

Multi-Gyr History of Mars' CO₂-Dominated Atmosphere: New Data and a New Synthesis

A.O. Warren¹, **E.S. Kite¹**, J.-P. Williams², B.Horgan³

¹University of Chicago, Department of Geophysical Sciences; ²UCLA Department of Earth, Planetary and Space Sciences; ³Purdue University, Department of Earth, Atmospheric, and Planetary Sciences

Mars paleo-pCO₂ is important

- Early Mars climate allowed rivers and lakes
- Paleopressure → max. CO₂ available for greenhouse warming:

Pure CO_2 ? $CO_2 + H_2O$ clouds? $CO_2 + H_2/CH_4$?

e.g. Jakosky et al. Icarus 2018, Lillis et al. JGR-Space Physics 2018

an

Assessfarestarester

e.g. Cassata et al. 2012, Cassata 2017, Kurokawa et al. 2018

Mars paleopressure constraints

ssure (bars)

pres

Atmospheric

- 1^c Cosmochemical estimate
- **2**^c, **3**^c Models of atmosphere isotopic composition
- 4^c, 5^c, 9^{*c} Mineral stability/thermodynamic models
- 6^b, 8^b Sedimentary features
- 7^a Ancient craters preserved in sedimentary rocks (updated from Kite et al. 2014)
- 10^b, 11^b Present day atmosphere (± ice caps)

12^b – MAVEN loss rate

1 - Lammer et al. (2013), 2 - Cassata (2012), 3 - Kurokawa et al. (2017), 4 - Van Berk et al. (2012), 5 - Hu et al. (2015), 6 - Manga et al. (2012), 7 - Kite et al. (2014), 8 -Lapotre et al. (2016), 9* - Bristow et al. (2017) but see also Tosca et al. (2018), 11 -Bierson et al. (2016), 12 - Lillis et al. (2015), i - Turbet et al. (2019), ii - Soto et al. (2015), Forget et al. (2013), iii – Kite (2019)

et

<u>a/</u>.

Ē

Small ancient craters: a direct constraint on paleo-atmospheric pressure

Kite et al. Nature Geoscience 2014

Warren, Kite, et al., in review.

- Thick atmospheres brake, ablate, and fragment small impactors
- Must reach surface with at \geq 500 ms⁻¹ to form a hypervelocity crater
- Our forward-model impactor population is based on terrestrial fireball observations

Mawrth Vallis

Ô

Meridiani Planum

Image credit: MOLA Science Team

0.00 · 0.0

0

Mawrth Vallis 4.0-3.6 Ga (Loizeau et al. 2008)

n

Meridiani Planum 3.9-3.6 Ga (Di Achille & Hynek 2017)

Image credit: MOLA Science Team

0

Ancient craters are common at Mawrth

Warren, Kite, et al, in review Loizeau et al. 2010

This an unusually large example

Abundant small ancient craters imply $pCO_2 < (1.5-1.9)$ bars

We found that atmospheric pressure was

<1.9 \pm 0.1 bar (for >10⁴ yr) @ 4 Ga <1.5 \pm 0.1 bar (for >10⁵ yr) @ 3.8 Ga

Our sites record only a small fraction of Mars' history

A Range of Atmospheric Pressure Histories Are Consistent With The New Data

Warren, Kite, et al., in review.

Results consistent with variety of atmospheric pressure histories $>4.1 - 3.8\pm0.2$ Ga:

① Persistently <0.5 bar with atmospheric collapse</p>

2 Persistently **at** continuous pressure upper limits

③ Variations of several bar on 10⁸-yr timescales

Simple model combining all paleo-data suggests low (<1 bar) atmospheric pressure on early Mars

Warren, Kite, et al., in review.

More Post-3.6-Ga Constraints Are Needed

Data are (just) consistent with both CH_4 - CO_2 and H_2 - CO_2 Collision-Induced Absorption warming.

Conclusions

Warren, Kite, et al., in review.

• Small ancient craters are a **direct** probe of Mars paleoatmospheric pressure (Kite et al. Nature Geoscience 2014).

• New results: atmospheric pressure 3.8 ± 0.2 Ga was below 1.5-1.9 bars for >($10^{4}-10^{5}$) yr on at least two occasions

Consistent with persistently low pCO₂

 Simple model combining all paleo-data suggests low (<1 bar) atmospheric pressure on early Mars, but is (just) consistent with both CH₄-CO₂ and H₂-CO₂
 <u>Collision-Induced Absorption warming</u>.

planetarygeoscience.uchicago.edu | kite@uchicago.edu

Bonus

SIGES

CSFD Modification

Warren, Kite, et al., in review.

Acknowledgements

Warren, Kite, et al., in review.

J. Sneed produced the HiRISE Digital Terrain Models using the pipeline of Mayer & Kite (2016. LPSC)
Grants: NASA (NNX16AJ38G)

Atmospheric pressure model - setup

Sources

- Outgassing
- Impact delivery of volatiles
- Thermal decomposition of carbonates

Sinks

- Loss to space
- Impact erosion
- CO₂ ice caps
- Carbonates

Identifying ancient craters

Crater if...

- 1. Circular topographic depression
- 2. Concave-up in anaglyph
- 3. $>150^{\circ}$ arc of rim preserved

Ancient if...

- 1. Embedded in sedimentary units
- 2. Depth << 0.2 × diameter
- 3. Sand/dust-free center
- 4. <50% obscured by dust/sand

Warren, Kite, et al., in review.

Local Pressure Variations

 Pressure variations on Earth due to Hadley circulation of order 1% atmospheric pressure

Warren, Kite, et al., in

review.

• Well below error on paleopressure estimates

 From geostrophic balance, maintaining a hemispheric pressure difference of 0.2p_{atm} with a background surface temperature of 300K would require ½ of Mars' surface to be at ~420K

Secondary craters

- Small craters formed by primary crater ejecta (e.g. Zunil crater)
- Do not observe secondary craters in geologic record on Earth
- Williams et al. 2014 model reproduces crater SFDs for modern Mars – **secondary** craters do not have a major effect

Additional factors

- Target properties
 - Dry desert alluvium
 - In-tact basalt
- Modification of SFDs to higher apparent pressures
 - More large impactors (e.g. Late Heavy Bombardment)
 – flatten SFDs

*for constant $\mu = 0.41$

Time-varying pressure & crater removal

Warren, Kite, et al., in review.

*f – fraction of time spent at low pressure

Comparison to data

Warren, Kite, et al., in review.

*f – fraction of time spent at low pressure

> Time varying pressure with minimum pressure less than continuous ress than continuous pressure upper limit + Preferential removal of

small craters

> Time varying pressure with minimum pressure less than continuous ress than continuous pressure upper limit + Preferential removal of

small craters

Cannot reproduce SFDs with combinations of pressures greater than continuous pressure upper limits!

Cannot reproduce SFDs with combinations of pressures greater than continuous pressure upper limits!

