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Effect of Mars Atmospheric Loss on Snowmelt Potential
in a 3.5 Gyr Mars Climate Evolution Model

Megan Mansfield
Q2

Q3

1 , Edwin S. Kite1 , and Michael A. Mischna2

1Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA, 2Jet Propulsion Laboratory, California
Institute of Technology, Pasadena, CA, USA

Abstract Post-Noachian Martian paleochannels indicate the existence of liquid water on the surface
of Mars after about 3.5 Gya (Irwin et al., 2015, https://doi.org/10.1016/j.geomorph.2014.10.012;
Palucis et al., 2016, https://doi.org/10.1002/2015JE004905). In order to explore the effects of variations
in CO2 partial pressure and obliquity on the possibility of surface water, we created a zero-dimensional
surface energy balance model. We combine this model with physically consistent orbital histories
to track conditions over the last 3.5 Gyr of Martian history. We find that melting is allowed for
atmospheric pressures corresponding to exponential loss rates of dP/dt ∝ t−3.73 or faster,
but this rate is within 0.5𝜎 of the rate calculated from initial measurements made by the Mars
Atmosphere and Volatile EvolutioN (MAVEN) mission, if we assume all the escaping oxygen measured
by MAVEN comes from atmospheric CO2 (Lillis et al., 2017, https://doi.org/10.1002/2016JA023525;
Tu et al., 2015). Melting at this loss rate matches selected key geologic constraints on the formation
of Hesperian river networks, assuming optimal melt conditions during the warmest part of each
Mars year (Irwin et al., 2015, https://doi.org/10.1016/j.geomorph.2014.10.012; Kite, Gao, et al., 2017,
https://doi.org/:10.1038/ngeo3033; Kite, Sneed et al., 2017, https://doi.org/10.1002/2017GL072660;
Stopar et al., 2006, https://doi.org/10.1016/j.gca.2006.07.039). The atmospheric pressure has a larger effect
on the surface energy than changes in Mars’s mean obliquity. These results show that initial measurements
of atmosphere loss by MAVEN are consistent with atmospheric loss being the dominant process that
switched Mars from a melt-permitting to a melt-absent climate (Jakosky et al., 2017), but non-CO2

warming will be required if <2 Gya paleochannels are confirmed or if most of the escaping oxygen
measured by MAVEN comes from H2O.

1. Introduction

Large (>10 km2), late-stage Martian alluvial fans and river deltas provide evidence for surface liquid water on Q4

post-Noachian Mars after about 3.5 Gya (Grant & Wilson, 2012; Irwin et al., 2015; Palucis et al., 2016; Williams
& Weitz, 2014). However, by about 3.5 Gya most of the conditions favorable to the existence of surface liquid
water no longer existed: much of Mars’s atmosphere was lost before the end of the Noachian and the
Martian dynamo shut down around the mid-Noachian (Pepin, 1994; Lillis et al., 2013). Additionally, the amount
of greenhouse gases released by volcanism on Mars is less than on Earth because the mantle is more reducing
(Stanley et al., 2011), and by 3.5 Gya the rate of volcanic degassing had slowed down significantly
(Kite et al., 2009). Because orbiters detect only minor post-Noachian carbonate, which may be due to SO2

or acidity (Bullock & Moore, 2007; Halevy & Schrag, 2009), it is difficult to justify post-Noachian carbonate
sequestration of more CO2 than exists in the present, thin atmosphere (Edwards & Ehlmann, 2015).

Atmospheric pressure has a strong effect on permitting surface liquid water because lower atmospheric pres-
sure can preclude melting by decreasing the strength of greenhouse warming and increasing the amount
of evaporative cooling. Clow (1987) showed these effects in a model which determined the minimum atmo-
spheric pressure necessary to melt dusty snow on the surface of Mars. They found that melting could occur
at relatively low pressures if the snowpack was assumed to be thick enough that melt accumulated at the
base of the thick snow layer while the upper layers of snow were at colder temperatures. Hecht (2002) used
a similar model to determine the necessary surface properties, such as albedo and conductivity, to allow
melting on Mars. Additionally, Hecht emphasized the importance of evaporative cooling at low atmospheric
pressures, as first pointed out by Ingersoll (1970). Models which have not included evaporative cooling
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produce much more melting on the surface of Mars, which indicates its importance in setting melting
conditions (Costard et al., 2002; Williams et al., 2008). The high rate of evaporative cooling at low atmospheric
pressure precludes melting of pure water ice on present-day Mars, which has an average atmospheric pressure
of 600 Pa.

Although atmospheric pressure can have a strong effect on the surface energy balance, changes in
Mars’s orbital parameters, especially large changes in its mean obliquity, can also affect melt conditions.
Kite et al. (2013) determined the conditions for snowmelt at a variety of atmospheric pressures, obliquities, and
eccentricities. They found that combining these factors could produce intermittent melting that could provide
small amounts of liquid water for sediment induration at low latitudes.

While models that study moments in time can provide some insight into the past Martian climate, models
showing evolution over time give a better understanding of the timing of melting in Mars’s past.
Manning et al. (2006) addressed the time evolution of the Martian climate by examining the relative sizes
of various CO2 reservoirs over the history of Mars. Their model determined that different climate states are
stable for different obliquities, but they only considered a subset of the full range of obliquities that Mars has
experienced.

A model that simultaneously studies the effects of time evolution, orbital variations, and changing energy
balance with changing atmospheric pressure is needed to more fully understand the timing and intermit-
tency of melting on Mars. To address this, we created a zero-dimensional energy balance model that spans
over 3.5 Gyr of Mars history and examines how changes in orbital parameters, solar luminosity, and atmo-
spheric pressure impact the melt conditions of snow on the surface of Mars. We consider snowmelt as a source
of water as opposed to catastrophic flows after impacts because recent work suggests that lakes lasted for
at least a few thousand years, and this relatively long lifetime implies a climate favorable to melting and not
just a sudden catastrophic event that allowed melting for a brief period (Grant & Wilson, 2012; Irwin et al.,
2015; Palucis et al., 2016; Turbet et al., 2017; Williams & Weitz, 2014). We also ignore the effects of impacts
and eruptions because changes due to atmospheric loss, solar brightening, and orbital variations are more
well understood and because the melt potential of impacts themselves depends on the atmospheric heat
capacity and therefore the atmospheric pressure. Our model is zero-dimensional because this allows fast com-
putation of a full 3.5 Gyr energy balance, whereas previous 3-D models have been unable to include time
evolution because of computational limits (Wordsworth et al., 2013). This model is timely because the Mars
Atmosphere and Volatile EvolutioN (MAVEN) mission is currently in orbit around Mars collecting data on rates
of atmospheric loss and is presumably providing better constraints on the atmospheric pressure over time on
Mars which we can use in our model to constrain the conditions that explain melting on post-Noachian Mars
(Lillis et al., 2017). We describe our model in section 2. In section 3 we present our results, which indicate
that atmospheric pressure has a more dominant effect on surface melt conditions than obliquity variations.
In section 4 we discuss assumptions of our model and possible future extensions, and we summarize our
findings in section 5.

2. Model Description
2.1. Chaotic Orbital Histories
To investigate the influence of orbital variability on post-Noachian surface liquid water, we created a model
that combined the effects of orbital variations, atmospheric loss, and solar brightening, as illustrated in
Figure F11. Physically consistent orbital histories were constructed using the mercury6 N-body integrator and
an obliquity code (Armstrong et al., 2014; Chambers, 1999). The orbital histories recorded the orbital param-
eters of the simulated Mars at 200 year intervals over the last 3.5 Gyr and included quasiperiodic variations
in orbital parameters (Kite et al., 2015). Most importantly, they included changes in obliquity, which for Mars
has probably jumped from low mean values around 20∘ to high mean values around 40∘ between two and
nine times in its history on ⪆200 Myr time scales (Li & Batygin, 2014). The orbital histories were sampled at
2,000 year intervals. Eight possible orbital histories were studied, all of which have obliquity jumps at differ-
ent times in their time lines but which all end with obliquities within 12∘ of the modern-day value of 25.19∘.
Several obliquity tracks were considered because the chaotic nature of the Solar System means that the exact
value of Mars’s obliquity is not known beyond a few hundred million years ago. Therefore, we studied a distri-
bution of possible orbital histories to statistically constrain the influence of the orbital parameters on melting.
The eight orbital histories all produced similar energy histories, so only two will be examined in detail in this
paper. Obliquity histories for tracks 1 and 2, which will be examined in more detail later, are shown in Figure F22.
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Figure 1. A flowchart showing how key aspects of the model were incorporated. Boxes outlined in red indicate new
contributions from our model. Atmospheric loss, solar brightening, and obliquity histories were calculated as described
in section 2.1 and combined in an energy balance described in section 2.3.

2.2. Loss of Atmospheric Pressure
The chaotic orbital histories were combined with a model of solar brightening over time and loss of atmo-
spheric pressure (Bahcall et al., 2001). Although there are several possible loss mechanisms for CO2 in past
Mars, such as chemical fixation of CO2 in deep aquifers (Chassefiére & Leblanc, 2011) and basal melting of
a CO2 ice cap (Kurahashi-Nakamura & Tajika, 2006), we chose to focus on escape to space and assumed all
atmospheric loss was due to escape to space. Additionally, we neglected carbonate formation because it is
thought to be relatively ineffective in the post-Noachian, although this is debated (Edwards & Ehlmann, 2015;
Hu et al., 2015).

The current atmospheric pressure on Mars is approximately 600 Pa, but at the temperatures that would allow
liquid water on the surface of Mars, the approximately 600 Pa of additional CO2 currently trapped in Martian
polar caps would be released into the atmosphere, and so we assume a modern-day atmospheric pressure of
1,200 Pa (Bierson et al., 2016). Atmospheric loss to space was parameterized as a power law

dP
dt

= −k

(
t0

t

)𝛼

(1)

Figure 2. Obliquity histories for orbital tracks 1 (top) and 2 (bottom). The overplotted red lines show 200 Myr averages.
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Table 1
Maximum Pressure in the 3.5 Gyr Energy
Balance for Different Rates of Atmospheric
Loss, as Given by Equation (1), Assuming
that all Oxygen Loss Measured by MAVEN
Corresponds to Loss Over Geologic Time
of CO2 and Not H2O (Lillis et al., 2017)

𝛼 Maximum pressure (bar)

2.20 0.243

2.71 0.390

3.22 0.654

3.73 1.133

4.24 2.020

Note. 𝛼 = 3.22 is the mean value of 𝛼

inferred from initial Mars Atmosphere and
Volatile EvolutioN (MAVEN) results, while
𝛼 = 2.20, 2.71, 3.73, and 4.24 represent
values that are−1,−0.5, 0.5, and 1 standard
deviations away from this value, respec-
tively (Lillis et al., 2017; Tu et al., 2015).

where P is the atmospheric pressure in Pa, t is time in Gyr since the Sun formed, t0 = 4.56Gyr, and
k = 1, 270 Pa Gyr−1 is a constant chosen to match the parameterization to the current rate of Mars
atmospheric loss due to solar UV flux, which we estimated MAVEN measurements of hot atomic oxy-
gen escape (Lillis et al., 2017). This estimate of k assumes that the oxygen loss which was measured
by MAVEN corresponds entirely to loss of CO2 over geologic time and not to loss of other atmospheric
constituents such as H2O. We assume that the oxygen loss is due to loss of CO2 because Mars does not
have significant carbonate deposits and a thick CO2 atmosphere was likely necessary on early Mars.
However, MAVEN has yet to identify a major loss channel for carbon, and some authors (e.g., Hodges,
2002) argue that Mars has lost negligible amounts of carbon to space since the Noachian, so that almost
all of the oxygen loss corresponds to net loss of H2O to space. Therefore, our assumption that all of
the oxygen loss is due to loss of CO2 is the most optimistic situation for producing higher past atmo-
spheric pressures. 𝛼 represents the increase in atmospheric loss rate in the past relative to the current
loss rate, due to increased solar UV flux earlier in the Sun’s lifetime (Tu et al., 2015). In the model, 𝛼
was varied between 𝛼 = 0 and 𝛼 = 4.24. A variety of values of 𝛼 were investigated because, while
the solar brightening over time is well understood (Bahcall et al., 2001), the atmospheric pressure over
time is poorly understood. A constant loss rate with 𝛼 = 0 is unrealistic, as the past atmospheric loss
should have been faster because of higher solar UV flux (Tu et al., 2015), flaring, and solar wind, but we
include this value as a reference. 𝛼 = 4.24 was the maximum value considered because it leads to an
atmospheric pressure of approximately 2 bars at 3.5 Gya. Two bars is estimated to be an approximate
upper limit on the atmospheric pressure at about 3.5 Gya from the size distribution of craters formed
at this time (Kite et al., 2014). The current best estimate of a realistic value for 𝛼 comes from an esti-

mate of modern-day atmospheric loss on Mars based on initial MAVEN results, combined with an estimate
of the evolution of the Sun’s UV flux over time (Lillis et al., 2017; Tu et al., 2015). The initial results from the
MAVEN mission suggest that the average modern rate of photochemical loss of oxygen is 4.3 × 1025 s−1, with
upper and lower bounds of 9.6 × 1025 s−1 and 1.9 × 1025 s−1, respectively. Our estimate considers only pho-
tochemical loss of oxygen but not ion escape or sputtering. (See Lillis et al., 2015, for a review of these fluxes
and how they are measured.) Currently published estimates indicate that the present-day escape rate due
to ion escape is approximately 1 order of magnitude lower than photochemical loss (Barabash et al., 2007;
Dong et al., 2017; Ramstad et al., 2015) and that the present-day escape rate due to sputtering is smaller
still (Leblanc et al., 2015). These escape rates would differ in the past, because the solar wind evolves as the
Sun ages. However, in part because of the uncertain rotation history of the Sun and the difficulty of directly
observing stellar winds from solar-analog stars, there is still significant uncertainty about how to extrapo-
late solar wind interaction into the past (Johnstone et al., 2015). Therefore, based on publications to date,
it appears that photochemical loss of oxygen is the dominant loss channel for mass loss from today’s Mars.
If either ion escape or sputtering played a proportionately more important role in the past, then this would
have the effect of increasing 𝛼 in our two-parameter model given in equation (1).

Table T11 shows the maximum atmospheric pressure in the model (the pressure at 3.5 Gya) for 𝛼 = 3.22, which is
the mean value estimated by Lillis et al. (2017) using data from MAVEN and an estimate of the history of solar
UV flux from Tu et al. (2015), and values that are 0.5 and 1 standard deviations away from this value. To calculate
values of 𝛼 corresponding to 0.5 and 1 standard deviations away from 𝛼 = 3.22, we combined error estimates
from Lillis et al. (2017) and Tu et al. (2015). While Lillis et al. (2017) quote 1𝜎 errors on their measurement, Tu
et al. (2015) only provide information on the 10th, 50th, and 90th percentiles of their calculations, and so we
assumed a Gaussian distribution to estimate 0.5𝜎 and 1𝜎 errors from Tu et al. (2015). The ongoing MAVEN
mission will continue to improve estimates of 𝛼 (Lillis et al., 2017).

2.3. Snow Surface Energy Balance Model
To evaluate whether the orbital histories could produce melting conditions, we wrote a zero-dimensional
energy balance model in MATLAB for a snow surface on Mars. We primarily considered snow surfaces at low
latitudes between 0∘ and 20∘ because we expect these latitudes to be the most stable locations for snow and
ice when the obliquity is higher than 40∘, but we also considered slightly higher latitudes of 40∘ at which
ice would be stable for intermediate obliquities between 30∘ and 40∘ (Forget et al., 2006; Jakosky & Carr,
1985; Mischna et al., 2003). Because we only consider melting when the obliquity is high, the pole temper-
ature should be high enough to prevent atmospheric collapse and to swiftly reverse a preexisting collapse
(Forget et al., 2013; Soto et al., 2015). We assumed a snow surface at the melting point (T = 273 K)
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Figure 3. Schematic of the fluxes included in the energy balance model
for a snow surface at T = 273 K.

and calculated whether the net energy delivered to the snow surface
per second was positive, which would indicate melting was possible,
or negative, which would indicate that the snow surface would not
be warm enough to melt. We assumed an albedo for dusty snow of
0.3, a thermal inertia of ≈275 J m−2 K−1 s−1∕2, and a relative humidity
of 0.25 (Kite et al., 2013). These assumptions will be discussed more
in section 4.1. The energy balance model incorporated the effects
of insolation, upwelling longwave radiation from the surface, the
greenhouse effect from the CO2 atmosphere, latent cooling due to
evaporation, sensible cooling due to atmosphere-surface temperature
differences, and conduction. We do not consider the effects of merid-
ional advection. Additionally, we do not include warming from water
ice clouds, because the amplitude of warming depends on the optical
depth and altitude of the clouds, and these are unknown for early Mars
(Ramirez & Kasting, 2017). Figure 3 shows a schematic of the terms in the
energy balance.

The incoming solar flux, FSW, was estimated for a peak melting period measured over the warmest 4 h in
the warmest season of the year. We chose to calculate the energy balance only for the most optimal melt-
ing conditions in the year because periodic warm conditions could still result in melting for part of the
year that could create the observed large alluvial fan features (Clow, 1987). In contrast to previous studies
(e.g., Schorghofer, 2008, which looked at averaged temperatures for ground ice), we only consider peak
temperatures because we are interested in studying surface ice and snow. The effect of Rayleigh scattering
was included (Kite et al., 2013).

The upwelling longwave radiation, FLW, was modeled as a gray body following the equation

FLW = 𝜖𝜎T 4 (2)

where 𝜎 is the Stefan-Boltzmann constant, the emissivity 𝜖 was assumed to be 0.98, and the temperature was
held fixed at the melting point (T = 273K). Values for all constants used in the energy balance equations are
given in Table T22.

The greenhouse effect was estimated based on a fit to a Mars GCM (Mischna et al., 2012, 2013). In the GCM, Q5

we used the radtran model from Mischna et al. (2012) with no water vapor and present-day topography to
estimate the greenhouse effect for atmospheric pressures of 6, 60, 600, and 1,200 mbar, and for obliquities of
15∘, 25∘, 35∘, 45∘, and 60∘. The model used present-day values for Mars’s eccentricity (0.0935) and longitude
of perihelion (251∘). The greenhouse effect from the atmospheric CO2 should scale with the longwave flux
out of the surface, which is proportional to the temperature to the fourth power. Additionally, for saturated
bands such as the 15 μm CO2 absorption band, the greenhouse effect is proportional to the square root of the
pressure because of pressure broadening (Goody & Yung, 1989). Therefore, a linear regression was performed
to find a fit to an equation in the form Fgh = a + bT 4

√
P, where T is the surface temperature in Kelvin, P is the

atmospheric pressure in Pa, and a and b are constants. Before performing the fit, points that had elevations
lower than −6 km or higher than 11 km, albedo less than 0.15, or thermal inertia less than 150 J m−2 K−1 s−1∕2

were removed from the model output. Additionally, we considered only points with latitude between −25∘
and 25∘, because we are primarily interested in melting near the equator and because this resulted in a data
set with less scatter (Kraal et al., 2008). The final fit to the greenhouse forcing gave

Fgh = (9.981 ± 0.145) + (9.662 ± 0.017) × 10−9T 4
√

P (3)

with Fgh in W m−2, T in K, and P in Pa. The fit had R2 = 0.98.

The GCM was also used to estimate a diurnal temperature range, which was used to calculate conductive
cooling. The conductive cooling calculated over the same 4 h peak melting period as the incoming solar flux
was calculated using

Fcond = ΔTk sin(7200𝜔)
14400𝜔d

(4)
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Table 2
Values of Key Constants used in the Energy Balance Equations

Symbol Parameter Value Source

𝜎 Stefan-Boltzmann constant 5.67 × 10−8 W m−2 K−4

𝜖 Emissivity of ice 0.98

k Thermal conductivity of snow 0.125 W/m/K Carr and Head (2003)

𝜏 Length of Martian day 88200 s

d Diurnal skin depth 0.22 m Turcotte and Schubert (2014)

Ts Surface temperature 273.15 K

ka Thermal conductivity of atmosphere 0.0138 W/m/K Vesovic et al. (1990)

Cp Specific heat capacity of atmosphere 770 J/kg/K Kite et al. (2013)

g Mars surface gravity 3.7 m/s2

mc Molar mass of CO2 0.044 kg/mol

mw Molar mass of H2O 0.018 kg/mol

rh Atmospheric relative humidity 0.25

Av von Karman’s constant 0.4

zanem Anemometer height 5.53 m Kite et al. (2013)

z0 Surface roughness 10−4 m Dundas and Byrne (2010)

Le Latent heat of evaporation 2.83 × 106 J/kg

Mw Molecular mass of H2O 2.99 × 10−26 kg

k Boltzmann’s constant 1.381 × 10−23 J/K

where ΔT is the diurnal temperature range estimated from the Mars GCM (Mischna et al., 2012, 2013), k is
the thermal conductivity of the snow surface, 𝜔 = 2𝜋

𝜏
s−1 is the frequency of temperature oscillations, 𝜏 is the

length of a Martian day, and d is the diurnal skin depth.

The forced and free sensible and latent cooling fluxes were calculated following the parameterizations in
Dundas and Byrne (2010), Hecht (2002), and Ingersoll (1970). Free sensible cooling is due to the buoyancy of
air near the surface and was described by

Sfr = 0.14(Ts − Ta)ka

[(Cp𝜈a𝜌a

ka

)(
g
𝜈2

a

)(
Δ𝜌
𝜌a

)]1∕3

(5)

where Ts is the surface temperature, Ta is the atmospheric temperature, ka is the atmospheric thermal con-
ductivity, Cp is the specific heat capacity of air, 𝜈a is the air viscosity, 𝜌a is the density of the atmosphere, g is
Mars gravity, and Δ𝜌

𝜌a
is given by

Δ𝜌
𝜌a

=
(mc − mw)esat(1 − rh)

mcP
(6)

where mc is the molar mass of CO2, mw is the molar mass of water, esat is the saturation vapor pressure
at temperature Ts, rh is the relative humidity of the atmosphere, and P is the atmospheric pressure in Pa
(Kite et al., 2013). The thermal conductivity ka was determined by interpolating data from Vesovic et al. (1990)
to a temperature of T = 257 K, which was the average atmospheric temperature in our model.
The atmospheric temperature Ta was determined from a fit to data for the warmest part of the warmest day
of the year from the Mars GCM described above, based on the model in Mischna et al. (2012). These data were
used because our model determines the surface energy balance for the warmest part of the year. Atmospheric
temperatures were determined from a linear fit of ln Ta versus ln P, which had R2 = 0.85. The air viscosity was
given by

𝜈a = (1.48 × 10−5)
(

RTbl

mcP

)(
240 + 293.15

240 + Tbl

)(
Tbl

293.15

) 3
2

(7)

where R is the universal gas constant and Tbl is the temperature of the atmospheric boundary layer
(Dundas & Byrne, 2010). The boundary layer temperature was determined from a fit to the Mars GCM
(Mischna et al., 2012) in the same manner as the fit to the atmospheric temperature Ta. The density of the
atmosphere was determined using the ideal gas law.
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Figure 4. Magnitude of each term in the energy balance versus pressure,
at 77% modern solar luminosity, which is the approximate solar luminosity
at 3.5 Gya. Solid/dashed lines indicate warming/cooling. The lines show
incoming shortwave solar radiation (light blue), outgoing longwave
radiation (orange), greenhouse forcing (yellow), conductive cooling (purple),
free latent cooling (green), forced latent cooling (magenta), free sensible
cooling (dark blue), forced sensible cooling (dark red), and the magnitude
of the net forcing (black). Small wiggles in the net forcing are artifacts of
interpolation to calculate incoming shortwave radiation. The net forcing is
negative for P < 56, 039 Pa because latent cooling dominates over
greenhouse forcing, and positive for P > 56, 039 Pa.

Forced sensible cooling is due to advection by the wind and was given by

Sfo = 𝜌aCpusA(Ts − Ta) (8)

where us is the wind speed near the surface, and A is given by

A =
A2

v

ln(zanem∕z0)2
(9)

where Av is von Karman’s constant, zanem is the anemometer height, and z0

is the surface roughness (Dundas & Byrne, 2010). The wind speed was also
determined from a fit to the Ames Mars GCM wind speeds (Kahre et al.,
2006). A linear fit of ln us versus ln P for pressures of 7, 50, and 80 mbar was
extrapolated to higher pressures. The fit had R2 = 0.96.

Free latent cooling was given by

Lfr = 1.57 × 0.14 LeΔ𝜂𝜌aDa

[(
𝜈a

Da

)(
g
𝜈2

a

)(
Δ𝜌
𝜌a

)]1∕3

(10)

where Le is the latent heat of evaporation, Δ𝜂 is the difference between
the water mass fractions in the atmosphere and surface, and Da is the dif-
fusion coefficient of H2O in CO2 (Dundas & Byrne, 2010). The factor of 1.57
was added to the beginning of the equation to make the amount of latent
cooling match experimental results for evaporative losses at current Mars
pressure (Moore & Sears, 2006). Δ𝜂 was given by

Δ𝜂 =
𝜌sat(1 − rh)

𝜌a
(11)

where 𝜌sat is the saturation vapor density, determined from esat and the ideal gas law (Kite et al., 2013).
The diffusion coefficient of H2O in CO2 was given by

Da = (1.387 × 10−5)
(

Tbl

273.15

) 3
2
(

105

P

)
(12)

where P is in Pa (Dundas & Byrne, 2010).

Figure 5. Minimum pressure at which surface melting is permitted for
a flat surface at 0∘ latitude as a function of time, assuming zero obliquity
and values of eccentricity and longitude of perihelion equal to those for
modern-day Mars. This curve was smoothed to remove artifacts of the
interpolation to calculate incoming shortwave radiation. Earlier in time
the minimum pressure to allow melting is higher because the Sun
was fainter.

Forced latent cooling was given by

Lfo = Le

(
Mw

kTbl

)
usA(esat(1 − rh)) (13)

where Mw is the molecular mass of water and k is Boltzmann’s constant
(Dundas & Byrne, 2010). Following Dundas and Byrne (2010), Williams
and Malin (2008), and Toon et al. (1980), we sum all of the sensible and
latent cooling terms together in our energy balance model instead of
considering one dominant term.

The final energy balance is given by Fnet = FSW − FLW + Fgh − Fcond − Sfo −
Sfr − Lfo − Lfr. A positive value of Fnet represented that there was excess
energy available to melt snow on the surface, while a negative value of Fnet

indicated that melting was prohibited. Figure 4 shows each of the terms
in the energy balance model and the overall surface energy for a variety
of atmospheric pressures at 77% modern-day solar luminosity, which is
approximately the solar luminosity at 3.5 Gya. At very low pressures, latent
cooling dominates over most of the other terms and prevents melting. At
higher pressures, the greenhouse forcing dominates over latent cooling,
and melting occurs. This is because the greenhouse forcing scales as

√
P,
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Figure 6. Energy balance over time for obliquity track 1, for a surface at a
latitude of 20∘ with a 20∘ pole-facing slope. The blue curve shows energy
balance at constant pressure. The orange and yellow curves show energy
balances for pressure loss parameterized by equation (1) with 𝛼 = 3.22
and 𝛼 = 3.73, respectively. 𝛼 = 3.22 is the best estimate of 𝛼 from initial
Mars Atmosphere and Volatile EvolutioN (MAVEN) results, found by
combining an estimate from MAVEN of the dependence of the loss rate
on solar extreme ultraviolet flux with an estimate of the rate at which solar
UV flux has changed over time (Lillis et al., 2017; Tu et al., 2015). 𝛼 = 3.73 is
0.5 standard deviations away from the best estimate of 𝛼 = 3.22 inferred
from MAVEN data (Lillis et al., 2017; Tu et al., 2015). Black lines show
200 Myr averages, which average over orbital variations and show changes
due to solar brightening and atmospheric loss. The increase in energy
around 3.5 Gyr is where the obliquity rapidly changes from a mean
obliquity around 10∘ to a mean obliquity around 40∘ .

while the free latent cooling scales as P−2∕3. Figure 5 shows the minimum
pressure to permit melting as a function of time, assuming zero obliquity
and values of eccentricity and longitude of perihelion equal to those for
modern-day Mars. The minimum pressure to allow melting at 3.5 Ga is
0.676 bar. At earlier times, with the orbital parameters held constant, the
lower solar luminosity means that a higher pressure is required in order to
allow melting.

For each possible orbital history, an energy balance was computed at lat-
itudes of 0∘, 20∘, and 40∘ in order to understand the relative importance
of obliquity and atmospheric pressure changes on a variety of latitudes
throughout the areas where young fluvial features are seen on Mars. Addi-
tionally, the water source regions we are modeling are on sloped surfaces
with slopes of approximately 20∘, so energy balances were computed for
a surface at 20∘ with a 20∘ pole-facing slope and for a surface at 40∘ with
both a 20∘ pole-facing and 20∘ equator-facing slope.

3. Results
3.1. Relative Impact of Atmospheric Pressure and Obliquity
Figure 6 shows an energy balance history for a surface at 20∘ with a 20∘

pole-facing slope, using the obliquity history for track 1. The blue curve
shows an energy balance at constant pressure, while the orange and yel-
low curves show energy balances with atmospheric loss parameterized by
equation (1) with 𝛼 = 3.22 (P = 0.654 bars at 3.5 Gya) and 𝛼 = 3.73
(P = 1.133 bars at 3.5 Gya), respectively. Black lines show 200 Myr averages,
which average over variations in eccentricity, obliquity, and longitude of
perihelion. The upward trend that is visible in the earliest 1.5 Gyr of the fit

to the blue curve demonstrates the effect of solar brightening. The downward trend of the fits to the orange
and yellow curves shows the effect of atmospheric loss. The bump in all curves around 3.5 Gyr shows the effect
of a rapid change from a low mean obliquity around 10∘ to a high mean obliquity around 40∘, which increases
the energy available for melting because a pole-facing surface at a latitude of 20∘ will receive more direct sun-
light for an obliquity around 40∘ than for an obliquity around 10∘. For almost all times and values of 𝛼, the
energy balance is negative, indicating that melting is prohibited. In all potential orbital histories considered,
only 𝛼 ⪆ 3.73 allows melting, which indicates that atmospheric pressure has a stronger influence on whether
melt is permitted at the surface than obliquity. However, this value of 𝛼 is within 0.5𝜎 of the value inferred
from initial MAVEN data, indicating that large post-Noachian alluvial fans and deltas might be explained by a
rate of atmospheric loss only slightly higher than that estimated by Lillis et al. (2017).

3.2. Comparison to Key Geologic Constraints
For the high values of 𝛼 that allowed melting, we compared the amount of melting and intermittency of
melt periods to three key geologic constraints. First, the amount of fluvial sediment transported by large
post-Noachian alluvial fans indicates that the longest runoff event must have had liquid water at the surface
for>104 years (Irwin et al., 2015). Here we use runoff event to mean a time interval during which seasonal melt-
water runoff sustains lakes at an approximately constant lake level (Irwin et al., 2015). Second, the presence of
olivine in the catchments of alluvial fans and deltas strongly suggests that the most recent runoff event must
have lasted <107 years (Kite, Gao et al., 2017; Stopar et al., 2006). Third, counting interbedded craters indi-
cates that there must have been >107 years between the first and last runoff events Kite, Sneed et al. (2017).
Some estimates of melting in young channels, like those found in Lyot crater, suggest that the time between
the first and last runoff events lasted for much longer than 107 years (Dickson et al., 2009).

In order to produce melt, high temperatures are required, but the snow and ice also need to be available in the
location where melting can occur. At obliquities greater than 40∘, snow and water ice are most stable near the
equator, while for lower obliquities they are more stable at the poles (Forget et al., 2006; Jakosky & Carr, 1985;
Mischna et al., 2003). If the amount of ice contained in the polar caps was spread over the equatorial region,
it would produce an ice sheet about 100 m–1 km thick, which would melt or sublimate in 100–10,000 years
(Madeleine et al., 2009). This melting time is much less than the length of warm periods produced by obliquity
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Figure 7. Energy available for melting versus the number of years that
energy was exceeded for obliquity track 1 at 20∘ latitude with a 20∘
pole-facing slope, for 𝛼 = 2.20, 2.71, 3.22, 3.73,, and 4.24. For this graph,
only times with obliquity >40∘ are plotted, because snow and ice will only
be available for melting at low latitudes during times of high obliquity
(Kite et al., 2013). The red dashed line indicates a net energy of 15 W/m2,
above which runoff can occur. Only values of 𝛼 above about 3.73 allowed
any runoff. MAVEN = Mars Atmosphere and Volatile EvolutioN.

changes in our model, and so the time scale for the ice to migrate to

the coldest location on the planet is less than the time scale at which

changes in obliquity shift the latitude of the coldest point on the planet.

This means that when the obliquity is high, we can make the assumption

that all of the snow and ice are found near the equator, where snow and

ice are most stable. Therefore, for latitudes of 0∘ and 20∘, we assumed that

melting could only have happened when the obliquity was greater than

40∘. For a latitude of 40∘, we assumed that snow and ice would only be

available when the obliquity was between 30∘ and 40∘. Additionally, we

assumed that runoff would not begin to occur until some amount of liquid

water had pooled and refroze within the snow to create an impermeable

ice layer for runoff (Woo, 2012), and so we only began recording a melt

period when the energy available for melting went above 15 W/m2.

Figure 7 shows a plot of the net surface energy versus the number of years

that energy was exceeded for obliquity track 1. This plot shows results for

a 20∘ pole-facing sloped surface at 20∘ latitude, with values of 𝛼 within

1 standard deviation of the mean value inferred by Lillis et al. (2017).

Only years for which the obliquity was greater than 40∘ are counted,

because these are the only years when ice would be available for melting.

The vertical dashed red line indicates a surface energy of 15 W/m2, above

which runoff would occur. For 𝛼 = 3.73 (P = 1.133 bars at 3.5 Gya) and 𝛼 = 4.24 (P = 2.020 bars at 3.5 Gya),

some runoff is produced when the orbital history is at high obliquity. For 𝛼 = 3.73, the longest melting event

lasts 4.44 × 107 years, the most recent melting event lasts 2.40 × 104 years, and the total time between the first

and last melting events is 2.78 × 108 years. For 𝛼 = 4.24, these values are 2.55 × 108 years, 1.80 × 104 years,

and 5.10 × 108 years, respectively. Therefore, both of these values of 𝛼 produce melt periods that match the

three geologic constraints. For 𝛼 = 3.73, the rate of runoff production is approximately 0.05 mm/h for approx-

imately 18 Myr, which is consistent with estimated runoff production rates of 0.03–0.4 mm/h (Dietrich et al.,

2017; Irwin et al., 2015; Morgan et al., 2014).

Smaller values of 𝛼, corresponding to lower past pressures, do not allow melting under the current model,

but this model only considered greenhouse forcing from a pure CO2 atmosphere. Some amount of non-CO2

greenhouse forcing could increase the surface energy balance enough that lower values of 𝛼 would still

produce some melting, as discussed in section 4.2.

Figure 8. Histogram of the length of periods in which melting is allowed
for obliquity track 1 for all latitudes and slopes considered, and for 𝛼 = 3.73.
In all cases, we assume that a melt period begins when the energy balance
goes above 15 W/m2 and ends when it goes below 0 W/m2. We also assume
melting can only occur at low latitudes for obliquities >40∘ and at higher
latitudes for obliquities between 30∘ and 40∘ . See text for discussion.

The distribution of the length of melting periods shows how the melt con-

ditions depend on orbital cycles. Figure 8 shows a histogram of the length

of melting periods in obliquity track 1 for all latitudes and slopes consid-

ered for 𝛼 = 3.73. During all of these melting periods, melting occurs every

year during the warmest part of the year. The majority of time periods

when melting is allowed last around 100,000 years, which is about the time

scale of a single peak-to-trough oscillation of obliquity, eccentricity, or lon-

gitude of perihelion. Therefore, most of the melting occurs in short time

periods about 100 kyr long during optimal orbital conditions. For exam-

ple, at high latitudes much of the melting occurs when the eccentricity and

longitude of perihelion line up such that Mars is near perihelion at solstice

and the obliquity is such that the amount of direct sunlight is maximized

during the warmest part of the day. There are fewer melting periods of 1

to 10 Myr duration, which correspond to the length of larger oscillations

in obliquity and eccentricity. The couple of periods that last longer than

50 Myr corresponds to long periods of optimal conditions due to a much

higher mean obliquity. Between these intermittent melting periods were

several dry periods, which could affect the ability of organisms to survive
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on the surface of Mars. All eight obliquity tracks contained at least one such dry period longer than 10 Myr,
which is long enough that the top few meters of soil would be sterilized by galactic cosmic radiation even for
radiation-resistant microbes like D. radiodurans (Hassler et al., 2014).

4. Discussion
4.1. Model Assumptions
Our model made several assumptions about physical characteristics of Mars’s surface and atmosphere which
made it more likely to produce liquid water. Here we consider the key assumptions and how changes to these
assumptions could affect our conclusions. First, the surface albedo was assumed to be 0.3. Assuming a higher
albedo value would reduce the net energy flux into the surface, and so less melting would be permitted.
Second, we assumed a thermal inertia of ≈275 J m−2 K−1 s−1∕2. A higher thermal inertia value would also
reduce the time over which melting was permitted for a given value of 𝛼 because the surface would con-
ductively cool faster. Third, we assumed no refreezing or infiltration losses of meltwater, both of which would
decrease the amount of runoff produced. These assumptions combine to create the most optimal conditions
for producing runoff.

We also assumed the latitudes where ice is stable change abruptly at obliquities of 40∘ and 30∘. In other words,
we assumed that at an obliquity just below 40∘, all ice would be located at middle or high latitudes, and at
an obliquity just above 40∘, all ice would be in the equatorial region. In reality, this transition may be less
abrupt. However, since we found that atmospheric pressure was the primary control on melting, the exact
value of obliquity at which ice migrates to the equator should not have a strong influence on the results.
Additionally, it is possible that at high pressures, water ice will be located near the equator for all obliquities
(Wordsworth, 2016). If this were the case, melting at the equator would potentially occur even at lower
obliquities, because water ice would still be in the equatorial region.

4.2. Open Questions
We found that a rate of atmospheric loss consistent with that inferred by Lillis et al. (2017) to within 0.5
standard deviations allowed melting and produced an amount of runoff which matched three key geologic
constraints (Irwin et al., 2015; Kite, Gao, et al., 2017; Kite, Sneed, et al., 2017; Lillis et al., 2017; Stopar et al.,
2006; Tu et al., 2015). However, atmospheric loss by escape to space is not the only process that may have
affected the energy balance on Mars’s surface. Non-CO2 forcing from a variety of sources could have permit-
ted melting at lower atmospheric pressures. Our model did not include clouds, which can warm the surface
(Ramirez & Kasting, 2017). At higher obliquities, when water ice is most stable in the equatorial region, the
warm temperatures at those low latitudes might produce more water vapor, which could form into cirrus
clouds that would warm the planet. The water vapor would also provide direct vapor warming on the order
of a few Kelvin (Mischna et al., 2013). We also did not consider warming from other minor atmospheric con-
stituents. In particular, CO2-H2 and CO2-CH4 collision-induced absorption can have a significant impact on the
greenhouse forcing (Wordsworth et al., 2017). Because melting only occurs before 3.3 Gya in our model, addi-
tional warming may also be necessary to explain observations of anomalously young (< 2 Gya) supraglacial
channels at the low-elevation Lyot crater (Dickson et al., 2009) and in isolated cases elsewhere (Fassett et al.,
2010). Some very young alluvial fans, like those in the 5 Myr old Mojave crater, are likely related to impact
processes (Williams & Malin, 2008).

Another possible explanation for these young fluvial features is higher atmospheric pressure than was esti-
mated in our model. The atmospheric pressure could have been higher in the past if CO2 was lost through
other mechanisms, such as chemical fixation in deep aquifers (Chassefiére & Leblanc, 2011) or basal melt-
ing of a CO2 ice cap (Kurahashi-Nakamura & Tajika, 2006; Longhi, 2006). Higher atmospheric pressure would
increase the amount of runoff compared to our calculations. Additionally, volcanic degassing could increase
the amount of melt by adding more CO2 (and other greenhouse gases such as CH4, SO2, and H2S) into the
atmosphere. However, Stanley et al. (2011) calculate that Mars magmas have less CO2 than on Earth because
the Mars mantle is more reducing. Stanley et al. (2011) estimate that the volcanic CO2 content is approximately
50–70 ppm, which would correspond to about 30 mbar of volcanic outgassing. If the Martian atmosphere
was more oxidizing, the volcanic CO2 content could be as high as 500–700 ppm, but the pressure contribu-
tion would still be relatively small, about 300 mbar (Stanley et al., 2011). These Stanley et al. (2011) numbers
imply a substantial downward revision from Craddock and Greeley (2009), who estimated that Martian
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volcanoes contained 0.7 wt.% CO2. Carbonate formation may also have been underestimated, which would
mean higher past atmospheric pressures could exist without invoking larger loss rates due to solar UV flux
(Hu et al., 2015).

5. Conclusions

We wrote a minimal zero-dimensional energy balance model containing only effects of a CO2 atmosphere,
solar brightening, and obliquity changes, to investigate whether conditions on the surface of Mars could
have produced enough melting to explain observed large (>10 km2) alluvial fan features in the last 3.5 Gyr.
We find that melting is only permitted for thick atmospheres that require high rates of atmospheric loss and
that the effect of high atmospheric pressure is more important than varying values of obliquity in producing
melt over the history of Mars. However, if we make the end-member assumption that all atmospheric loss is
due to escape to space and all escaping oxygen is from CO2, rates of atmospheric loss consistent to within
0.5 standard deviations with the best estimate of atmospheric loss based on initial results from the MAVEN
mission produce melting. Additionally, the amount and timing of runoff from this melting matches three
specific, recently obtained key geologic constraints on the formation of alluvial fans (Lillis et al., 2017; Tu et al.,
2015; Irwin et al., 2015; Stopar et al., 2006; Kite, Gao, et al., 2017; Kite, Sneed, et al., 2017).

Although our model only produced melting for very high atmospheric pressures, additional warming due
to, for example, cirrus clouds, water vapor warming, or collision-induced absorption could warm the surface
enough to allow melting at lower pressures (Mischna et al., 2013; Ramirez & Kasting, 2017; Wordsworth et al.,
2017). Further research into non-CO2 warming can determine whether it produces a large enough effect to
allow melting at lower past atmospheric pressures.
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