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a b s t r a c t

Quantifying the atmospheric mass loss during planet formation is crucial for understanding the origin
and evolution of planetary atmospheres. We examine the contributions to atmospheric loss from both
giant impacts and planetesimal accretion. Giant impacts cause global motion of the ground. Using ana-
lytic self-similar solutions and full numerical integrations we find (for isothermal atmospheres with adi-
abatic index c ¼ 5=3) that the local atmospheric mass loss fraction for ground velocities vg K 0:25vesc is

given by vloss ¼ ð1:71vg=vescÞ4:9, where vesc is the escape velocity from the target. Yet, the global atmo-
spheric mass loss is a weaker function of the impactor velocity v Imp and mass mImp and given by
Xloss ’ 0:4xþ 1:4x2 � 0:8x3 (isothermal atmosphere) and Xloss ’ 0:4xþ 1:8x2 � 1:2x3 (adiabatic atmo-
sphere), where x ¼ ðv Impm=vescMÞ. Atmospheric mass loss due to planetesimal impacts proceeds in two

different regimes: (1) large enough impactors m J
ffiffiffi
2
p

q0ðphRÞ3=2 (25 km for the current Earth), are able
to eject all the atmosphere above the tangent plane of the impact site, which is h=2R of the whole atmo-
sphere, where h; R and q0 are the atmospheric scale height, radius of the target, and its atmospheric den-

sity at the ground. (2) Smaller impactors, but above m > 4pq0h3 (1 km for the current Earth) are only able
to eject a fraction of the atmospheric mass above the tangent plane. We find that the most efficient imp-
actors (per unit impactor mass) for atmospheric loss are planetesimals just above that lower limit (2 km
for the current Earth). For impactor flux size distributions parametrized by a single power law,
Nð> rÞ / r�qþ1, with differential power law index q, we find that for 1 < q < 3 the atmospheric mass loss
proceeds in regime (1) whereas for q > 3 the mass loss is dominated by regime (2). Impactors with

m K 4pq0h3 are not able to eject any atmosphere. Despite being bombarded by the same planetesimal
population, we find that the current differences in Earth’s and Venus’ atmospheric masses can be
explained by modest differences in their initial atmospheric masses and that the current atmosphere
of the Earth could have resulted from an equilibrium between atmospheric erosion and volatile delivery
to the atmosphere from planetesimal impacts. We conclude that planetesimal impacts are likely to have
played a major role in atmospheric mass loss over the formation history of the terrestrial planets.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Terrestrial planet formation is generally thought to have pro-
ceeded in two main stages: The first consists of the accretion of
planetesimals, which leads to the formation of several dozens of
roughly Mars-sized planetary embryos (e.g. Ida and Makino,
1993; Weidenschilling et al., 1997), and the second stage consists
of a series of giant impacts between these embryos that merge to
form the Earth and other terrestrial planets (e.g. Agnor et al.,
1999; Chambers, 2001). Understanding how much of the planets’
primordial atmosphere is retained during the giant impact phase
is crucial for understanding the origin and evolution of planetary
atmospheres. In addition, a planet’s or proptoplanet’s atmosphere
cannot only be lost due to a collision with a comparably sized body
in a giant impact, but also due to much smaller impacts by plane-
tesimals. During planet formation giant impacts begin when the
planetesimals are no longer able to efficiently damp the eccentric-
ities of the growing protoplanets. Order of magnitude estimates
that balance the stirring rates of the protoplanets with the damp-
ing rates due to dynamical friction by the planetesimal population
and numerical simulations find that giant impacts set in when the
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total mass in protoplanets is comparable to the mass in planetesi-
mals (Goldreich et al., 2004; Kenyon and Bromley, 2006). Therefore
about 50% of the total mass still resides in planetesimals when
giant impacts begin and planetesimal accretion continues through-
out the giant impact phase. Furthermore, geochemical evidence
from highly siderophile element (HSE) abundance patterns
inferred for the terrestrial planets and the Moon suggest that a
total of about 0:01 M� of chondritic material was delivered as ‘late
veneer’ by planetesimals to the terrestrial planets after the end of
giant impacts (Warren et al., 1999; Walker et al., 2004; Walker,
2009). This suggests that planetesimal accretion did not only pro-
ceed throughout the giant impacts stage by continued beyond.
Therefore, in order to understand the origin and evolution of the
terrestrial planets’ atmospheres one needs to examine the contri-
bution to atmospheric loss from both the giant impacts and from
planetesimal accretion.

Depending on impactor sizes, impact velocities and impact
angles, volatiles may be added to or removed from growing plane-
tary embryos by impacts of other planetary embryos and smaller
planetesimals. The survival of primordial atmospheres through
the stage of giant impacts during terrestrial planet formation has
been examined by Genda and Abe (2003, 2005). These works
numerically integrate the hydrodynamic equations of motion of
the planetary atmosphere to determine the amount of atmospheric
loss for various ground velocities. In contrast to giant impacts,
smaller impactors cannot eject the planet’s atmosphere globally
but are limited to, at best, ejecting all the atmosphere above the
tangent plane of the impact site. Some of the first calculations of
impact induced atmospheric erosion were performed using the
Zel’dovich and Raizer (1967) solution for the expansion of a vapor
plume and momentum balance between the expanding gas and the
mass of the overlying atmosphere (e.g. Melosh and Vickery, 1989;
Vickery and Melosh, 1990; Ahrens, 1993). The results of these cal-
culations were used to investigate the evolution of planetary atmo-
spheres as a result of planetesimal impacts (e.g. Zahnle et al., 1990,
1992). Newman et al. (1999) investigated by analytical and
computational means the effect of �10 km impactors on terrestrial
atmospheres using an analytical model based on the solutions of
Kompaneets (1960). Atmospheric erosion calculations were
extended further by, for example, Svetsov (2007) and Shuvalov
(2009) who investigated numerically atmospheric loss and
replenishment and the role of oblique impacts, respectively. In
the work presented here, we use order of magnitude estimates
and numerical simulations to calculate the atmospheric mass loss
over the entire range of impactor sizes, spanning impacts too small
to eject significant amounts of atmosphere to planetary-embryo
scale giant impacts. Our results demonstrate that the most efficient
impactors (per impactor mass) for atmospheric loss are small
planetesimals which, for the current atmosphere of the Earth, are
only about 2 km in radius. We show that these small planetesimal
impacts could have potentially totally dominated the atmospheric
mass loss over Earth’s history and during planet formation in
general.

Our paper is structured as follows: in Section 2 we use analytic
self-similar solutions and full numerical integrations to calculate
the amount of atmosphere lost during giant impacts for an isother-
mal and adiabatic atmosphere. We analytically calculate the atmo-
spheric mass loss due to planetesimal impacts in Section 3. In
Section 4, we compare and contrast the atmospheric mass loss
due to giant impacts and planetesimal accretion and show that
planetesimal impacts likely played a more important role for atmo-
spheric loss of terrestrial planets than giant impacts. We discuss
the implications of our results for terrestrial planet formation
and compare our findings with recent geochemical constraints on
atmospheric loss and the origin of Earth’s atmosphere in Section
5. Discussion and conclusions follow in Section 6.
2. Atmospheric mass loss due to giant impacts

When an impact occurs the planet’s atmosphere can be lost in
two distinct ways: first, the expansion of plumes generated at
the impact site can expel the atmosphere locally but not globally.
Atmospheric loss is therefore limited to at best h=ð2RÞ of the total
atmosphere, where h is the atmospheric scale height and R the
planetary radius (see Section 3 for details). Second, giant impacts
create a strong shock that propagates through the planetary inte-
rior causing a global ground motion of the protoplanet. This ground
motion in turn launches a strong shock into the planetary atmo-
sphere, which can lead to loss of a significant fraction of or even
the entire atmosphere Fig. 1.

It was realized several decades ago that self-similar solutions
provide an excellent description for a shock propagating in adia-
batic and isothermal atmospheres (e.g. Raizer, 1964; Grover and
Hardy, 1966). Here, we take advantage of these self-similar solu-
tions and use them together with full numerical integrations to
calculate the atmospheric mass loss due to giant impacts.

2.1. Self-similar solutions to the hydrodynamic equations for an
isothermal atmosphere

Terrestrial planet’s atmospheres, like the Earth’s, are to first
order isothermal, giving rise to an exponential density profile.
We therefore solve the hydrodynamic equations for a shock prop-
agating in an atmosphere with an exponential density profile given
by

q ¼ q0 exp½�z=h�; ð1Þ

where q0 is the density on the ground, z the height in the atmo-
sphere measured from the ground and h the atmospheric scale
height. The atmosphere is assumed to be planar, which is valid
for the terrestrial planets since their atmospheric scale heights are
small compared to their radii. We further assume that radiative
losses can be neglected such that the flow is adiabatic. The adiabatic
hydrodynamic equations are given by

1
q

Dq
Dt
þ @u
@z
¼ 0 ð2Þ

Du
Dt
þ 1

q
@p
@z
¼ 0 ð3Þ

1
p

Dp
Dt
� c

q
Dq
Dt
¼ 0; ð4Þ

where c is the adiabatic index and D=Dt the ordinary Stokes time
derivative.

Thanks to the self-similar behavior of the flow, the solutions to
hydrodynamic equations above can be separated into their time-
dependent and spatial parts and can be written as

qðz; tÞ ¼ q0 exp½�ZðtÞ=h�GðfÞ; uðz; tÞ ¼ _ZUðfÞ;
pðz; tÞ ¼ q0 exp½�ZðtÞ=h� _Z2PðfÞ ð5Þ

where ZðtÞ is the position of the shock front and f ¼ ðz� ZðtÞÞ=h. The
similarity variables for the density, velocity and pressure are given
by GðfÞ; UðfÞ and PðfÞ, respectively. Using the expressions in Eq. (5)
and substituting them into the hydrodynamic Eqs. (2)–(4) yields for
the spatial parts

1
G

dG
df
ðU � 1Þ þ dU

df
¼ 1 ð6Þ

ðU � 1ÞdU
df
þ 1

G
dP
df
¼ �U

a
ð7Þ

ðU � 1Þ 1
P

dP
df
� c

G
dG
df

� �
¼ �2

a
� cþ 1; ð8Þ
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and a time dependent part given by

_Z2

€Z
¼ ah: ð9Þ

Using the strong shock conditions we have

Gð0Þ ¼ cþ 1
c� 1

; Uð0Þ ¼ 2
cþ 1

; Pð0Þ ¼ 2
cþ 1

: ð10Þ

Having separated the hydrodynamic equations into their time-
dependent and spatial parts, we now obtain their self-similar solu-
tion. The solution to Eq. (9) yields the position of the shock front as
a function of time and is given by

ZðtÞ ¼ �ah ln½1� ðt=t0Þ� ð11Þ

where t0 ¼ 2ah=½vgðcþ 1Þ� and vg is the ground velocity at the
interface between the ground and the atmosphere. Eq. (11) shows
that the shock accelerates fast enough such that it arrives at infinity
in time t0. The ground in contrast only transverses a distance
2ah=ðcþ 1Þ, which is a few scale heights, in the same time.

Although various solutions to Eqs. (6)–(8) exist for different val-
ues of a, the physically relevant solution corresponds to a unique
value of a which allows passage through a critical point, fc . This
critical point corresponds to the sonic point in the time-dependent
flow. Self-similar solutions that include passage through the sonic
point are generally referred to as type II self-similar solutions. For
example, we find, consistent with previous works (Grover and
Hardy, 1966; Chevalier, 1990), that for c ¼ 4=3; a ¼ 5:669 and
the critical point is located at fc ¼ �0:356 and similarly, for
c ¼ 5=3; a ¼ 4:892 and fc ¼ �0:447. Since the self-similar solu-
tions have to pass through the sonic point, only the region between
the shock front and the sonic point is in communication and the
part of the flow beyond the sonic point is cut off. The beauty of this
is that the solution of the hydrodynamic equations becomes inde-
pendent of the detailed nature of the initial shock conditions, such
that the velocity of the ground motion that launches the shock only
enters in the form of multiplicative constants in the asymptotic
self-similar solution. Fig. 2 displays the solutions for GðfÞ; UðfÞ
and PðfÞ for an adiabatic index c ¼ 4=3 for an isothermal atmo-
spheric density profile and adiabatic atmospheric density profile
(see Section 2.2).
Fig. 1. Illustration of a giant impact. (1) The giant impact ejects atmosphere and
ejecta close to the impact point and launches a strong shock. (2) The shock front
propagates through the target causing a global ground motion. (3) This ground
motion in turn launches a strong shock into the planetary atmosphere, which can
lead to loss of a significant fraction of or even the entire atmosphere.

Fig. 2. Solutions for GðfÞ; UðfÞ and PðfÞ for an adiabatic index c ¼ 4=3 for an
adiabatic atmospheric density profile, q ¼ q0ð1� z=z0Þn with n ¼ 1:5, (solid line)
and an isothermal atmospheric density profile, q ¼ q0 exp½�z=h� (dashed line).
The atmospheric mass loss fraction for an exponential atmo-
sphere is

vloss ¼ exp½�zesc=h� ð12Þ

where zesc is the initial height in the atmosphere of the fluid element
that has a velocity equal to the escape velocity at a time long after
the shock has passed, such that the atmosphere at z P zesc will be
lost. From Eq. (11) we have that the shock velocity grows exponen-
tially with height in the atmosphere just as the density deceases
exponentially. The shock velocity is given by

_Z ¼ cþ 1
2

vg exp½z=ah�: ð13Þ

zesc can therefore be written as vesc ¼ vgb exp½zesc=ah� where vesc is
the escape velocity of the impacted body and b is a numerical con-
stant that relates the velocity of a given fluid element at a time long
after the shock has passed, u1, to the velocity of the same fluid
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Fig. 4. Mass loss fraction, vloss , as a function of vg=vesc for an isothermal
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curves, respectively. The thick black line represents the atmospheric mass loss
fraction obtained from full numerical integrations for c ¼ 5=3.
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element at the shock, u0. The final atmospheric mass loss fraction is
therefore

vloss ¼
bvg

vesc

� �a

; ð14Þ

where the only quantity left to calculate numerically is the acceler-
ation factor b given by

b ¼ u1
u0

: ð15Þ

It is convenient to write b as the product of the acceleration factor
until the shock has reached infinity ðut0=u0Þ, which happens at time
t0, and the acceleration factor from the time that the shock reached
1 to a long time after that ðu1=ut0 Þ, such that b ¼ ðu1=ut0 Þðut0=u0Þ.
The latter is important because a given fluid element continues to
accelerate after t0. The two parts of the acceleration factor can be
written as

ut0

u0
¼ Uðf! �1Þ _Zðf! �1Þ

Uðf ¼ 0Þ _Zðf ¼ 0Þ
;

u1
ut0

¼ Uðf! þ1Þ _Zðf! þ1Þ
Uðf! �1Þ _Zðf! �1Þ

: ð16Þ

Eq. (16) require that we take the limit for f and t together. This is
accomplished by rewriting _Z as d ln _Z=df ¼ ðaðUðfÞ � 1ÞÞ�1 and solv-
ing it together with Eqs. (6)–(8). Fig. 3 displays the two components
of the acceleration factor and we find that b ¼ 2:07 for c ¼ 4=3 and
1.90 for c ¼ 5=3.

Because the shock is not immediately self-similar from the very
moment that it is launched into the atmosphere, the actual accel-
eration factor, b, is less than the value of b obtained from the self-
similar solutions. Furthermore, the atmosphere close to the ground
is not accelerated as much as fluid elements with initial positions
significantly above the ground. Therefore, in order to obtain the
actual value of b and an accurate atmospheric mass loss for the
part of the atmosphere that resides close to the ground, we per-
formed full numerical integrations of the hydrodynamic equations.
The simulations were performed using the one dimensional
version of RICH (Yalinewich et al., in preparation), a Godunov type
hydro-code on a moving Lagrangian mesh. We used a grid with a
total of 1000 elements and as boundary conditions we used a
piston moving at a constant velocity on one side and assumed a
vacuum on the other. Due to numerical reasons, we could not set
the initial upstream pressure to zero, so we used a small value of
10�9. We verified that the results converged by running the same
simulation with half as many grid points. Fig. 4 shows the
atmospheric mass loss fraction, vloss, as a function of vg=vesc from
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Given the resulting distribution of ground velocities, vg , from a
giant impact (see Section 2.3), Eq. (14) can be used to determine
the global atmospheric mass loss fraction for an isothermal
atmosphere.

2.2. Self-similar solutions to the hydrodynamic equations for an
adiabatic atmosphere

The heat transport in many of the close-in exoplanet atmo-
spheres may be dominated by convection rather than radiation,
resulting in adiabatic atmospheres. Unlike an isothermal atmo-
sphere, an adiabatic atmosphere has a density profile that reaches
q ¼ 0 at a finite distance from the planet. Similar to the isothermal
density profile considered above, we can repeat our calculation for
an atmosphere with an adiabatic density profile given by

q ¼ q0ð1� z=z0Þn; ð17Þ

where z0 is the edge of the atmosphere where q ¼ 0 and P ¼ 0 and n
is the polytropic index. We again assume that the atmosphere is
planar and that radiative losses can be neglected such that the flow
is adiabatic. For the adiabatic density profile the solutions to the
hydrodynamic equations above can again be separated into their
time-dependent and spatial parts and are given by

qðz; tÞ ¼ q0ð1� ZðtÞ=z0ÞnGðfÞ; uðz; tÞ ¼ _ZUðfÞ;
pðz; tÞ ¼ q0ð1� ZðtÞ=z0Þn _Z2PðfÞ ð18Þ

where ZðtÞ is the position of the shock front and
f ¼ ðz� ZðtÞÞ=ðz0 � ZðtÞÞ.

Using the expressions in Eq. (18) and substituting them into the
hydrodynamic Eqs. (2)–(4) yields for the spatial parts

1
G

dG
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ðU � 1þ fÞ þ dU
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¼ n ð19Þ

ðU � 1þ fÞdU
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þ 1
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¼ �U

a
ð20Þ

ðU � 1þ fÞ 1
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dP
df
� c

G
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df

� �
¼ �2

a
� ðc� 1Þn; ð21Þ

and a time dependent part given by

_Z2

€Zð1� Z=z0Þ
¼ az0: ð22Þ

Solving Eq. (22) using the same strong shock initial conditions given
in Eq. (10) yields for the position of the shock front as a function of
time

ZðtÞ ¼ z0 1� 1� t
t0

� � a
1þa

" #
ð23Þ

where t0 ¼ 2z0a=ðvgð1þ aÞð1þ cÞÞ is the time at which the shock
reaches the edge of the atmosphere at z ¼ z0.

Just like for the exponential atmosphere, the physically relevant
solution to Eqs. (19)–(21) for an adiabatic atmosphere density pro-
file corresponds to a unique value of a which allows passage
through the critical point. We find, for c ¼ 4=3; a ¼ 1:796 and
fC ¼ �0:083 and for c ¼ 5=3; a ¼ 3:029 and fC ¼ �0:156. Fig. 2
shows the solutions for GðfÞ; UðfÞ and PðfÞ for c ¼ 4=3 for an
adiabatic atmospheric density profile (solid line) and an isothermal
atmospheric density profile (dashed line).

The atmospheric mass loss fraction for an adiabatic atmosphere
is

vloss ¼ 1� zesc

z0

� �nþ1

ð24Þ

where zesc is the initial height in the atmosphere of the fluid element
that has a velocity equal to the escape velocity at a time long after
the shock has passed. From Eq. (23) we have that the shock acceler-
ates with height in the atmosphere and the shock velocity is given
by

_Z ¼ cþ 1
2

vg 1� z
z0

� ��1=a

: ð25Þ

zesc can therefore be written as vesc ¼ vgbð1� zesc=z0Þ�1=a. b is again
a numerical constant that relates the velocity of a given fluid ele-
ment at a time long after the shock has passed, u1, to the velocity
of the same fluid element at the shock, u0. The final atmospheric
mass loss fraction is therefore

vloss ¼
bvg

vesc

� �aðnþ1Þ

: ð26Þ

Calculating b using an analogous procedure to one employed for the
isothermal atmosphere in Section 2.1 with the main difference that
_Z is now given by d ln _Z=df ¼ ðaðUðfÞ � 1þ fÞÞ�1, we find b ¼ 2:38
and b ¼ 2:27 for c ¼ 4=3 and c ¼ 5=3, respectively. Fig. 3 shows
the two components of the acceleration as a function of the distance
from the shock front, f, for an exponential and adiabatic atmo-
spheric density profile.

Therefore, the exponent of bvg=vesc for an adiabatic atmosphere
is, for example, 7.2 for n ¼ 3 and c ¼ 4=3 and 7.6 for n ¼ 1:5 and
c ¼ 5=3 compared to 5.7 (c ¼ 4=3) and 4.9 (c ¼ 5=3) for an isother-
mal atmosphere, respectively. Fig. 5 shows the fractional
atmospheric mass loss as a function of the ground velocity, vg , as



Fig. 6. Illustration of the impact geometry. An impactor of mass, m, and impact
velocity, v imp , impacts a target with mass, M, and radius, R. Assuming momentum
conservation, we calculate the shocked fluid velocity, v s , and the component of the
ground velocity normal to the surface, vg , as a function of the distance from the
impact point.
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obtained from our analytic self-similar solutions and full numerical
integrations.

Eq. (26) gives the local atmospheric mass loss fraction for an
adiabatic atmosphere as a function of ground velocity. To obtain
the global atmospheric mass loss due to a giant impact, one needs
to obtain the resulting distribution of ground velocities, vg , across
the planet from a giant impact and use these to calculate the local
atmospheric mass loss and sum the results over the whole planet.
In the following subsection (Section 2.3) we use a simple impact
model to obtain the global atmospheric mass loss as a function
of the impactor mass and velocity.

2.3. Global atmospheric mass loss

2.3.1. Relating the global ground motion to impactor mass and velocity
To obtain the total atmospheric mass lost in a given impact we

need to relate the impactor mass, m, and impact velocity, v Imp, to
the resulting ground motion at the various locations of the proto-
planet and use these together with Eqs. (14) and (26) to obtain the
local atmospheric mass loss and sum the results over the surface of
the planet. When an impactor hits a protoplanet, it initially trans-
fers most of its energy to a volume comparable to its own size at
the impact site. A significant fraction of this energy will escape
from the site via a small amount of impact ejecta, but some of
the energy will propagate through the protoplanet as a shock.
Using a very simple impact model, we approximate the impacts
as point like explosions on a sphere. This is similar to the treatment
of point like explosions on a planar surface between a vacuum and
a half-infinite space filled with matter. Such an explosion results
again in a self-similar solution of the second type (Zel’dovich and
Raizer, 1967). As the shock propagates it must lose energy because
some of the shocked material flows into vacuum, but its momen-
tum is increased by the nonzero pressure in the protoplanet. As a
result, the shock’s velocity should fall off faster than dictated by
energy conservation but slower than required by momentum con-
servation. Numerical simulations of catastrophic impacts find scal-
ing laws that are close to the ones derived by assuming
momentum conservation (Love and Ahrens, 1996; Benz and
Asphaug, 1999). For example, Love and Ahrens (1996) find that
the catastrophic destruction threshold, defined as the impact
energy per unit target mass required to eject 50% of the target,
scales as R1:1, which is close to the linear scaling with R predicted
from momentum conservation for fixed impactor velocity. We
therefore assume momentum conservation of the shock,
mv imp ¼ Mv s, as it propagates through the target and use it to cal-
culate the resulting ground velocity across the protoplanet (see
Fig. 6). This treatment is similar to the ‘snowplow’ phase of an
expanding supernova remnant during which the matter of the
ambient intersteller medium is swept up by the expanding shock
and momentum is conserved.1 The volume of the protoplanet that
a spherical shock, originating from an impact point on the proto-
planet’s surface, transversed as a function of distance from the
impact point, l, is given by V ¼ pl3ð4� 3ðl=2RÞÞ=6 and shown as
the light blue region in Fig. 6. This volume is equivalent to the vol-
ume of two intersecting spheres with radii R and l where the center
of the sphere corresponding to the shock coincides with the surface
of the protoplanet of radius, R. Assuming a constant density of the
1 In general a momentum conserving shockwave, has two regimes. At low
velocities, below a few km/s, the material opposes strong compression, and the
width of the propagating front is fixed in time. In this case, the velocity of the shock
wave drops inversely proportional to the surface area of the shock (e.g. Melosh, 1989).
However, for large velocities, higher than several km/s, compression is significant, and
the entire shocked cavity is moving together and the velocity of the propagating
shock is inversely proportional to the volume of the shocked cavity. Since, as we
show, most of the ejected atmosphere emerges from regions where the ground
velocity is of order the escape velocity, we use the latter regime.
target and momentum conservation the velocity of the shocked fluid
traveling through the protoplanet is given by

vs ¼ v Imp
m
M

� � 1

ðl=2RÞ3ð4� 3ðl=2RÞÞ
; ð27Þ

where l is the distance of the shock travelled from the impact point,
such that l ¼ 2R when the shock reaches the antipode (see Fig. 6).
The ground velocity with which the shock is launched into the
atmosphere is due to the component of the shocked fluid velocity
that is perpendicular to the planet’s surface, such that
vg ¼ vsl=ð2RÞ, which yields

vg ¼ v Imp
m
M

� � 1

ðl=2RÞ2ð4� 3ðl=2RÞÞ
: ð28Þ

Fig. 7 shows the shocked fluid velocity, v s, and the ground
velocity, vg , as a function of distance travelled by the shock
through the planet. vg has a minimum at l=2R ¼ 8=9. Our simple
impact model assumes that the target has a constant density and
neglects any impact angle dependence. The latter is a reasonable
assumption as long as the impactor mass is significantly less than
0.0 0.2 0.4 0.6 0.8 1.0

1

l 2R

Fig. 7. Shocked fluid velocity v s and the ground velocity vg as a function of distance
travelled by the shock, l, from the impact point to the other side of the planet,
l ¼ 2R.
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the target mass. The former is a reasonable first order approxima-
tion given our general ignorance concerning the interior structure
of planetary embryos during their formation.

Eqs. (27) and (28) assume momentum conservation within the
target. For comparison, if we instead assume momentum conserva-
tion in a uniform density half-infinite sphere and compare it to Eqs.
(27) and (28), we find average shocked fluid velocities and ground
velocities that are about a factor of 2 smaller. This implies that we
may somewhat overestimate the global atmospheric loss due to
giant impacts.

2.3.2. Global atmospheric mass loss results
To ensure the entire atmosphere is lost we required that

vgðl=2R ¼ 8=9ÞP vesc (see Eqs. (14), (26) and (28)), where we set
b ¼ 1 to account for the fact that if we want to eject all of the atmo-
sphere, we do have to lose also the part of the atmosphere imme-
diately above the ground for which b ¼ 1. Substituting for vg and
rearranging yields that all of the atmosphere is lost provided that

v Imp

vesc

� �
m
M

� �243
256

P 1: ð29Þ

Only part of the global atmosphere is lost for

v Imp

vesc

� �
m
M

� �243
256

< 1: ð30Þ

The atmospheric mass loss as a function of ðv Imp=vescÞðm=MÞ is
shown in Fig. 8. When only a fraction of the atmosphere is lost, it
is interesting to note that the total atmospheric loss consists of
two components: The first is from the area of the planet’s surface
where the ground motion is large enough such that locally all the
atmosphere is lost (dashed line in Fig. 8), the second component
corresponds to the region of the planet where the local ground
velocity is small enough such that only part of the atmosphere is
lost (thin solid line in Fig. 8). In the latter case, the local fractional
mass loss is given by Eq. (14) for an isothermal and Eq. (26) for
an adiabatic atmosphere, respectively.

In the limit that ðv Imp=vescÞðm=MÞ � 1, Eq. (28) simplifies to
vesc ¼ v Impðm=4MÞð2R=lÞ2 such that in the limit of small total
atmospheric mass loss we have

Xloss ¼
l

2R

� �2

’ m
4M

� � v Imp

vesc

� �
: ð31Þ

In addition to the regions undergoing total atmospheric loss, we
also have a contribution from parts of the planet undergoing partial
loss, yielding a total atmospheric mass loss fraction
Xloss ¼ 0:4ðm=MÞðv Imp=vescÞ. We note here that this formalism is less
accurate for small impactor masses with v Imp � vesc , since it does
not include any atmosphere ejected directly at the impact site
(see Section 3).

More generally, we find that the global mass loss fraction for an
isothermal atmosphere is, independent of the exact value of the
adiabatic index, well approximated by

Xloss ¼ 0:4
v Impm
vescM

� �
þ 1:4

v Impm
vescM

� �2

� 0:8
v Impm
vescM

� �3

ð32Þ

and is plotted as dotted line, which is barely distinguishable from
the thick solid line, in Fig. 8.

Similarly, for an adiabatic atmosphere we find

Xloss ¼ 0:4
v Impm
vescM

� �
þ 1:8

v Impm
vescM

� �2

� 1:2
v Impm
vescM

� �3

: ð33Þ

Fig. 9 shows the total atmospheric mass loss fraction for an
isothermal (solid lines) and adiabatic atmosphere (dotted line) as
a function of impactor to target mass ratio for various impact
velocities. For a Mars-sized impactor hitting an 0:9 M� protoplanet
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with v Imp � vesc , we find Xloss ¼ 6%. This is about a factor of 2 lower
than estimates by Genda and Abe (2003) who assumed an average
ground velocity of 4–5 km/s across the whole protoplanet and used
this velocity together with their local atmospheric mass loss
results (similar to the ones shown in Fig. 5) to estimate a global
atmospheric mass loss of 10%. We show here, however, that the
global atmospheric mass loss consists of two components, where
the first component is from parts of the planet where the ground
motion is large enough such that locally all the atmosphere is lost
(dashed line in Fig. 8) and the second component corresponds to
the region of the planet where the local ground velocity is small
enough such that only part of the atmosphere is lost (thin solid line
in Fig. 8). This makes the average ground velocity inadequate for
determining the global atmospheric mass loss.

In the atmospheric mass loss calculations presented in this sec-
tion, we assume that ratio of specific heats, c, is constant through-
out the flow. However, the temperatures reached during the shock
propagation are high enough to lead to ionization of the atmo-
sphere, which in turn will decrease the value of c and consequently
result in reduced atmospheric mass loss. The atmospheric mass
loss due to giant impacts calculated in this section is therefore an
overestimate.
3. Atmospheric mass loss due to planetesimal accretion and the
late veneer

Although smaller impactors cannot individually eject a large
fraction of the planetary atmosphere, they collectively can play
an important role in atmospheric erosion and, as we show in Sec-
tion 4, may easily dominate atmospheric mass loss during planet
formation.

3.1. Planetesimal impacts

Unlike giant impacts which can create a strong shock propagat-
ing through the planetary interior that in turn can launch a strong
shock into the planetary atmosphere, smaller planetesimal colli-
sions can only eject the atmosphere locally. When a high-velocity
Fig. 10. Illustration of the impact geometry. Planetesimal impacts can only eject atmosp
shock at the impact site, the maximum atmospheric mass that they can eject in a single
atmosphere. However, since smaller impactors are more numerous than larger ones req
mass loss during planet formation.
impactor hits the surface of the protoplanet, its velocity is sharply
decelerated and its kinetic energy is rapidly converted into heat
and pressure resulting in something analogous to an explosion
(Zel’dovich and Raizer, 1967). Similar to Vickery and Melosh
(1990), we model the impact as a point explosion on the surface,
where a mass equal to the mass of the impactor, mImp, propagates
isotropically into a half-sphere with velocity of order, vesc . Atmo-
sphere is ejected only where its mass per unit solid angle, as mea-
sured from the impact point, is less than that of the ejecta,
mImp=2p. We can then relate the impactor mass, mImp, to the ejected
atmospheric mass Meject (see following Eqs. (34), (36) and (39)).
These two masses are not equal because the planetesimal impact
launches a point-like isotropic explosion into a half-sphere on
the planetary surface, but the atmospheric mass above the tangent
plane is not isotropically distributed around the impact site (see
Fig. 10), but is more concentrated towards the horizon. Specifically,
the atmospheric mass close to the tangent plane of the impact site
is hardest to eject due to its larger column density.

In order to distinguish between the impactor mass and the mass
ejected from the atmosphere we use M for the mass in the atmo-
sphere that is ejected and, as in Section 2, m and r to describe the
mass and radius of the impactor. Assuming an isothermal atmo-
sphere, which is a good approximation for the current Earth, the
atmospheric mass inside a cone defined by angle h measured from
the normal of the impact site (see Fig. 10) is given by

MEject;h ¼ 2pq0

Z a¼1

a¼0

Z h0¼h

h0¼0
exp½�z=h� sin h0a2dh0 da ð34Þ

where q0 is the atmospheric density at the surface of the planet and
z is the height in the atmosphere above the ground and is related to
a, the distance from the impact site to the top of the atmosphere
(see Fig. 10), by z ¼ ða2 þ 2aR cos h0Þ=2R. Integrating over the whole
cap, i.e. from h ¼ 0 to h ¼ p=2, yields a total cap mass of

Mcap ¼ 2pq0h2R; ð35Þ

in the limit that R� h, which applies for the terrestrial planets. This
is the maximum atmospheric mass that a single planetesimal
impact can eject and is given by all the mass above the tangent
here locally. Treating their impact as a point-like explosion leading to an isotropic
impact is given by all the mass above the tangent plane, which is h=2R of the total
uired for giant impacts, smaller impactors may actually dominate the atmospheric



Fig. 11. Ratio of ejected mass, MEject;h , to impactor mass, mImp;h , as a function of h.
The solid lines correspond to an Earth-like planet, i.e.

ffiffiffiffiffiffiffiffiffiffiffi
2R=h

p
¼ 40, and an example

of a close-in exoplanet with a scale height that is about 10% of its radius,
ffiffiffiffiffiffiffiffiffiffiffi
2R=h

p
¼ 4.

Close to the tangent plane (i.e., large h) larger impactor masses are needed because
of the higher atmospheric column densities close to the tangent plane. The dashed
line gives the analytic limit for h� p=2�

ffiffiffiffiffiffiffiffi
h=R

p
.

Fig. 12. Mass ejected in a single impact, MEject , as a function of impactor radius, r.
Only impactors with r P rcap are able to eject the whole cap. For the Earth this
corresponds to impactors with r J 25 km. Impactors with rmin < r < rcap only eject a
fraction of the atmospheric mass above the tangent plane of the impact site. For the
Earth this corresponds to impactors with 1 km < r < 25 km. Impactors smaller than
rmin (i.e., r K 1 km) cannot eject any atmosphere. The dotted line that is close to the
solid black curve corresponds to the small impactor limit derived in Eq. (39).

2 The dimensionless erosional efficiency given in Eq. (2) of Shuvalov (2009) seems
to contain a typo, since in its printed form it is not dimensionless. When comparing
our results with Shuvalov (2009) we assume that the author intended to have q2 in
denominator rather than just q, where q is the density of the impactor.
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plane of the impact site. The ratio of the mass in the cap compared
to the total atmospheric mass is therefore Mcap=Matmos ¼ h=2R.
Atmospheric loss is therefore limited to at best h=2R of the total
atmosphere.

For impact velocities comparable to the escape velocity, the
impactor mass needed to eject all the mass in the section of the
cap subtended by h is

mImp;h ¼ 2pq0

Z 1

0
exp½�ða2 þ 2aR cos hÞ=2Rh�a2da: ð36Þ

Note, the integration in Eq. (36) is only over a and not h since the
explosion at the impact site is assumed to be isotropic (see
Fig. 10). Therefore the impactor mass needed to eject all the atmo-
spheric mass above the tangent plane, mImp;p=2 ¼ mcap, is

mcap

Mcap
¼ pR

2h

� �1=2

; ð37Þ

where we again assume that R� h. The impactor mass needed to
eject all the mass above the tangent plane is about

ffiffiffiffiffiffiffiffi
R=h

p
larger than

the mass in the cap. This is because the atmospheric mass close to
the tangent plane is harder to eject due to its higher column den-
sity. Hence, in order to eject the entire cap an impactor of mass
mcap ¼ ðph=8RÞ1=2Matmos is needed. Evaluating this for the current
Earth yields mcap ¼

ffiffiffi
2
p

q0ðphRÞ3=2 � 3� 10�8M�, which corresponds
to impactor radii of rcap ¼ ð3

ffiffiffiffiffiffiffi
2p
p

q0=4qÞ1=3ðhRÞ1=2 � 25 km for
impactor bulk densities of q ¼ 2 g=cm2.

Integrating and evaluating Eq. (36) for h ¼ 0, yields
mmin ¼ mimp;0 ¼ 4pq0h3. For the current Earth this evaluates to
rmin ¼ ð3q0=qÞ

1=3h � 1 km. Impactors have to be larger than rmin

to be able to eject any atmosphere. For h not too close to p=2,
specifically p=2� h�

ffiffiffiffiffiffiffiffi
h=R

p
(i.e., for r=rmin �

ffiffiffiffiffiffiffiffi
R=h

p
), the ratio

between the ejected mass and the impactor mass is given by

MEject;h

mImp;h
¼ sin2 h cos h

2
ð38Þ

and is shown in Fig. 11. MEject;h=mImp;h has a maximum at interme-
diate values of h, this is because for small h the ejection efficiency
is low because only a small fraction of the isotropic shock at the
impact site is in the direction of h for which the atmosphere can
be ejected. In addition, for large h the ejection efficiency is also
low because significantly larger impactors are needed to eject the
atmospheric mass along the tangent plane of the impact site due
to its higher atmospheric column density. For small
h; MEject;h=mImp;h can be approximated as

MEject;h

mImp;h
’ rmin

2r
1� rmin

r

� �2
� �

: ð39Þ

In summary, atmospheric erosion due to planetesimals there-
fore occurs in two different regimes. In the first regime, which
was previously studied by Melosh and Vickery (1989), the plane-
tesimals have masses large enough such that they can eject all
the atmosphere above the tangent plane, in this case the planetes-
imal masses must satisfy m P mcap ¼

ffiffiffi
2
p

q0ðphRÞ3=2. In the second
regime, planetesimal impacts can only eject a fraction of the atmo-
sphere above the tangent plane and their masses must satisfy
4pq0h3

< m <
ffiffiffi
2
p

q0ðphRÞ3=2. As we discuss in Section 5 and show
in Fig. 16, these small planetesimals are the most efficient impac-
tors (per unit mass) for removing planetary atmospheres and may
actually dominate the mass loss. Planetesimals with masses less
than mmin ¼ mimp;0 ¼ 4pq0h3 do not contribute to the atmospheric
mass loss. Fig. 12 shows the atmospheric mass that can be ejected
in a single planetesimal impact as a function of planetesimal size.

Our simple planetesimal impact model assumes an isotropic
expansion of the vapor from the impact site. However, numerical
simulations of planetesimal impacts show a strong preference for
vertical expansion velocities (e.g. Shuvalov, 2009) and find signifi-
cantly lower atmospheric mass loss for vertical impacts (Svetsov,
2007) compared to oblique ones (Shuvalov, 2009). In contrast, in
oblique impacts, the plume expands more isotropically and hence
accelerates and ejects more atmospheric mass (Shuvalov, 2009).
Comparing the results of our simple planetesimal impact model
with the numerical results, averaged over all impact angles,
obtained by Shuvalov (2009),2 we find that we overestimate
MEject=mImp by a factor of 10, 3 and 1 for impact velocities of
15 km/s, 20 km/s and 30 km/s, respectively (see also Fig. 16). In
deriving Eq. (36), we assume that impact velocities comparable to
vesc are sufficient to result in a point like explosion, where a mass
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equal to the mass of the impactor propagates isotropically with
velocity of order vesc , but comparison with numerical impact simula-
tions above suggests that impactor velocities of about 3vesc are
needed to produce such an explosion. We did not investigate the
dependence of MEject=mImp on the impact velocity. Previous works
of numerical impact simulations find that bigger impact velocities
lead to larger atmospheric mass loss, smaller values for rmin and r	
(Svetsov, 2007; Shuvalov, 2009). From Eq. (39) we find that
MEject=mImp has a maximum at r	 ¼

ffiffiffi
3
p

rmin, which corresponds to
about 2 km for the current Earth. This compares well with the values
of r	 found by Shuvalov (2009) which are 2 km, 1 km, and 1 km for
impact velocities of 15 km/s, 20 km/s and 30 km/s, respectively.
Finally, the scaling of MEject=mImp shown in Fig. 3 of Shuvalov
(2009) is consistent with the MEject=mImp / m�1=3

Imp scaling we find
from Eq. (39) for r	 < r < rcap and the MEject=mImp / m�1

Imp scaling we
find for rcap < r (see also Fig. 16).

3.2. Impactor size distributions

Similar to Melosh and Vickery (1989), we can now calculate the
atmospheric mass loss rate due to planetesimal impacts for a given
impactor flux. Parameterizing the cumulative impactor flux with a
single power law given by Nð> rÞ ¼ N0ðr=r0Þ�qþ1, where q is the
differential power law index and N0 is the impactor flux (number
per unit time per unit area) normalized to impactors with radii
r0, we can write the atmospheric mass loss rate as

dMatmos

dt
¼ �pR2 N0ðq� 1Þ

r0

Z rmax

rmin

r
r0

� ��q

MEjectðrÞdr: ð40Þ

If the planetesimal size distribution is dominated by the smallest
bodies such that q > 3 then

dMatmos

dt
¼ �pR2 N0ðq� 1Þmmin

2r0

Z rmax

rmin

r
r0

� ��q r
rmin

� �2

� 1

 !
dr

ð41Þ

where we substituted for Meject from Eq. (39). Integrating over r
gives

dMatmos

dt
¼ �pR2 N0mmin

q� 3
rmin

r0

� ��qþ1

ð42Þ

where rmin ¼ ð3q0=qÞ
1=3h and mmin ¼ 4pq0h3. Evaluating Eq. (42) for

q ¼ 4 yields dMatmos=dt ¼ �pR2N0
4p
3 qr3

0.
If q < 3 then the atmospheric mass loss is dominated by impac-

tors whose mass is around the smallest mass that can eject the
entire cap. For this case we find for 3 > q > 1

dMatmos

dt
¼ �pR2CN0Mcap

rcap

r0

� ��qþ1

; ð43Þ

where rcap ¼ ð3
ffiffiffiffiffiffiffi
2p
p

q0=4qÞ1=3ðhRÞ1=2 is the impactor radius that can
eject all the atmosphere above the tangent plane and
Mcap ¼ 2pq0h2R is the mass of the atmosphere above the tangent
plane. C is a constant that accounts for the additional contribution
to the atmospheric mass loss from bodies that can only eject a frac-
tion of the atmosphere above the tangent plane. C ¼ 1 implies that
bodies smaller than rcap do not contribute to the atmospheric mass
loss for 3 > q > 1. The numerical value of C depends on the impac-
tor size distribution because it is the bodies that are just a little bit
smaller than rcap that can still contribute significantly to the atmo-
spheric mass loss. We find that the values for C range from 2.8 for
q ¼ 2:8, 1.9 for q ¼ 2:5, 1.3 for q ¼ 2:0, to 1.1 for q ¼ 1:5. As
expected, the value of C is largest for q close to 3 because the larger
q, the more numerous the smaller bodies.

The time it takes to lose the entire atmosphere is finite, i.e. the
mass in the atmosphere does not simply decline exponentially
towards zero but reaches zero in a finite time (Melosh and
Vickery, 1989). This is because as some of the atmosphere is lost,
its density declines and even smaller impactors can now contribute
to the atmospheric mass loss. This accelerates the mass loss pro-
cess, because smaller impactors are more numerous and dominate
the mass loss (see Eqs. (42) and (43)). From Eqs. (42) and (43) we
find that for both q > 3 and 1 < q < 3 impactor size distributions
the rate of atmospheric mass loss scales as Matmos=dt / �Mð�qþ4Þ=3

atmos

and has a solution given by

MatmosðtÞ ¼ M0 1� t
t	

� �3=ðq�1Þ

; ð44Þ

where M0 is the initial atmospheric mass at t ¼ 0 and t	 is the time
it takes to lose the entire atmosphere. Interestingly the solutions to
Eq. (44) for both q > 3 and 1 < q < 3 only differ by the value of t	.
For 1 < q < 3

t	q<3 ¼
6

pðq� 1ÞCRhN0

ffiffiffiffiffiffi
ph
8R

r
M0

m0

 !ðq�1Þ=3

ð45Þ

and for q > 3 the time for complete atmospheric loss is

t	q>3 ¼
3ðq� 3Þ

pðq� 1Þh2N0

h
R

� �2 M0

m0

 !ðq�1Þ=3

; ð46Þ

where m0 ¼ 4pqr3
0=3 and r0 is the radius to which the size distribu-

tion is normalized. The expression in Eq. (45) differs from the one
derived by Melosh and Vickery (1989) because they assumed
Mcap ¼ mcap, whereas we find that Mcap ¼ mcapð2h=pRÞ1=2 (see Eq.
(37)), and they neglected the numerical coefficient C.

4. Comparison of atmospheric mass loss due to giant impacts
and planetesimal accretion

Having derived the atmospheric mass loss due to giant impacts
and smaller planetesimal impacts, we are now in the position to
compare these different mass loss regimes.

Assuming that all impactors have the same size, we find for
rmin < r < rcap that the number of impactors needed to remove
the atmosphere is

N ¼ Matmos

MEject
¼ 6

q0h
qrmin

R
r

� �2

1� rmin

r

� �2
� ��1

ð47Þ

and that this corresponds to a total mass in impactors given by

MT ¼
MatmosmImp

MEject
¼ 2r

rmin
1� rmin

r

� �2
� ��1

Matmos: ð48Þ

Strictly speaking Eqs. (47) and (48) overestimate N and MT , because
as a fraction of the remaining atmosphere is removed a given sized
impactor is able to eject a larger fraction of the atmosphere above
the tangent plane. In deriving Eqs. (47) and (48) we used Eq. (39)
for the relationship between the ejected mass and the impactor
mass, which is only valid for r=rmin �

ffiffiffiffiffiffiffiffi
R=h

p
. Eqs. (47) and (48)

are therefore not accurate for r � rcap but should still give a reason-
able estimate for Earth-like atmospheres since the deviation
between the approximation and full solution is small and only
occurs in the vicinity around r � rcap (see Fig. 12).

Similarly, for impactors large enough to remove the entire cap
but not too large to be in the giant impact regime (i.e.,
rcap < r < rgi), we have

N ¼ Matmos

MEject
¼ 2R

h
ð49Þ

and



Fig. 13. Number of impactors needed, N, as a function of impactor radius, r, to eject
the atmosphere, scaled to values of the current Earth. Three distinct ejection
regimes are apparent: (1) for small rmin < r < rcap (i.e., 1 km K r K 25 km), the
number of bodies needed scales roughly as r�2. (2) For intermediate impactor sizes
(i.e. 25 km < r < 1000 km), N is constant, because each impact ejects the whole
atmospheric cap, and to eject the entire atmosphere one needs
N ¼ Matoms=Mcap ¼ ð2R=hÞ number of impacts. (3) For larger impactor radii (i.e.,
r > 1000 km) the impactors are large enough to initiate a shock wave traveling
through the entire Earth and launching a shock into the atmosphere globally such
that N tends to 1 as r tends to REarth . In the giant impact regime, N � ðR=rÞ3.
Impactors with r < rmin � 1 km are not able to eject any atmosphere.

Fig. 14. Total impactor mass, MT , needed to eject the atmosphere as a function of
impactor radius, r. Several distinct ejection regimes are apparent, see caption of
Fig. 13 for details. For comparison, the upper, middle, and lower dashed lines
correspond to the mass ratio of the late veneer to the Earth’s mass, the Earth’s
oceans to its total mass, and the Earth’s atmosphere to its total mass, respectively.
Small impactors with r	 ¼

ffiffiffi
3
p

rmin are the most efficient impactors per unit mass in
ejecting the atmosphere (see Eq. (39)). For the current Earth this corresponds to
bodies with r � 2 km. The ratio between the impactor mass to the atmospheric
mass ejected for r ¼ r	 is mImp=MEject ¼ 33=2 ’ 5 (see Eq. (39)). This implies that a
planetesimal population comprised of bodies with r � r	 would only need to
contain about 5Matmos in mass to eject the planetary atmosphere. This is an
absolutely tiny amount compared to estimates of the mass in planetesimals during
and even at the end of the giant impact phase of terrestrial planet formation.
Impactors with r < rmin � 1 km are not able to eject any atmosphere.

Fig. 15. Same as in Fig. 14 but for an atmospheric mass that is 100 times enhanced
compared to that of the current Earth. For comparison, the upper and lower dashed
lines correspond to the mass ratio of the late veneer to the Earth’s mass and 100
times the Earth’s current atmosphere to its total mass, respectively.
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MT ¼
MatmosmImp

MEject
¼ 4p

3
qr3 2R

h
: ð50Þ

In contrast to the previous regime, rmin < r < rcap, impactors with
rcap < r < rgi are always limited to ejecting the whole cap, so an
impactor of a given size cannot eject more atmosphere as the total
atmospheric mass declines with time.

We estimate the impactor radius at which giant impacts are
more efficient than smaller impacts in ejecting the atmosphere,
by equating the atmospheric mass loss due to giant impacts to
the atmospheric cap mass. Assuming that v Imp � vesc , we find by
equating Eq. (31) to the fraction of the atmosphere above the tan-
gent plane that rgi ’ ð2hR2Þ

1=3
, which corresponds to impactors

with radii of about 900 km for the current Earth. Finally, from Eq.
(31) we have that in the giant impact regime (i.e., r > rgi)

N ¼ Matmos

MEject
¼ X�1

loss ’
3R3

r3 ð51Þ

and

MT ¼
MatmosmImp

MEject
’ 4M ¼ constant: ð52Þ

Eqs. (51) and (52) were derived in the limit that Xloss � 1 in a single
giant impact.

Fig. 13 shows the number of impactors needed, defined here as
N ¼ Matoms=MEject , to erode the atmosphere as a function of impac-
tor radius. Fig. 14 shows the total mass in impactors needed,
defined here as MT ¼ MatomsmImp=MEject , to erode the atmosphere
as a function of impactor radius. Fig. 15 is the same as Fig. 14
but for atmospheric mass that is 100 times enhanced compared
to that of the current Earth. The plots in all three figures assume
that all impactors are identical and have a single size, r. Figs. 13–
15 clearly display the three distinct ejection regimes. Figs. 14 and
15 impressively show that small impactors with rmin < r < rcap

are the most effective impactors per unit mass in ejecting the
atmosphere. The best impactor size for atmospheric mass loss is
r	 ¼

ffiffiffi
3
p

rmin for which mImp=MEject ¼ 33=2 ’ 5. For the current Earth
this corresponds to bodies with r � 2 km and implies that a total
mass in such impactors only needs to be about 5Matoms to eject
the planetary atmosphere. This is an absolutely tiny amount com-
pared to estimates of the mass in planetesimals during and even at
the end of the giant impact phase. The implications of our findings
for terrestrial planet formation are discussed in Section 5.
5. Application & importance for the formation of the terrestrial
planets

Earth, Venus and Mars all display similar geochemical abun-
dance patterns of near chondritic light noble gasses, but relative
depletion of in Xe, C and N (e.g. Halliday, 2013). This suggests that
all three planets may not only have lost major volatiles, but also
accreted similar veneers from chondritic material. In addition, all



Fig. 16. Ratio of atmospheric mass ejected to impactor mass, MEject=mImp . Numer-
ical values are scaled to the current Earth. Small impactors with r	 ¼

ffiffiffi
3
p

rmin are the
most efficient impactors per unit mass in ejecting the atmosphere (see Eq. (39)). For
the current Earth this corresponds to bodies with r � 2 km. The ratio between the
impactor mass to the atmospheric mass ejected for r ¼ r	 is mImp=MEject ¼ 33=2 ’ 5
(see Eq. (39)). The value of MEject=mImp decreases rapidly for larger planetesimals.
Whether or not planetesimal impacts will lead to a net loss of planetary
atmospheres depends on the impactor sizes distribution as well as their volatile
budget. The three dotted horizontal lines correspond to volatile contents of 5 wt.%
(representative of some of the most water rich carbonaceous chondrites), 0.05 wt.%
(representative of the average water content in the bulk Earth excluding the
hydrosphere) and 0.0005 wt.% corresponding to an estimate of the minimum water
content of the bulk Moon (McCubbin et al., 2010). For comparison, data from
oblique impact simulations for escape velocities of 11.2 km/s and impact velocities
of 30 km/s from Shuvalov (2009) are shown by the orange points. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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three planets have similar noble gas patterns, but whereas the
budgets for Venus are near chondritic, the budgets for Earth and
Mars are depleted by two and four orders of magnitude, respec-
tively. This suggests that Earth and Mars lost the vast majority of
their noble gasses relative to Venus during the process of planet
formation (Halliday, 2013).

Recent work suggests that the Earth went through at least two
separate periods during which its atmosphere was lost (Tucker and
Mukhopadhyay, 2014). The evidence for several atmospheric loss
events is inferred from the mantle 3He/22Ne, which is higher than
the primordial solar abundance by at least a factor of 6 and which
is thought to have been increased to its current value by multiple
magma ocean degassing episodes and atmospheric loss events. In
addition, Tucker and Mukhopadhyay (2014) suggest that the pres-
ervation of low 3He/22Ne ratio in a primitive reservoir sampled by
plumes implies that later giant impacts did not generate a global
magma ocean.

Previous works usually appeal to giant impacts to explain
Earth’s atmospheric mass loss episodes (e.g. Genda and Abe,
2003, 2005). Fig. 14, however, demonstrates clearly that small
planetesimals with sizes rmin < r < rcap are the most efficient imp-
actors per unit mass in ejecting the atmosphere. For the current
Earth this corresponds to bodies with 1 km K r K 25 km. Further-
more, atmospheric mass loss due to small impactors will proceed
without generating a global magma ocean, which is supported by
recent interpretations of low 3He/22Ne ratios in a primitive reser-
voir sampled by plumes (Tucker and Mukhopadhyay, 2014).

Whether or not planetesimal impacts will lead to a net loss of
planetary atmospheres or simply an alteration of the current atmo-
sphere depends on the planetesimal size distribution as well as the
volatile content of the planetesimals. Zahnle et al. (1992) investi-
gated impact erosion and replenishment of planetary atmospheres
and suggest that the competition of these two processes can
explain the present distributions of atmospheres between Gany-
mede, Callisto, and Titan. de Niem et al. (2012) performed a similar
study with a focus on Earth and Mars during a heavy bombard-
ment and find a dominance of accumulation over erosion. Fig. 16
shows the ratio of atmospheric mass ejected to impactor mass as
a function of planetesimal size. If the impactors are not dominated
by a single size, as assumed in Fig. 16, but instead follow a power-
law size distribution, Nð> rÞ ¼ N0ðr=r0Þ�qþ1, then the ratio of the
atmospheric mass lost to the impactor mass is, for 3 < q < 4, given
by

dMatmos

dmImp
¼ � 4� q
ðq� 1Þðq� 3Þ

rmin

rmax

� ��qþ4

þ f ; ð53Þ

where rmax is the maximum size of the planetesimal size distribu-
tion and rmin ¼ ð3q0=qÞ

1=3h is the smallest planetesimal size that
can contribute to the atmospheric mass loss as derived in Section
2 and f is the volatile fraction of the planetesimals. Similarly, for
1 < q < 3 we have

dMatmos

dmImp
¼ �C

2h
pR

� �1=2 4� q
q� 1

rcap

rmax

� ��qþ4

þ f ; ð54Þ

where rcap ¼ ð3
ffiffiffiffiffiffiffi
2p
p

q0=4qÞ1=3ðhRÞ1=2 and corresponds to the impac-
tor radius that can eject all the atmospheric mass above the tangent
plane. Evaluating the first term in Eqs. (53) and (54) for a planetes-
imal population ranging from r < rmin � 1 km to 1000 km and
assuming values of the current Earth we find dMatmos=dmImp ¼
�0:01þ f for q ¼ 3:5 and dMatmos=dmImp ¼ �0:0003þ f for q ¼ 2:5,
respectively.3 These results have two important implications: First,
3 For comparison, the lunar craters can be modeled with a power-law size
distribution with q � 2:8 and q � 3:2 for crater diameters ranging from 1 km to 64 km
and larger than 64 km, respectively (e.g. Neukum et al., 2001).
we can estimate how massive initial planetary atmospheres must
have been in order to avoid erosion due to planetesimal impacts.
Estimates of the mass in planetesimals during the giant impact
phase range from a few percent to several tens of percent of the total
mass in terrestrial planets (e.g. Schlichting et al., 2012). Assuming a
total mass in planetesimals of about 0:1 M� yields that initial atmo-
spheres must have contained Matmos J 10�3 M� and
Matmos J 3� 10�5 M� for q ¼ 3:5 and q ¼ 2:5, respectively, in order
to avoid erosion due to planetesimal impacts. The latter result is par-
ticular interesting since it implies that for q ¼ 2:5 Venus, which has
Matmos � 8� 10�5 M�, will not undergo atmospheric erosion due to
planetesimal impacts whereas the Earth could have lost most of its
atmosphere due to planetesimal impacts if its initial atmosphere
was less than 3� 10�5 M�. Second, Eqs. (53) and (54) permit an
equilibrium solution, where the atmospheric erosion is balanced
by the volatiles delivered to the planet’s atmosphere in a given plan-
etesimal impact. It may therefore be that the Earth’s atmosphere was
eroded by planetesimal impacts until an equilibrium was established
between atmospheric loss and volatile gain. The current Earth’s
atmosphere could be the result of such an equilibrium if the fraction
of the planetesimal mass that ends up as volatiles in the atmosphere,
f, was 0.01 and 3� 10�4 for q ¼ 3:5 andq ¼ 2:5, respectively. These
finding are consistent with results by de Niem et al. (2012) who find
that atmospheric erosion is balanced by volatile delivery from an
asteroidal population of impactors if f ¼ 2� 10�3.

To summarize, we have shown that planetesimals can be very
efficient in atmospheric erosion and that the amount of atmo-
spheric loss depends on the total mass in planetesimals, on their
size distribution and their volatile content. The total planetesimal
mass needed for significant atmospheric loss is small and it is
therefore likely that planetesimal impacts played a major role in
atmospheric mass loss over the formation history of the terrestrial
planets. We have shown that the current differences in Earth’s and
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Venus’ atmospheric masses can be explained by modest differ-
ences in their initial atmospheric masses and that the current
atmosphere of the Earth could have resulted from an equilibrium
between atmospheric erosion and volatile delivery to the atmo-
sphere by planetesimal impacts. Furthermore, if the Earth’s hydro-
sphere was dissolved in its atmosphere, as it may have been
immediately after a giant impact, then planetesimal impacts can
also have contributed significantly to loss of the Earth’s oceans.
We have shown above that planetesimals can be very efficient in
atmospheric erosion and that the amount of atmospheric loss
depends both on the total mass in planetesimals, on their size dis-
tribution and their volatile content. One way for planetesimals to
not participate significantly in the atmospheric erosion of some,
or all, of the terrestrial planets is for most of their mass to reside
in bodies smaller than rmin ¼ ð3q0=qÞ

1=3h, since such bodies are
too small to contribute to atmospheric loss. Finally, planetesimal
impacts may not only have played a major role in atmospheric ero-
sion of the terrestrial planets but may also have contributed signif-
icantly to the current terrestrial planet atmospheres.
6. Discussion and conclusions

We investigated the atmospheric mass loss during planet for-
mation and found that it can proceed in three different regimes.

(1) In the first regime (r J rgi ¼ ð2hR2Þ
1=3

), giant impacts create
strong shocks that propagate through the planetary interior
causing a global ground motion of the protoplanet. This
ground motion in turn launches a strong shock into the plan-
etary atmosphere, which can lead to loss of a significant frac-
tion of or even the entire atmosphere. We find that the local
atmospheric mass loss fraction due to giant impacts for
ground velocities vg K 0:25vesc is given by vloss ¼
ðbvg=vescÞp where b and p are constants equal to b ¼ 1:71,
p = 4.9 (isothermal atmosphere and an adiabatic index
c ¼ 5=3) and b ¼ 2:11, p = 7.6 (adiabatic atmosphere with
polytropic index n ¼ 1:5, adiabatic index c ¼ 5=3). In addi-
tion, using a simple model of a spherical shock propagating
through the target, we find that the global atmospheric mass
loss fraction is well characterized by Xloss ’ 0:4xþ 1:2x2�
0:8x3 (isothermal) and Xloss ’ 0:4xþ 1:8x2 � 1:2x3 (adia-
batic), where x ¼ ðv Impm=vescMÞ, independent of the precise
value of the adiabatic index.

(2) In the second regime (rcap ¼ ð3
ffiffiffiffiffiffiffi
2p
p

q0=4qÞ1=3ðhRÞ1=2 K
r K ð2hR2Þ

1=3
¼ rgi), impactors cannot eject the atmosphere

globally, but are large enough, i.e., r > rcap, to eject all the
atmosphere above the tangent plane of the impact site. A
single impactor is therefore limited to ejecting h=2R of the
total atmosphere in a given impact. For the current Earth
this corresponds to impactor sizes satisfying
25 km K r K 900 km.

(3) In the third regime (rmin ¼ ð3q0=qÞ
1=3h K r K

ð3
ffiffiffiffiffiffiffi
2p
p

q0=4qÞ1=3ðhRÞ1=2 ¼ rcap), impactors are only able to
eject a fraction of the atmospheric mass above the tangent
plane of the impact site. For the current Earth this corre-
sponds to 1 km K r K 25 km. Impactors with r K rmin are
not able to eject any atmosphere.

Comparing these three atmospheric mass loss regimes, we find
that the most efficient impactors (per unit impactor mass) for
atmospheric loss are small planetesimals. For the current atmo-
sphere of the Earth this corresponds to impactor radii of about
2 km. For such impactors, the ejected mass to impactor mass ratio
is only �5, implying that one only needs about 5 times the total
atmospheric mass in such small impactors to achieve complete
loss. More realistically, planetesimal sizes were probably not con-
strained to a single size, but spanned by a range of sizes. For
impactor flux size distributions parametrized by a power law,
N > r / r�qþ1, with differential power law index q we find that
for 1 < q < 3 the atmospheric mass loss is dominated by bodies
that eject all the atmosphere above the tangent plane (r > rcap)
and that for q > 3 the mass loss is dominated by impactors that
only erode a fraction of the atmospheric mass above the tangent
plane in a single impact (rmin < r < rcap). Assuming that the plane-
tesimal population ranged in size from r < rmin � 1 km to 1000 km,
we find for, parameters corresponding to the current Earth, an
atmospheric mass loss rate to impactor mass rate ratio of 0.01
and 0.0003 for q ¼ 3:5 and q ¼ 2:5, respectively. Despite being
bombarded by the same planetesimal population, we find that
the current differences in Earth’s and Venus’ atmospheric masses
can be explained by modest differences in their initial atmospheric
masses and that the current atmosphere of the Earth could have
resulted from an equilibrium between atmospheric erosion and
volatile delivery to the atmosphere from planetesimal impacts.

Recent work suggests that the Earth went through at least two
separate periods during which its atmosphere was lost and that
later giant impacts did not generate a global magma ocean
(Tucker and Mukhopadhyay, 2014). Such a scenario is challenging
to explain if atmospheric mass loss was a byproduct of giant
impacts, because a combination of large impactor masses and large
impact velocities is needed to achieve complete atmospheric loss
(see Fig. 8). Furthermore, giant impacts that could accomplish
complete atmospheric loss, almost certainly will generate a global
magma ocean. Since atmospheric mass loss due to small planetes-
imal impacts will proceed without generating a global magma
ocean they offer a solution to this conundrum.

To conclude, we have shown that planetesimals can be very effi-
cient in atmospheric erosion and that the amount of atmospheric
loss depends on the total mass in planetesimals, on their size dis-
tribution and their volatile content. The total planetesimal mass
needed for significant atmospheric loss is small and it is therefore
likely that planetesimal impacts played a major role in the atmo-
spheric mass loss history of the Earth and during planet formation
in general. In addition, small planetesimal impacts may also have
contributed significantly to the current terrestrial planet
atmospheres.
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