Resolving the great drying of Mars: sequence stratigraphy of Aeolis Dorsa

Edwin Kite (Caltech), Antoine Lucas (Caltech, Paris VII), Oded Aharonson (Caltech, Weizmann) & John Armstrong (Weber State)

Rationale: River-deposit dimensions constrain hydrology and climate on Early Mars, but stratigraphy is essential to build a time series of constraints on climate change

Today, use geologic mapping to:

- 1) Order river deposits by relative time
- 2) Determine if drying-out of Mars was steady or unsteady

Making best use of geologic proxies for paleoclimate in Aeolis Dorsa requires stratigraphy

Map of Early Mars wateravailability model output (Kite et al., 'Seasonal melting ...' Icarus 2013a)

Aeolis Dorsa is a 10⁵ km² low-latitude sedimentary-rock basin, ~10°E of MSL rover

- more river deposits than the rest of Mars put together

Parameters:

- Discharge $10^1 10^3 \text{ m}^3/\text{s}$
- Age Hesperian (or older)
- Deposition interval >(1-20) Ma
- Atmospheric pressure <760±70 mbar (stat. error)

Burr et al., JGR 2010 Zimbelman & Scheidt, Science 2012 Kite et al., 'Pacing fluvial ..,' Icarus 2013 Kite et al., 'Paleopressure ...,' arXiv:1304.4043, 'accepted in principle,' Nature Geoscience

At Aeolis Dorsa we can constrain magnitude, duration, intermittency, and number of wet events, but we need to put river deposits in relative-time order to get a time series.

Key step in reading history of any sedimentary basin: identify unconformity-bounded sequences

Cause of alternation between deposition and erosion: **Global sea-level change** (plate tectonics), **dynamic topography** (plate tectonics)

On Mars, unconformities within layered strata appear uncommon Edgett (Mars J. 2005), Wiseman et al. (JGR-Planets 2007), Milliken et al. (GRL 2010), Holt et al. (Nature 2010)

River deposits are eroding out of mappable geologic units

Span >400m of stratigraphy.

River deposits are eroding out of mappable geologic units

Sequence boundary example 1/3: Pre-river layered sediments (α) were erosionally dissected before deposition of river sediments (β)

Additional evidence for this unconformity: R.M.E. Williams et al., Icarus 2013

Sequence boundary example 2/3: **Thrust faulting postdates river deposits** (β) and predates alluvial fans (γ) - At least in E of Aeolis Dorsa

δ

γ

Q

Sequence boundary example 3/3: Densely cratered surface separates river deposits (β) from yardang-bearing materials (δ)

5°0'0"S

a

Climate proxies show that the great drying of Mars was not steady

Prelir	ninary			Epoch	Max. river	Mean channel/	Interpretation:
	<	~400 km			network length (km)	river deposit width (m)	conditions
	W (Aeolis rise) (Ae	eolis Dorsa trough)	E (Zephyria rise)	Deflation to	Wind erosion, dry conditions		Dry
E E	major erosion to modern topography			modern topography			
ter (To Scale) δ :700		δ	Aqueous cementation inferred. River deposits not found.		Damp		
y: 70m	FAF (γ) major erosiona	unconformity	Sub-ð unconformity	Wind erosion, dry conditions		Dry	
lative				FAF	40	30	Wet
equences in Re 00m	Later β, undivided			Sub-y unconformity	Major planar erosion Wind erosion Possible minor river erosion		Dry
s of Se β: 15					Gap in fluvial-deposit record		?
cknes	F3			F3	60	60	Very wet
ic Thi	~~~~ F2		F2	F2	20	40	Less wet
graph ▲	۶ F1	\sim	F1 ?	F1	>500	100	Very wet
Stratig	a ?			Sub-β unconformity	Major dissectional erosion Possible fluvial or glacial		?
a:>7				a	River	deposits not found.	?
							T

Next: quantify using ISEE-Mars framework - Kite et al., "Seasonal melting ...," Icarus 2013

Mean-obliquity shifts are a plausible **driving mechanism** of observed shifts between erosion and deposition.

- Plate tectonics & eustasy unlikely
- Implies signal should be global

Shown: one of many <u>possible</u> Mars obliquity histories. *Calculation by John Armstrong*

Conclusions

- Stratigraphy consistent with Aeolis Dorsa recording an unusually complete history of Early Mars fluvial environments. (candidate global reference section)
- Drying-out of Mars climate was not steady.

Goal: extract enough constraints to resolve disagreements about the cause and duration of warm/wet climates.

Requires quantitative models linking sed./strat. to climate. ----

More information: Kite et al., 'Seasonal melting ...' *Icarus* 2013, Kite et al., 'Growth and form ...' *Geology* 2013, Kite et al., 'Pacing fluvial ...' *Icarus* 2013, Kite et al., 'Paleopressure ...' *Nature Geoscience,* 'accepted in principle,' arxiv:1304.4043 gps.caltech.edu/~kite

With thanks to: Mike Lamb, Woody Fischer, Devon Burr, Robert Jacobsen, Rebecca Williams, Roman diBiase, Or Bialik, and all the participants in Caltech's Mars Fluvial Geomorphology Reading Group

End of presentation

Crater density consistent with Noachian/Hesperian boundary – and density of rivers suggests that

- Major Amazonian erosion has occurred (mesas)
- Zimbelman & Scheidt (Science), 2012 "craters on a nearby exposure of middle-member material (superposed on the [rivers]) indicate a late Hesperian age
- CRA of rivers is on Late Hesperian/ Early Amazonian boundary

	N(1)	N(2)	N(5)	Interpretation	
Postfluvial + Undetermined	2049±158	634±88	37±21	CRA on Late Hesperian / Early Hesperian boundary,	<u>10</u> 1
Postfluvial only	1049±113	415±71	37±21	consistent with overall correlation to Noachian/	
Svnfluvial				nesperial boundary	

Evidence for additional unconformities

- Some evidence for unconformity separating alluvial fans and yardang-bearing materials
- Strong evidence for unconformities within fluvial deposits, at multiple scales

δ

Contour interval 500m

