Planetary Geody

planetary bodies dynamically respond to applied stresses.
Heat transfer out of the interior commonly leads to
stresses that affect the surface. For quantitative analysis
of geodynamics, numerical techniques are generally
required and are applied looking at the material as a
continuum. Rocks and ice in planetary bodies ultimately
want to be in equilibrium with applied stresses. Equilib-
rium can be assessed by computing whether the stress
gradients balance the applied force. The material
response to stress is strain, which can be calculated from
displacement gradients throughout the material. Stress
and strain in a solid are related through intrinsic material
properties (e.g., Young’s modulus and Poisson’s ratio).
The material properties of rock and ice are similar
enough that the icy lithospheres of the moons of the
outer planets undergo the same basic processes as the
rocky lithospheres of the terrestrial planets. Large litho-
spheric blocks are supported isostatically, floating in the
asthenosphere. Topography can also be supported by the
strength of the lithosphere, in which case some amount of
flexure occurs as a result of the load on the surface. The
distribution of mass in the subsurface can be inferred
from measurements of the gravity field. From such meas-
Urements, it is possible to discern if a feature such as a
Mountain or volcano has a large root, or if a large mass
lies beneath a surface with no topography (e.g- lunar
Mascons). Surface temperature is controlled for most
Planetary surfaces by solar heating, the effect of which
Senerally only penetrates a few meters into the surf:ace-
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8.1 Motions in Planetary Interiors

Planetary surfaces are, in many ways, shaped by proper-
ties of their interiors and motions below their surfaces.
Those properties and motions are strongly controlled and
driven by planetary heating and heat trying to get out of
the interior. Chapter 6 introduced planetary heating, and
Chapter 7 introduced planetary interiors. We now want
to take a look at techniques that are used to understand
the dynamics below the surfaces of planets and the effects
on the surfaces that spacecraft, and maybe eventually
astronaut geologists, study.

Earth’s surface, for example, is very geologically active,
and most of that activity is explained in the framework of
plate tectonics. Earth’s surface plates move relative to
each other (at rates of about 5 to 10 cm/yr, in general),
and those motions induce a lot of stress in the litho-
sphere. If we look more deeply, we see that plate motions
are driven by convection working to transfer heat from
Earth’s deep interior to its surface, to ultimately be radi-
ated to space. Examining the rest of the Solar System,
though, we do not see any clear evidence of global plate
tectonics taking place on any other body. Does that mean
that their interiors are cold and inactive? Certainly not.

Dramatic examples such as the pervasive volcanism on
Io and the active geysers erupting from the south pole of
Enceladus tell us that even small moons can have
dynamic interiors. Geologic features such as large rift
systems, mountains, and volcanoes on Venus, global
thrust faults on Mercury, giant volcanoes and rifts on
Mars, relaxed topography and fault systems on icy satel-
lites, and apparently active convection in surface nitrogen
ice on Pluto make it clear that intense forces are or have
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8.2 Geologic Stresses and Deformations
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problem - determining from t : A
state what stresses must be, or have been, acting within
the solid portion of a planetary body. Rocks and ices unde'r
relatively small stresses generally display linear elastic
behavior. Such behavior is the domain of classical elasto-
statics (for the equilibrium case) and elasto-dynamics (for
non-equilibrium situations). Later on (Section 8.6), we'll
look at the case of more fluid-like (ductile) behavior.
Section 9.2 discusses these behaviors in the context of
observed structures and tectonics. Elasto-statics/ -dynamics
consists of three components (or sets of equations): (1)
stress equilibrium (ie., force balance or momentum con-
servation), (2) definition of strain in terms of continuum
deformations, and (3) constitutive equations that relate
stress and strain in a solid. To solve these sets of equations
quantitatively, particularly numerically (the common
approach of modern geophysics/geodynamics), geodyna-
micists work in the domain of continuum mechanics.

8.2.1 Balancing Act: Stress Equilibrium

Stress (o) is defined as a force divided by the area over
which the force acts. Figure 8.1 shows the stress compon-
ents on an infinitesimally small volume inside some solid
(e.g. a planetary lithosphere). Normal stresses are those
that act perpendicular to one of the surfaces of the
volume (i.e., along the surface normal vector), and shear
stresses are those that act parallel to the surface. The force
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where f,, f,» and f, are the external applied forces per unit
volume in each dimension. In the common static cas
within a planetary surface, the primary external force is
gravity. Box 8.1 includes an illustration of how to use the
stress equilibrium equations to solve for a continuous
expression for stress.

8.2.2 What Exactly Is Strain?

When a stress is applied to an object or mass of material
the material will deform. This deformation is called strain
(¢). Like stress, strain has normal and shear components
In macroscopic terms, normal strain is genera]ly defined s
the change in length of a body in a given dimension t0 the
original length in that dimension, and shear strain the
change in angles between faces of the body.
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Figure 8.2 Illustration of displacement vectors within a strained
volume. Dark blue (solid outline) represents the original shape.
In order to deform to the light blue shape (dashed outline),
points within the volume must move. Displacement gradients are
found by computing differences between the displacement
vectors of points within the volume.
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Similar to the case with stresses, the complementary shear

strains are equal to each other (i.e., £x) = &y Exz =20 and
E‘." = 8}*:)»

_ 823 Relating Stress and Strain
E Now that we can relate deformation (displacements) to
& Strains and compute stresses from applied forces, we nee d
t be able to relate stress and strain to each other. Solid
geologic materials near the surfaces of the Earth and
other Planetary bodies generally respond elastically to
PPlid stresses (so long as the stresses are not too large:).
o (or ice) will deform when stress is applied, but will
P original shape when the stress is remov.ed.
ermore, the response is generally linear = doubling
Stress will double the strain. This behavior is sketched

y in Figure 8.3. |

g hematica ’lghl;:ear elasticity is similar to st%'etchmg
md%mmprmmg a spring, so Hook’s law applies. The
“2tion of normal stresses to normal strains in the same
e E:_ where the propor
2 Young’s modulus. It is a
a material is with respect
e strain is @ dimensionless
' units as stress (i.e., force

Geologic Stresses and Deformations

=

Ductile

Do !
13 Brittle
»
O
n‘l:‘.
(5]
/4
/
&
/&

Strain

Figure 8.3 Schematic illustration of the relationship between
stress and strain in most solid geologic materials. For small stress
and strain, the relationship is linear and elastic. Eventually, the
amount of strain is such that it cannot be recovered (plastic) and
the relationship becomes nonlinear. If the stress overcomes the
strength of the material plus confining pressure, fracturing occurs
(brittle). Otherwise, the material will flow to accommodate
applied stress (ductile).

Figure 8.4 Deformation (extension or compression) in one
dimension causes deformation in the orthogonal dimensions.
This effect is parameterized by Poisson’s ratio.

per area, or pressure). E for rocks is typically ~40-80 GPa
and for ice is ~6-12 GPa.

In real materials, normal strain in one dimension leads
to a normal strain in the orthogonal dimensions. This
behavior is illustrated in Figure 8.2, where the original
square compresses in the vertical direction and extends in
the horizontal, and in Figure 8.4, where the cube extends
in the x-direction and correspondingly compresses in the



planetary Geodynamics

e —

is the ratio of the
1sion to the strain

; example;

i s Yo Yo At v
y- and z-directions. Poisson’s ratio (v)

normal strains in the orthogomlflill]Cl’ i
in the dimension of primary dci'ormz\’lf‘)"\- e o
in Figure 8.4, V=—U,\-x/l.'z;:"";)/)f/(::';," th %m%‘h‘ Jon-
indicates that extension in the z duncn.sl(m u‘l~kas |
traction in the x and y dimensions. v for mos e
between 0.1 and 0.35 and for ice is lypical.ly 0'-31—] (.lin”;(‘lﬂ‘

Adding together the normal strains felt.m ellc iy |
sion from the stresses applied in all dimensions 1eac:

: e strains:
constitutive equations for normal stresses and stra

1 \% vU
=go= g "
v 1 v

&y =—g%= TE» T E

Exx

(8.4)

Ozz

v v
6yy = — =0Oxx — =0Oyy + 702z
2z E xx E »

E
Shear stresses lead to shear strains in the same directions,
but not in orthogonal directions. The proportionality
constant between shear stress and shear strain is called

the shear modulus or modulus of rigidity (Gy), such that,
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8.3 The Weight of the World: Isostasy
and Flexure
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An excess (or deficit of ) mass in or on the lithosphere of
a planetary body induces stress. The stress can be accom-
modated isostatically (by buoyancy in the asthenosphere)
or flexurally (by the strength of the lithosphere). We wil
see that these two possibilities are actually end members

of a continuum geophysical description.

ﬁBOX 8.1 COMPRESSION OF ICE SPIRES ON CALLISTO

To illustrate a fairly straightforward application of
the relations presented in this section, let’s look at
vertical erosional structures such as might occur
from various processes throughout the Solar
System. Figure 8.5 shows spires of ice on Callisto,
one of Jupiter’s large moons, resulting from long-
term erosion of the surface. An idealized sketch
for this problem is also shown.

We want to know how self-compression
affects the dimensions of these features. If there
is a significant effect on the dimensions, we
would want to take the elastic response into
account when studying further erosion. The two
questions to answer are:

1. How much does the spire compress under its
own weight?

2. How much extension (“bulging”) occurs at
the base from the weight?

The known dimensions and physical propertie
for this problem are: p =992 kg/m’, E=9 Gp, ;
v=033, h=500m, L=100m, and g =1 24 2

Looking at the problem as a whole reveals a .
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For this problem, the “bulging” of the base amoun
features, called buttes, occur in desert regions on E

(and p, E, and v appropriate for sa

The strain definition equations provide the means to convert these strains into changes in height

For the properties and dimensions given for this problem, the total compression due to the weight of overlying

Since z=0 at the base of the spire, the change in width at the base is given by

ts to 1.1 mm change (extension) in width. Similar geologic
arth. For a typical butte with #=300m and L=75m
ndstone), Ah and AL are 2.4cm and 1 mm, respeFtively, comparable to the
he scale of the features, it would be safe to ignore the changing
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values for ice spires on Callisto. Given t
kdliensions when studying further erosion.

83.1 Isostasy

¢ Word isostasy comes from the Greek “iso” or equal

nd “stagis> op standing still, and it is a statemen_t of

“OYant equilibrium of lithospheric blocks. T he basis of

Sostagy g the concept that any sufficiently large volume
°ugh the outer parts of a planetary body will have the

ar & gfa:“'tational force as any other column of the sax:}l:

e;;and depth. This concept can be expressed M2
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where py; is the density of each layer of the first column,
hy, is the thickness of each layer in this column, and p,;
and hy; are the densities and thicknesses of the layers
in the second column. The summation extends to a
sufficient depth - known as the compensation depth
(Do) - that the interior can be considered laterally
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Figure 8.6 The Pratt and Airy models of isostatic balance on a
planetary body.

homogeneous. An assumption inherent in isostatic com-
pensation is that the columns can be considered to be
independent of each other - i.e., the crust is strengthless
at the horizontal scale of the columns considered.

The equality can be achieved by lateral variations in
crustal thickness, density, or both. The case of topo-
graphic load on a constant-density crust being compen-
sated by a thickening of the crust (ie, a “root” extending
into the mantle) is the Airy model. The case of compen-

sation of a topographic load by lateral density variationg
is the Pratt model (Figure 8.6).
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Balancing forces and torques usmg the p.rmc1ples. of
Section 8.2 leads to a fourth-order differential equation
that guides flexural response:

4 2

D%+P%+gW(Pm — psn) = q(%) (8.14)
This equation describes the vertical displacement,.w, of the
elastic lithosphere as a function of horizontal position, x. 4
(x) represents the applied load, which can be a function of,
and P is any applied horizontal force. The third term on ﬂllt’-
left side represents the restoring force exerted by th? fluid
asthenosphere against the flexure: g is the acceleratl?n of
gravity, pp, is the density of mantle rock, and pa is the'
density of any material that is filling in the basin created by
downward flexure of the plate (e.g., water in the ocean Of
sediments in a sedimentary basin). The mechanical PrF)Pei'
ties of the plate are encapsulated in D, the flexural rigidity:
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Figure 8.8 Topographic profile perpendicular to a double ridge on

of a plate under a point or line load for the cases of an
intact (a) or broken (b) plate. The solution of Equation
8.14 for an intact plate is

W= qoa3 .y % X G
2t <Cos Kot _) (8.16)
a a

Wietet i ihedloaamatidtatis ihe flexural parameter:
o [4D/(p,, - pan)g]*. The solution for a broken plate
S of a similar form:

W:qoa3 X
s Cluic o g

> . (8.17)

Th.ese solutions reveal that the elastic plate will respond in a
o Of periodic highs and lows, with an amplitude that
Wsay exponentially with distance from the load. The
‘Stan.ce 1o the first (largest) flexural high for an intact
cantei  %,=7a and for a broken plate is xp = 37a/4. We
f hnfe~r the thickness of the elastic plate by measuring
“rlzontal distance from a surface load to the adja-
exural rige, bl

- Straightforward approach of inferring subsurface
pli oss the Solar System, from
scarps on Mercury and

Distance (m)

Europa (solid red line) along with the modeled flexural plate profile

(dashed blue line). The inset image shows the location of the profile. Hurford et al. (2005) used the distance between the center
of the load and the crest of the flexural forebulge to estimate the thickness of the elastic plate. Modified from Hurford et al. (2005).

Venus, to volcanic constructs on Mars, and to various
ridges on icy moons and the dwarf planet Pluto in the
outer Solar System (e.g., Barnett et al., 2002; Watters,
2003; Hammond et al, 2013; Huppert et al, 2015).
Figure 8.8 shows results of such an analysis by Hurford
et al. (2005) of double ridges on Europa. They found that
Europa’s elastic lithosphere at the time the ridges were
emplaced was only a few hundred meters, compared to
the tens of kilometers common for terrestrial planets.

In our second case, we'll consider periodic loading of a
planetary surface, where the emplaced load is given by g-
() = pcgh, sin(2mx/A). The topographic load is assumed to
have the same density as the crustal plate, p, a topographic
amplitude h,, and wavelength 1. The flexural response of the
underlying plate is constrained to have the same periodic
response as the topography and can be expressed as

. 27mx Pe h,
w = W, sin — , where w, =
: A A (pm_pc)l( 2J‘t'>4
b5 (i S| T
4 A

(8.18)
The most instructive aspect of this solution is to
consider the extremes of very short wavelength
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" Y values of the

length scale (4) of the topographic load for different !
elastic thickness of the lithospheric plate (7). Small values of C
indicate that the weight of the topography is supported by the
strength of the lithospheric plate. For C~ 1, the topography is

compensated isostatically.

topography and very long wavelength topography. For
very short wavelength topography (i.e., for 4 < a) the
amplitude of plate deflection, w,, is negligible. In other
words, the rigidity of the plate can support loads that
have a wavelength much smaller than the flexural
parameter. For very long wavelength topography (i.e.,
A>a), the solution simplifies to w,=ph,/(pm-po),
which is the isostatic result! Figure 8.9 shows a plot
of w, divided by the isostatic result as a function of
wavelength of the periodic load for different values of
the elastic thickness (h in Equation 8.15) for a rocky
body. Where this degree of compensation approaches
1, the load is supported isostatically, and where it is
small, the topography is supported by the rigidity of
the plate.
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topography.

8.4.1 The Geoid
The geoid of a planetary body is defined as a surface over
which the gravitational acceleration (or gravitational
potential) is constant. Since all planetary bodies rotate,
the centripetal acceleration from rotation is included
in the geoid. On Earth, if the oceans were influenced
only by gravity and rotation, they would take the shape
of the geoid. The geoid of the Earth is illustrated in
Figure 8.10.

The concept of the geoid arises from Newton’s law of
gravity. The gravitational acceleration felt at any point
external to a planetary body can be computed by:

B0 D)= J—G/Z2 dm (819)

where (r, 6, ¢) are the body-centered coordinates Offhe

e;(ternal point, G is the universal gravitation constant bis
the vector between the infinitesimal mass unit (dm) &
the external point, and the integral is throughott the

body. For a perfect sphere, the solution of this Inte&"
has the relatively simple form

g0, $) = ~GM/r? (3,20]

;};ireiaiw z - J?p (")r?dr is the total mass of ﬂze
of the bYd ody and v is measured from the Cen(he
work reo Y- The gravitational potential describ‘?si
a distanqulred 0 move a unit mass from infini® o
puted bcei frrom the center of the body. It i CfneS
U=-G]\/}’/,._N f‘fgm dr, which, for a sphere bec?
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To capture this complexity, gravitational potential is
Often expressed in terms of spherical harmonics:

GM = n
g e
h d n=1 1

L

+,,Z=1 mZ:I <§> P"(sin 0)(Cp, m cOs Mg + Sn,m SIN me)
(8.21)
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»and J,, C,,. and S,, are coefficients t ad
¢ the Strength’of the field at each value of n an
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Is SePOSSib,le‘ Notice that the first term in Equatl((’)n E’;fhe
Secq, *Pherica] solution (corresponding to = m=0). e
term describes zonal harmonics — the case W
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Figure 8.10 Geoid of the Earth. The deviations from a reference ellipsoid are quite small compared to the Earth’s radius. Modified from

m=0 (note that J,=C, ). The zonal harmonics repre-
sent latitudinal gravity inhomogeneities. For example, J,
describes the amount of rotational flattening (i.e., equa-
torial bulge) a body experiences from rotation. In the
third term, the coefficients with n = m are called sectorial
harmonics, and these represent longitudinally symmetric
inhomogeneities in the gravity field.

Higher degree and order (n and m) describe gravity
signatures of ever decreasing size. In order to detect
small-scale signatures, many gravity terms are required.
The EGM 2008 global gravity solution for the Earth goes
to degree 2190 and order 2159, representing spatial scales
of ~2km). Thanks to NASA’s GRAIL mission, the gravity
field of the Moon is known to degree and order 900
(Lemoine et al., 2014). The higher degree and order terms
fall off more quickly with distance from the body, making
it very difficult to measure details of the gravity field from

large distances.
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8.4.2 Gravity Anomalies '
Differences between a reference gemd (.n
romalies.

gravity field are called gravity an : & o
geoid for the Earth (World Geodetic Sys»lem 4
f revolution with precisely

WGS84) is an ellipsoid ©
defined coefficients. Anomalie
from topography and from an exces
below the surface (i.e., lateral densit
(Figure 8.11). Gravity measurements on Earth have tra
itionally been made using 2 gravimeter (a very Seilsmve
accelerometer). In modern times, tracking satelllte§ as
they move through Earth’s gravity field has prov1(ied
more consistent, detailed datasets. Similarly, tracking
spacecraft as they perform flybys or orbit other planetary
bodies provides gravity measurements across the Solar
System. The GRAIL mission precisely monitored the
distance between two spacecraft (Ebb and Flow) to make
detailed measurements of the Moon’s gravity field (Zuber
et al,, 2013).

Gravity data are often reported after one or both of
two important corrections are made. The free air cor-
rection adjusts the data for the elevation or altitude of
the measurement above the reference geoid, assuming
there is no mass (i.e., just free air) between the instru-
ment and the reference geoid. In other words, any mass

s in the gravity field arise
s or deficit of mass

y inhomogeneities)
e trad-

Free air

Bouguer

topograPhY is ignored. Fhe‘ Bouguer o
from g fands SpeciﬁCally adjusts for the o
, y between the measurement an(iS of
since surface topography o the
the Bouguer correction highlights Stbsurg ¢

: 2e
.ations. Figu
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)

re 8.12 shows a gravity map oy
RAIL. The large anomalies assOciathe
maria reveal significant excess med
act basins, providing critica] cs\ss
n models. n-

with the Junar
below those imp

straints on formatio

8.4.3 Assessing the Compensation State
If the topography i compensated (e.g, by a root in
Airy model), no anomaly will show up in the free 4
correction. If the topography is not compensated (eg, if
it is supported by the strength of the lithosphere) ,
positive gravity anomaly will show up. Isostatically cop.
pensated clevated terrain will show up as a gravity loy
after the Bouguer correction, since the root has a lower
density than the surrounding mantle, whereas flexurally
supported terrain will not show a Bouguer an omaly
(Figure 8.11).

In Section 8.3, we computed the flexural response of an
elastic plate to periodic topography of the form g(x)=
pegh, sin(27i/}), and we noted that short wavelength (ie,

Figure 8.11 Tllustration of gravity profiles after free air (blue) and Bou

no topography or lateral density variations, b i

F , both gravity profil
lleg?FlV€ Bouguer anomaly. (c) Topography that is ng (}:)ox(’)n e
positive free air anomaly, but no Bouguer anomaly. (

Free-Air
Gravity

:

Figure 8.12 Gravity
from NASA images.

guer (red) corrections. In all frames p1 < pr<p3 (a) If there ar¢
pensated topography has no free air anomaly, but has?

pensated (i.e., i
d) A buried mas(; Zx 18 supported by the strength of the lithosphere) shows
cess has a positive anomaly with both corrections.
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Figure 8.13 Admittance measurements (data points) for regions
on the Earth (Hawaii) and Venus (Ulfrun) indicate similar
elastic lithosphere thickness on the two bodies. The solid lines are

model fits to the data. Modified from Nimmo and McKenzie
(1998).

small-scale) topography can be supported by the strengt'h
of the plate and long wavelength topography is isostati-
ally compensated. It turns out that the gravity anomaly
Produced from that topography and the resulting litho-
$Pheric deflection is
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8.5 Conductive Heat Flow
A‘” we learned in Chapter 6, the transfer of heat is an
mportant driver of many geologic processes throughout
‘”HA solar System, Of the three methods of transterring
heat (conduc tion, convection, radiation), conduction |
by far the most important in the solid outer layers of
planetary bodies with which we interact, The crustal layer
of a body is heated and cooled from the top by radiation
and may have heat delivered to the bottom through
convection, but the thermal energy makes its way
through the crust by conduction, The efficiency of con
ductive versus convective heat transport therefore con
trols the interior temperature, We can exploit our
knowledge of heat conduction to remotely infer surface
properties from remote thermal infrared observations.
Fracturing of surface rocks from stresses imposed by
cyclical heating and cooling has recently been recognized
as a potentially important mechanism for breaking down
rocks and building regolith on many planetary surfaces.

8.5.1 Fourier's Law and Heat Diffusion

Jean-Baptiste Joseph Fourier, like other famous ecarly
scientists, was interested in a wide variety of topics, both
natural and philosophical. Fourier made significant
advances in understanding heat flow by combining
experimentation, mathematical advances, and by break-
ing his thought from the paradigm of action-at-a-dis-
tance, which had been prevalent at the time, reinforced
by Newton’s brilliant development of the law of gravity.
Fourier noted that the flux of heat (energy per time per
area flowing through a surface) is directly proportional to

the temperature difference immediately on either side of

the surface. From this observation, he developed the
partial differential equation governing heat flow that
now bears the name Fourier’s Law:

oT
oo PR
i (8.23)
or, in three-dimensional vector notation,
q=-kVT (8.24)

In these equations, ¢ is the heat flux (S units of W/ m*), T
is temperature, and k is the thermal conductivity (units of
w/m/K). The thermal conductivity describes the amount
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iven distance for a

of energy that can be transported a & _4W/m/K for

given AT. It is typically in the range of 1
;'ocks and ice and 10-80 W/m/K for metals. .

A mass of material can store heat as well as conduct it.
Conservation of internal energy including both heat stor-
age and conduction adds a time component and leads to

the law of heat diffusion:

e, kT (8.25)
Pl o, 072

or in three-dimensional vector notation

M i V2T (8.26)
ot s

Here, p is density and ¢; is the specific heat capacity, which
describes the amount of energy required to change the tem-
perature of 1kg of material by 1K (units of J/kg/K), and k is
assumed to be constant. If there are other energy sources ot
sinks (e.g., radiogenic heat production), they can be included
as additional terms to this equation. The quantity k/pc, is
known as the thermal diffusivity («; units of m?/s).

8.5.2 surface Heat Flux and Temperature Profileg
We can measure the heat flux a‘E the surface of the
in detail (Figure g.14). Earth’s a.verag{; heat e
il m?2, with 4 from the continents (~65 mW/m;
a bit lower than ¢ frorr'l the oceanic lith, OSpher)
(~100 W /m?). It is interesting to n;)te th;'i,t the hegt ﬂue
from the Sun at 1AU is 1367 W/m” - a factor of morx
- 10* larger than Earth’s internal heat flux, Temper:
ture balance at the surface is therefore dominateg b~
solar insolation, but, as we'll see below (and as we kno»z
from human experience), the solar contribution doeg o
penetrate deeply into the crust. In a planetary context, th,
dominance of solar insolation to surface temperatyy,
makes it difficult to measure internal heat flux o
remote thermal infrared observations. Dramatic excep.
tions to this are ]upiter’s volcanic moon Io, which, due t,
tidal heating, has q ~4W/m® (nearly 10 percent of sola
insolation) and Saturn’s tiny moon Enceladus with ,
q~250 mW/m? (about 2 percent of insolation at its djs-
tance from the Sun) in its South Polar Terrain from
which geysers are erupting (see Figure 10.8a).

arh

has been constructed by incorporat

ti; le geOlogICal and geoph Slcal roxies Of hEat ﬂO W

OW measur
eme p ;
nts are fairly sparse over much of Earth, and the map

Modified from Goutorbe et al (2011)
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lmegrmin‘zt Fq““tifm 8'2? (or .8-24), assu
4 heat m‘\_\r‘ predicts a llnea‘r increase in
ali . the surface of the OEarth, with a temperat
n‘dathcrm‘ of ~20-35"/km. Temperature
Fg{;ﬂ\p caves and boreholes confirm this ap
“l‘a;f 1o the surface. In feality, however, decay of ragio.
:tti\'e elements 1n Eartb s crust and heat input from the
:n,qntlf (]mmter accretional energy) also affect the heg;
jow in the lithosphere, and the linear approximation
breaks dowD at depths greater than a few kilometers,
Many small bodies of the Solar System (e.g., asteroids
comets, small moons) never differentiated ang can be
e)pected to have already lost all of their accretional ene
The only source of internal heat for these bodies would 1-
nadiogenic heating in their rocky components. Assuming
seady state (@T/dt=0) and integrating Equation 8.4 i,
spherical coordinates with a radiogenic term (pH, where [y
s the radiogenic heat production in W/kg) predicts an
interior temperature profile T = Topsi,f(R2 —2?) and a
surface heat flux of g, =pHR/3. In these equations, T is
the surface temperature, R is the radius of the body, and r
is the distance from the center at which the temperature is
being computed. Assuming radiogenic heat production is
the same as measured for chondritic meteorites, the pre-
dicted heat flow at the surface of a body the size of the large
asteroid Vesta (R ~262km) is ~1 mW/m?. For the small
near-Earth asteroid Bennu (R~250m), the target of
NASA’s OSIRIS-REx sample return mission, the predicted
surface heat flow is only ~1 WW/m?. These very small heat
fluxes would be nearly impossible to distinguish from solar

heating in remote observations.

ming a cop.
temperatyre
ure gradient
€asurements
Proximation

853 Solar Heating

Asmentioned above, the thermal energy balance near the
surface of planetary bodies is dominated by solar insola-
tion. Since planetary bodies rotate, the solar energy input
would be (loosely) approximated as a time-varying peri-
odic surface temperature: T, = ATcos(wt), where AT is the
“Mplitude of the temperature variation and o is the rate
O.fVariatiOn (i.e., rotation rate). This assumption is over-
*Mplified, but has the virtue of being analytically solv-
able, Integrating Equation 8.25 with this surface
“Mperature boundary condition gives for the tempera-
e a5 a function of depth and time:

. wpc,
T, ) i ATe V77 cos (a)t — QZ>

% Solution illustrates two important aspects of .sol‘ar-
" temperature variations: the temperature variation
Off exponentially wit depth, and there is a time

e o

(8.27)

B Conductive Heat Flow

(phase) delay

perat between the surface and subsurface tem
Jdature cvelpe T ! "
of 1/ i les. ”“‘(It'plhnl which AT falls off by a factor
1| € 18 c: " P ¥

1s called the thermal skin depth, and is given by

[

7 / .}‘,:r\
. /
(298
\/ «‘H‘{u], 6.40)

The dj al ;
= diurnal thermal skin depth for Farth is betwees

100

and 20cm, depending on the soil propert
';]"‘W‘g niial thes n
annual thermal skin depth, due to changing seaso

10 al
 about 1-4 m,

. "
i1l i‘t“:Hn/’

olar heating is not perfectly sinusoid:

there is no solar heat input during night time. In this ¢

ctive surface Imuml;u‘y condition is on heat flu
Dot temperature, Flux (energy) balance at the surface ca
De expressed ags

oT
- Ag) 08 0; — k—

r 0 (8.29)
AU (074 surf

cop'l "',
where S, is the solar flux at 1 AU (1367 W/m?), ray is the
heliocentric distance in AU, Ay is the Bond albedo, 0, is
the solar incidence angle of the surface facet considered, ¢
is the bolometric emissivity, and T, is the surface tem-
perature. If the specific situation includes other heat
sources or sinks (e.g., heating from the atmosphere, vola-
tile sublimation), extra terms can be added. With this
boundary condition, Equation 8.25 is no longer solvable
analytically - numerical techniques are necessary.
Figure 8.15 illustrates temperature versus depths curves
for a model surface. Note the decrease in amplitude of
temperature variations and phase offset of the tempera-
ture wave with depth.

Another parameter that arises from considerations of

heat conduction is thermal inertia:

-

where I' describes a material’s resistance to changes in

(8.30)

temperature and has the somewhat cumbersome units of

J/m?/K/s'"*. Thermal inertia is often used as a proxy for
grain size, as described in Section 2.5.4. Small grains (e.g.,
sand and dust) have low thermal inertias - they heat up and
cool down quickly (e.g., the Moon has I'~50 in these units).
Large grains and bedrock, on the other hand, take a longer
time to heat up and cool down. Observations of tempera
ture as a function of time of day can be used to determine
thermal inertia. Figure 8.16a shows diurnal temperature
curves for surfaces with different thermal inertias,
Figure 8.16b plots thermal inertias of asteroids versus their
diameters, indicating that large asteroids are covered in
fine-grained regolith material, whereas the surfaces of small
asteroids appear to be, on average, blockier.
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Figure 8.16 (a) Surface diurnal temperature curves for bodies of
different surface types, and therefore thermal inertias. These
profiles are computed with a thermophysical model that uses the
surface energy balance given in Equation 8.29. Measuring

i Figure 8.15 Example temperature profiles from Equation 8.27
for a planetary body at 1 AU with a rotation period of 24 h and
thermal diffusivity of 10°m/s. (a) Temperature variation with
depth at different times of day. The horizontal dotted lines mark

P et Ao to esght skin depths bedow the temperatures of a surface at different times of day is a powerful
S S ow -
= means of determining the thermal inertia of a surface. (b)
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o coverad in detail in Chapters 13 and 14,
Aapte, We focus on the flow of mantle rocks.

\ fuid can be defined as a material tha deforms
ntnvously under an applied stress. We discussed in
wtion 8.2 the response of an elastic solid to an applied
s - it will deform (i rearrange its structure af the
sicascopic level) until it balances the applied stress. For
wnall stresses in most geologic solids, the elastic response
a linoar (¢ = Eo). Fluids, however, are never able to bal.
e the stresy = their molecules keep slipping past one
another. In this case, the applied stress leads to a continuous
Ak of deformation, or a strain rate (€ =de/dty the dot
adiates ditferentiation with respect to time). For many
gologic fuidy, the relationship between o and ¢ is linear:
wh materials are called Newtonian fluids:

In this

o= (8.31)

The proportionality constant between stress and strain
S the dynamic viscosity (u), which has units of Pa:s.
Dynamic Viscosity describes the stress required to cause a
Sven strain rate in a fluid. Dividing « by the density of the
Raid gives g quantity called the kinematic viscosity (v),
M4ch has units of m/s. Recall that these are the same
S8 as thermal diffusivity, and v similarly characterizes

ﬁﬂhsi\'it}‘ of momentum in a fluid. But here, we will
"ok with the dynamic viscosity, «. The viscosity spans
™0y orders of magnitude for geologic materials, and we'll
¥ in Section 8.7 that for a given material it depends
¥ On temperature, grain size, and in some i.nstarlxc_es
2 on the applied stress, Table 8.1 lists typical viscosities

Going with the Flow: Fluid Mechanics

by material enteri . i
Y Material entering or leaving the volume. Considering

flow: in. e i ¢ i . }
N just one dimension, this conservation law is

EXpressed as

\‘\,n : (\'\‘:H‘\\

&t =0 (8.32)
A OX

Where v, is the velocity of flow in the x direction.

Conservation of momentum looks at force balance on
all sides of the same small volume, including pressure
gradients in the flow and buoyancy of the volume relative
to the surrounding fluid. The resulting relationship is
called the Navier-Stokes equation, which with flow in
one dimension is

B T =t~ Apg (8.33)

| Ot ox 022 ox

2 2
vy i (‘\xJ O™V, oP

Itis useful to look into the physical meaning of each term
in the Navier-Stokes equation. The first term on the left
side considers how the flow is changing with time (it is
zero if flow is constant). The second term characterizes
the inertia of the flow; this is the term in which turbu-
lence enters (the term is small if the flow is smooth or
laminar). The first term on the right side controls how
sluggish the flow is, or how easily momentum is diffused
across the flow. The second term describes pressure gra-
dients along the flow, which can help or hinder flow. The
last term represents the buoyancy relative to the sur-
rounding flow and should only be included if a compon-
ent of the flow is along the direction of gravity.

8.6.2 Relaxing Topography

When a load is added to or removed from the lithosphere,
the lithosphere bends and the asthenosphere flows to
achieve an isostatic balance. The best-known example of
this process on Earth is post-glacial rebound. During the
last ice age, great sheets of ice weighed down the litho-
sphere, flexing it into the asthenosphere. Ever since that ice
melted, the fluid-restoring force of the asthenosphere has
been pushing the lithosphere back into place.

Because the rebound is controlled by the viscous flow
of the mantle, Equation 8.33 can be solved to describe the
subsequent isostatic rebound of the surface. The full
solution combines the flexural response of the lithosphere
and the fluid response of the asthenosphere and is gener-
ally done numerically. Nevertheless, it has been shown
that the vertical displacement (w) of the topography
recovers with an exponential timescale:

4,
N g 6T, - where 7 & pg—f (8.34)
Here, W, is the original vertical displacement, and L is the
horizontal length of the original load. This solution holds
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o-shorelines
geolo-

of

on case of w <L. By dating pa.le e
(ie., clevated beaches) since the em.i of tllu; lcteimis,cale
gists have been able to determine th it e
rebound and, from that, estimate the visc
asthenosphere (Figure 8.17). 2
E On ot}Il)er planetgary bodies, impacts a.ct to reirelssve ;}:Z:e
very quickly from the lithosphere, leaving cra m-e o
craters undergo isostatic rebound as well. In s0 :

5 i i ters can relax com
particularly on icy bodu?s, the cra o H e
pletely, so that no negative topograpily 1. t e
the crater rims have a much shorter horizonta e
scale, the crater rims still often rise above the surface afte
the crater itself has completely rebounded (e-ﬁ-v
Ganymede in Figure 8.17). Images of the surface of the
dwarf planet Ceres (diameter ~960 km) from the Dawn
mission revealed large impact craters that had rebounded.
This observation is a clear indication that Ceres has, or at
least had for some period of time after the large craters
formed, a ductile asthenosphere.

As we'll see in Section 8.7, viscosity is a strong function
of temperature. As temperature increases, viscosity
decreases, and topography relaxes more quickly. Crater
relaxation can therefore be used to uncover changes in
heat flow within a planetary body. Enceladus is an excel-
lent example. As will be described in Section 9.5.3, the
south pole of Enceladus contains tectonic fractures with
high heat flow, but other parts of the surface are geologic-
ally old, as evidenced by high densities of impact craters.
Many of these craters, it turns out, have experienced
significant amounts (up to 90 percent) of relaxation.
Numerical modeling of the process by Bland et al.
(2012) indicates that heat flows comparable to that occur-
ring at the south pole must have occurred in these other
regions at some time in Enceladus’ past.

for the comm

8.6.3 Convection

A fluid layer heated from below and cooled from the top
(a common occurrence in planetary bodies radiating their
heat to space from their surfaces) is gravitationally
unstable. The hot fluid at the base is less dense due to
thermal expansion, and it therefore wants to rise buoy-
antly. Viscous forces in the fluid layer fight against th)ifs

buoyancy; convection can only occur if the buoyanc
force is larger than the viscous forces. 4

Mathematically, the thermal buo
the buoyancy term in the Navier—
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B KU (8.33)
Here, p, is the standard density of the fluid (befor

heating), ay is the volumetric thermal expansion coeff.
cient, T; and T, are the temperatures at the base and top
of the layer, respectively, x is the thermal diffusivity, ang
b is the thickness of the layer. Convection can get started
if Ra is greater than some critical value that depends
strongly on whether the top layer is free to move hori-
zontally (mobile lid) or is fixed in place (stagnant lid) (see
Chapter 9 for more detail).

Convection cells can be envisioned somewhat like a
conveyer belt, with warm fluid rising, moving horizon-
tally while it cools to the surface, and the cool fluid falling
back down. The horizontal motion imposes a stress o1
the (typically rheologically brittle) surface. If the stress o1
the lithosphere from convection is larger than i
strength, the lithosphere will break, and the resulting
plates can be moved by the convection conveyer. On
the other hand, if the lithosphere is strong enough ©
ﬁthstand convective stresses, it will remain intact aﬂfi
will not move. As we know, the Earth’s lithosphere ¥
br.oken into tectonic plates that move and subduct along
with the convection cells. No other planetary bodies 4
1:3;;2;;1) SS‘;PPOrt plate tectonics; their lithospheff)sf :rz
COnVectioi; rc:i(;'ng enough to withstand the stresses

ing beneath the surfaces.

In thj "
cornmsoihapter’ we have introduced several of the ™
each Procprocesses that geodynamicists investigat® :
how g<eoloe °% We have made some assumptions ? e
3 I
. rocilc Materials behave under stress. o
S i ¢ taald
as solid materials that respond i8¢

elastic v :
ay to G e
Y 10 stress - deformation is instan® e

reCOVerabl
e «
When  the stress is removed, a0




300

200

100

Hudson Bay sea level (m)

Relaxation time
~2.6 ka

v

und Hudson Bay since the melting of ice sheets. Paleo-beach marks are used
in Equation 8.34 yields a viscosity of ~10*' Pa-s for Earth’s mantle.

llow arrows indicate craters whose topography has relaxed. The rims,
ed. The black arrows point to younger craters that have not

'ﬂm ®8.7 (@) Rate of rebound of Earth’s lithosphere aro
38ure reboung g5 o function of time. Using thesj C};}t ye
a
becm 8¢ of Ganymede (one of Jupiter’s large :}32: shave not yet relax
,ehw they are smaller than the craters themselves, me. NASA image.
) Perhy ps lndicating a change in heat flow with ti
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planeta

Young's modulus (E).
hat also respond
up with timeé

with stress as described by
ave treated ductile layers a5 fluids ¢
. to stress — deformation builds gt o
ermains when the stress is remr)a'ed,,( and t(x& 5
:é;_-:’orrr:atiun scales linearly with applied 'strei:? 1(6}; o
tonian fluid) as described by dynamic ‘/IS'C()vlty ‘ (Ij()mt .
geologic materials are more cr)mpl'ez and often
cleanly in one of these two categories.

iineary

8.7.1 Visco-Elastic Rheology :
Rocks and ices near the surface of Earth or other planet

ary bodies are generally brittle — they respond ?la'Stl ca'H};
to stress until their strength is overcome, at which poin

thev fracture. When rocks and ices are deep enough that
thel confining pressure is comparable to or greater tban
their strength, they can be ductile — they flow to achieve
an equilibrium stress. In reality, rocks and ices in almost
any situation exhibit a combination of these behaviors — 2
linear elastic response at first, followed by ductile flow,
then fracturing if the stress overcomes the strength and
confining pressure (see Figure 8.3). The dominant behav-
jor we see in a specific situation often depends on the
timescale involved.

Looking at this visco-elastic model as a function of
time, we see that when a stress is first applied, elastic
strain is incurred immediately. As that stress is main-
tained on the (nominally solid) object, strain continues to
increase linearly with time as the object deforms ductilely
(Figure 8.18). In other words, all solid geologic materials
behave elastically over short timescales but, given suffi-
cient time, will flow. A question that follows is: Over what
timescales should we treat a given material as a solid
versus as a fluid? A common way to answer this question

Strain ———

Time — .

Figure 8.18 Tllustration of visco-elastic behayioy When
; a

ined, elastic strain occyrg

R

¢ it takes for the viscous (ducm
) . ¢

al elastic strain. We can CalCUlat
Q

ime by dividing the elastic strain by the Viscoy,
this time .o linear elastic behavior as 4 solig

(linear) behavior as a fluid, we finq they

is to find the time vth’a'
+ain to equal the initt

and Newtonian
this timescale is
sl (836)
™=,
where G, is the shear modul'us (or rfl.OdQIUS ﬁf rigidity) o
described in Section 8.2. This quantity is ca ed .the M.
well time, after the same Maxwell .who established th,
famous equations for electromagnetism. It se.ems that e
was conducting long-term pendu?um experiments, apq
those experiments wWere compromlsed' by sflow extensiop
of the pendulum wire. The Maxwell t1m.e for the Eartlg
mantle is around 100 years, which explains why it trapg.
mits short period seismic waves like a solid, but i
rebounding from the melting of ice sheets as a fluid,
The Maxwell time of H,O ice near its melting tempera-
ture is on the order of an hour; warm ice flows fairly
readily under sustained stress.

8.7.2 Non-Newtonian Rheology

Some materials do not follow the linear Newtonian flow
law defined in Equation 8.31, and the viscosity of almost
all materials is temperature-dependent. The generalized
relationship between stress and strain rate has the form

5 - adur
&= LG a e

(8.37)
Here, d is grain size, E, is an activation energy, V,isan
activation volume, A is a constant, R is the universal gas
constant, and T is temperature. E,, V,, A, n, and m are
determined from experiments. Compared to Equation
8.31, we can write an effective viscosity as

1-n _gm
z g d _Ea+PV,
&

e (838)

In Fhis‘forrn, the viscosity of a material depends on o
i;lll'z:gl asrlide soefV thelmaterial, the stress applied, the te@P i
Solid matefir al Parameters intrinsic to the materlél' h
crystal lattice ;ﬁ-ﬂow 3 reorganization occurs within ! et
i depemi-m 1§ reorganization can happen in differ;le
temperature etcg AO 0 the. material, the stress app ligh ts
Or Vacancies ’thr(; threlatlvel)’ low stress, diffusion of defec‘n
- ugh the volume of the grains or along gr-al
enables flows ¢, occur, Both of these diffusi®
i lead to Newtonian behavior (1=0) o
ain size dependences (m=2and3 el
T Pressures, dislocations within the ayd

'leading to non-Newtonian behavior *
1z¢ dependencies.

with different gr
ively). At highe
lattice Migrate,
different grain s




Review Questions

e [epeTatuTe, stresy, and gn\m\ stre depende
AN pehavior van make it ditficuly to apply insights
o errestrial geology to other Planetary bodieg
g N e moon Buropa s a prime example, "l%m:\;‘
kot would like to know whether convection in
A R el contributes to the complex pe
e, 10 Rt B has been: suggested thy plate
RRORRY TRAY €Ven oceur on Buropa, if it can be dri\jvn
| peontion i the ice shell (Rattenhorn and p

Neies
Wies of 2014), Unfortun

the conditions
the flow law
current measurements
shell,

ks
( h\m on may

Nevertheless, mode
shcll.

rockter . S
cKier, by NASA's Europa Clipper mission.

il |

ately, the effective viscosity of ice under
at Europa are not well constrained. Even if
itself were known, there is no way with
: to know the grain size in the ice
he effective viscosity is uncertain by orders of
nitude just from the uncertainty in grain size alone.
s do favor convection in Europa’s ice
and these models will be tested in the next decade

Geologic materials under stress strive for balance - the
p elieve stress s through strain, and the strain that a material will und
ook, We have seen how planetary surfaces support topogr
saasurements of a body's gravity field provide a window into the interior, at least in terms of how mass is arranged
delow the surface. The observation from gravity measurements that the giant Tharsis volcanoes on Mars are not in
sastatic balance indicates that the lithosphere must have been extremely thick and strong when they formed, and

ergo when stress is applied depends on its
aphy and respond to surface loads. Detailed

Moh internal heat flow in those regions in the past.
Manetary surfaces are solid and brittle, and heat transfer through them is by conduction. Surface temperatures are
antralied primarily through solar heating and therefore change systematically over the course of a day and an orbit.

ansterred by convection. When convection occurs, it induces stress in the overlying lithosphere, the effects of which
™y be measurable by planetary geologists.

-

Review Questions
ear elastic material? How are stress and strain related for a

‘h‘mm iﬁ :rlxi: dimension affect strain in another dimension?

b2 some planetary body that is confined on all sides and filled to a depth of

2 “and 6, are both zero, and the vertical stress at any depth z in the basin
S relations in Equation 8.4 to find expressions for the strain in

- w in the horizontal directions (ay and a,,). Compute these

1 for a sedimentary basin on Earth, assuming p =2100 kg/m”,

. same quantities for an icy sedimentary basin on Titan,

pa. and v=0.3. Compare the results for the two bodies.

Jocated on the far side of the Moon, is about 8 km deep and

o you would use the principle of isostasy to compute

under the assumption that the basin-forming impact

and mantle densities of 2800 kg/m* and 3400 kg/m*,

! Whit does it mean to sa
linear ¢ » i

Yy Want 1o relieve that stress as effectively as they can. The way

NS S0 now. Yet, relaxation of even relatively small craters on some regions of Saturn’s small moon Enceladus reveals

Measurements of temperature as a function of time, which can be done remotely by measuring thermal flux emitted from
Besurtace, provide a powerful means to determine properties of the surface, such as grain size and induration. Planetary
Alerors, however, often behave, at least over geologic timescales, as a fluid. Understanding fluid mechanics is therefore
antical for assessing the dynamics of planetary interiors. One consequence of more fluid-like behavior is that heat may be

| discuss the reliability of this estimate.

v e

147



148

" Planetary Geodynamics

By e —

4. Describe how to estimate the thic
Use this technique to compute t‘h‘e :
in Figure 8.8, assuming the plate is 1b'l b
Pm = 1000 kg/m", and there is no fil in :
elastic thickness given in Figure 8.13 for
Ulfrun region of Venus. i

5. How can topography and gravity measure
surface features?

6. Describe diurnal temperature v

7. Why are some craters on Ganymede,
they still have raised rims?

8. What does it mean to say t
the effective viscosity of geologic mater
in estimating the viscosities of the man

elastic thi

o s |i S h ¥
K th‘::lg:l::)s p1 of the lithosp

oken beneat '
flexural basin

the Pacific plate be
ment

ariations at the sur
Enceladus, an

hat something is a Newtoni
jals? Which of t .
tles of other planets (i.€. besi

the relative importance of each in the mantles of planetar

—////, ' "ﬂw'\ [}

pograph’)’ near a big surface load,
here on Europa from the dat,
1.32 m/s%, E=10GPa, v=03,
Compare your results to valyeg of
he Hawaiian islands and the

ere from tO

h the load, §=

(pan= 0).

neath t
be combined to determine the compensation state of

s be

face and near-surface (top few meters) of planetary bodies

d other icy bodies not topographic lows? Why

an fluid? What are the various factors that affect
hese factors imposes the largest uncertainty
des Earth)? Compare and contrast

y bodies.

SUGGESTIONS FOR FURTHER READING

Gerya, T. (2010) Introduction to Numerical Geodynamic
Modelling. Cambridge: Cambridge University Press. An
excellent resource for delving more deeply into the
computational techniques necessary for modern
geophysics/geodynamics.

Stacey, F.D., and Davis, P. M. (2008) Physics of the Earth.
Cambridge: Cambridge University Press. This book
presents a complete history of the Earth from a
geophysical perspective.

Turcotte, D., and Schubert, G. (2014) Geodynamics, 3rd
edition. Cambridge: Cambridge University Press. The
classic textbook for learning geodynamics for terrestrial
and planetary applications. The third edition includes

chapters and examples for computational modeling of
geodynamical processes.
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