moreover, meander bends migrate, and migration is driven by a phase lag between bank
erosion and curvature. As in any linear oscillator, the phase lag changes sign at resonance; hence
subresonant meanders (β < βR) migrate downstream, whereas superresonant meanders migrate
upstream. The nonlinear planform evolution of the selected mode displays a number of char-
acteristics observed in the field: Regular meander trains are typically upstream (downstream)
skewed under subresonant (superresonant) conditions; the lateral migration increases to a peak
and then decreases; meander speed decreases monotonically; and development leads to neck cut-
off, i.e., the merging of adjacent meander branches. Numerical simulations, pursued beyond cutoff
(Camporeale et al. 2005, Frascati & Lanzoni 2009), suggest that the repeated occurrence of neck
cutoffs leads to a statistically stationary state, such that channel sinuosity (i.e., the ratio between
intrinsic and Cartesian lengths) displays small oscillations around an asymptotically constant value
(Figure 8).

Nonlinearity (Bolla Pittaluga et al. 2009) essentially confirms the linear picture (Figure 9).
Bend instability still selects a meander wave number increasing with the aspect ratio β, although
nonlinearity damps strongly the resonant excitation of stationary free bars. Upstream migration
is confirmed above a threshold value of the aspect ratio β quite close to the resonant value of the
linear theory.

7. A GLANCE AT EROSIONAL AND DEPOSITIONAL PATTERNS

Although space does not allow a discussion of erosional and depositional patterns in detail, we
touch upon this subject to introduce the reader to a fascinating research field that is likely to play
an increasingly important role in the century of global warming.

7.1. Landscape Evolution Models and the Geomorphologic Peclet Number

The mechanics of landscape evolution stems from a seminal study (Smith & Bretherton 1972)
of the incipient development of erosional rills. Ridge-and-valley topography exhibiting a distinct
characteristic wavelength is observed in soil-mantled landscapes (Figure 1a), and submarine and
even Martian environments (Perron et al. 2008). To investigate the formation of ridge-and-valley
topography, Perron et al. (2008) coupled the evolution equation (Equation 2), with S = D = 0 and
∇ ·qs given by Equation 6, with an appropriate description of overland flow on a steep topography.
The shear stress in the channelized portion of the landscape was obtained, evaluating the local
flow rate in terms of the associated drainage area A. Hence the landscape evolution, affecting A,
has a feedback on the hydrodynamics, which in turn affects the detachment rate. The output was
the derivation of a “nonlinear advection-diffusion equation in which the quantity being advected
and diffused is elevation” (Perron et al. 2008):

η,t = Dm∇2η − K (Aμ|∇η|n − τ ∗
c ) + U, (11)

with K, μ, and n as positive parameters. Diffusion naturally tends to smooth perturbations of bed
elevation. Advection drives their nonlinear propagation across the landscape in the direction of
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Figure 8
The response of the planform of an erodible channel to small random perturbations of an initially straight
configuration (Lanzoni et al. 2006) reveals the convective nature of meander instability. Simulations were
carried out imposing no constraint at the channel ends. (a) Under subresonant conditions, wave groups
migrate downstream, leaving the upstream reach unperturbed. (b) Under superresonant conditions, wave
groups migrate upstream, leaving the downstream reach unperturbed. Note the capacity of the model to
generate multiple loops as well as downstream and upstream skewing of single meanders as observed in
nature. (c) The temporal evolution of the planform sinuosity displays three stages. (i ) An initial unnatural
pattern regularity promotes a monotonic increase of sinuosity up to an incipient cutoff. (ii ) The cutoff
destroys regularity, and sinuosity decreases tending toward a stationary state. (iii ) A stationary state
punctuated by fluctuations arises as a result of irregularly repeated cutoff events (Frascati & Lanzoni
2009).

the topographic gradient vector. Tectonic uplift is a crucially important source term that feeds
steadily the evolution process.

Numerical solutions of Equation 11 (Figure 10) show that the evolution process is cru-
cially controlled by a geomorphologic Peclet number (Pe) measuring the ratio between the
contributions of advection and diffusion. For small Pe, valleys are barely detected in a steep
ridgeline. At intermediate values of Pe, first-order valleys form, which narrow as Pe increases fur-
ther. For large Pe, the valley spacing reaches a minimum. It then begins to increase again because
the valleys branch, forming tributaries. At still higher values of Pe, the trend is again reversed,
with branching valleys becoming more narrowly spaced.
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Figure 9
Comparison between the (a) nonlinear and (b) linear response for a periodic train of sine-generated meanders, showing the crucial role
of nonlinear damping in a neighborhood of resonance (Bolla Pittaluga et al. 2009). (c) Upstream meander migration is also confirmed
above a threshold value of the aspect ratio β quite close to the resonant value βR of the linear theory.

Avulsion: process
whereby a river
abandons its course in
favor of a new path

7.2. Delta Evolution and Avulsions

Natural deltas build up and evolve through various mechanisms. Sediment deposition, driven by
the abrupt flow deceleration at the outlet, causes the delta to tend to prograde seaward, a process
accompanied by a sequence of avulsions dissecting the fan shape. Progradation is counteracted by
subsidence (due to sediment compaction) and sea-level rise. The balance between these two major
effects is quite delicate and determines the survival of coastal wetlands, environments of special
ecological values. In particular, this equilibrium may be disrupted by anthropogenic actions. A
prototypical example is the construction of extensive levees on the lower Mississippi River. Al-
though they protect the city of New Orleans and prevent the river from avulsing upstream, levees
have cut sediment replenishment to the delta. As a result, marshlands are sinking into the sea,
and the shoreline is rapidly eroding. Modeling the evolution of deltas on geomorphic timescales
is then a hot subject, as yet to be fully explored. What is actually needed, however, is a theory
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Figure 10
Landscapes obtained by a numerical simulation model (Perron et al. 2008), with four types of patterns
emerging. (Left column) Image maps, showing the normalized Laplacian of elevation, with concave-up areas
(valleys) in red and concave-down areas (hillslopes) in blue. (Right column) Perspective views, with axis tick
intervals of 200 m in the horizontal and 5 m in the vertical direction. Vertical exaggeration is 4 ×. Figure
courtesy of J.T. Perron.

of the wider class of depositional patterns, called alluvial fans (Parker et al. 1998). The peculiar
feature of these patterns is that, along with the bed interface, the free unknown boundary also
includes the moving front of the fan. At the foreset-bottomset break, the shoreline migration can
be specified in terms of a shock condition derived in a similar context (Swenson et al. 2000). Var-
ious further elements are needed (Parker & Sequeiros 2006): In particular, sand-bed rivers carry
typically far more mud than sand; sand is transported as bed load and can be exchanged with the
bed, whereas mud can only settle in the floodplain. Some progress has been made with the help
of a laterally averaged formulation based on empirical assumptions on flow and sediment repar-
tition between channelized and unchannelized portions of the delta (Parker & Sequeiros 2006).
Figure 1b shows the degree of success of such a land-building model. The satellite photograph
displays the predicted front of the Wax Lake delta (Louisiana) out to year 2081. The great future
challenge will be to construct a theory of the development of delta networks that can display the
crucial role played by avulsions. Such a model will also have to include a quantitative description
of the trapping rate of mud in the delta, accounting for the important role of vegetation, as well
as the mechanisms of the removal of delta sediment offshore.
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FUTURE ISSUES

1. Researchers need to incorporate the current knowledge of near-wall hydrodynamics into
models of sediment entrainment by clarifying the spatial-temporal distribution of the
occurrence and intensity of near-wall coherent structures under rough-wall conditions,
developing a sound mechanical model of particle entrainment by single near-wall events,
understanding the feedback of sediment transport on near-wall turbulence, and clarifying
the hydrodynamics of particle collision.

2. The present theories of small-scale patterns should be extended to cover 3D perturbations
as well as nonlinear mode interactions to clarify the origin of the inverse cascade observed
in experiments.

3. A theory of network formation in depositional environments and braiding rivers needs
to be developed to account for the role of avulsions.

4. The mechanisms of erosion and supply-limited sediment transport responsible for the
development of patterns in rocky environments should be explored.
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