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[1] Meandering streams on the surface of glaciers are similar in planform geometry to
meanders in alluvial and bedrock rivers, despite fundamental differences in the
mechanisms and timescales of incision. We develop depth-averaged conservation
equations for flow in such supraglacial channels with erodible boundaries and solve the
linear stability problem for harmonic perturbations to an initially straight channel.
Meander formation in supraglacial streams is driven by channel curvature, which
enhances heat production and heat transfer to the surrounding ice at bend apexes. This
leads to enhanced melting and lateral channel migration, with near constant channel
width maintained by the competition of lateral erosion and broadscale ablation of the
glacier surface. We find that meandering occurs for a wide but finite range of hydraulic
and thermal parameters in both subcritical and supercritical flows and that meanders
usually propagate downstream. Predicted meander wavelengths are in general agreement
with an empirical scaling between supraglacial channel width and meander wavelength
derived from glacial environments worldwide.
Citation: Karlstrom, L., P. Gajjar, and M. Manga (2013), Meander formation in supraglacial streams, J. Geophys. Res. Earth
Surf., 118, 1897–1907, doi:10.1002/jgrf.20135.

1. Introduction
[2] Supraglacial streams are melt channels that form in

the ablation zone of glaciers and ice sheets during the
summer season when surface meltwater (sometimes aug-
mented by rainwater) thermally erodes channels into the
glacier’s surface. These streams form networks that drain off
the glacier, most often into supraglacial lakes, moulins, or
crevasses. They thus form a primary link between surface,
englacial, and subglacial hydrologic systems [Fountain and
Walder, 1998]. Although there is likely to be some inher-
itance of large channels from year to year, supraglacial
hydrology re-evolves from initial channelization to large-
scale organization each year as surface melting waxes and
wanes. Over the glacier as a whole, albedo changes caused
by such meltwater channelization help set the fine structure
of glacial surface ablation, a positive feedback between
channelization and melting.

[3] Supraglacial streams are mechanistically distinct from
alluvial or bedrock rivers, where mechanical erosion forms
the principle mode of incision and channel slope regular-
ization that occurs over much longer timescales [e.g., Sklar
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and Dietrich, 2004]. Yet despite the dominance of thermal
erosion, differences in substrate strength and a lack of sig-
nificant suspended sediment, supraglacial streams exhibit
similar qualitative morphologic features such as meander-
ing (including cutoff loops), anastomosing channels, and
propagating knickpoints [Knighton, 1981; Marston, 1983].
Understanding the morphodynamics of these streams thus
informs in a broader sense the study of sinuous channels
on other terrestrial planets, where potential thermally (or
chemically) eroded channels are observed but the substrate
characteristics, melt composition, and volumes are often
poorly constrained.

[4] This study focuses on meanders because of their ubiq-
uity in supraglacial channels (Figure 1) and utilizes tech-
niques developed to study meandering in alluvial settings
[Seminara, 2006]. We develop a model for flow in curved
channels with fixed cross-sectional geometry and then per-
form a linear analysis of depth-integrated mass, momentum,
and energy conservation equations for harmonic perturba-
tions to flow variables and channel boundaries. This work
generalizes previous modeling of Parker [1975], following
a more general approach taken in recent meandering mod-
els of alluvial rivers [e.g., Blondeaux and Seminara, 1985;
Camporeale et al., 2007]. We end by comparing our model
predictions to a compilation of supraglacial stream data from
the literature and our own field work.

2. Meander Formation
[5] In alluvial settings, variations in boundary shear

stresses that exceed the threshold for sediment motion drive
bank erosion and deposition. In supraglacial streams, there is
no similar mechanism for deposition of bank material (bank
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Figure 1. (a) Supraglacial stream network on the west Greenland ice sheet, from the near-infrared band
of the IKONOS satellite. Image courtesy of Jason Box, Ohio State University, donated by Geoeye to
Impossible Pictures UK; (b) Single wavelength meander sequence on the Mendenhall Glacier, Alaska,
August 2010, person for scale; (c) Small well-developed meander bend on the Mendenhall Glacier,
Alaska, August 2009.

re-freezing is not effective due to long durations of daily
solar radiation during the melt season) and generally little
sediment (ice or rock) with which to mechanically erode the
channel. Meandering supraglacial streams thus exemplify a
problem long recognized in bedrock channels [Leopold and
Wolman, 1960]: How does channel sinuosity evolve in the
absence of bank deposition?

[6] We propose that supraglacial streams migrate through
the interaction of two erosional processes: thermal erosion
occurring over the entire glacial surface forced by solar radi-
ation and thermal erosion within the channel. Channelized
meltwater will attain a higher mean temperature than the
surrounding ice due to its lower albedo and the heat dissi-
pated by flow, providing a mechanism to establish long-lived
channels that may persist for the duration of the melt season
and beyond. A balance between stream incision and large-
scale surface lowering will determine the channel geometry.
Observations [e.g., Marston, 1983] suggest that in many
cases an apparently steady channel cross section is attained,
although some channels may continue to cut down until the
ice above them creeps and isolates them from the surface
[Jarosch and Gudmundsson, 2012].

[7] Melting in supraglacial channels is analogous to sedi-
ment transport and mechanical erosion in alluvial settings in
that it provides the mechanism by which the channel incises.
Melting is, in general, a better understood process than sed-
iment transport, and the stability of melting/solidification
fronts is well known [e.g., Mullins and Sekerka, 1963].
Channel sinuosity provides a natural vehicle for streamwise
variations in heat transfer as channel bends locally decrease
the thickness of the boundary layers separating flowing melt-
water and glacial ice, increasing lateral temperature and
velocity gradients. This mechanism thus provides a posi-
tive feedback that increases frictional dissipation and heat
transfer in regions of high channel curvature that leads to

increased thermal erosion. Other sources of spatial varia-
tions in heat transfer are possible: for example, anisotropic
shielding from solar radiation, nonuniform surface slope,
small-scale variations in glacial ice structure and composi-
tion, or input/subtraction of water from the system. How-
ever, given the ubiquity of meanders in supraglacial streams,
we focus on formative mechanisms that do not depend on
the particulars of external forcing.

[8] Parker [1975] developed a model for supraglacial
stream meanders based on a linear stability analysis of a
vertically integrated heat balance, assuming potential flow in
an initially straight stream channel. Harmonic perturbations
to the bed of the stream were found to be unstable, with a
finite range of unstable wave numbers. In particular, Parker
[1975] predicts that supercritical flow (Froude number
Fr > 1) is a necessary condition for meander formation.

[9] Parker’s approach is conceptually similar to “bar”
models of alluvial meandering [Callander, 1969]: The mod-
eled channel axis remains fixed, but it is assumed that small
amplitude perturbations of the bed force eventual lateral
channel migration. However, it has since been shown for
alluvial rivers that flow perturbations due to curvature in the
channel axis are largely responsible for the primary lateral
instability, which is reenforced by bed perturbations in the
form of point bars and overdeepenings [Ikeda et al., 1981;
Blondeaux and Seminara, 1985; Johannesson and Parker,
1989]. We are interested in applying this more general treat-
ment of meandering to the linear stability of supraglacial
streams.

3. Model
[10] To address the planform evolution of supraglacial

channels, we model both the flow within a supraglacial
stream and the substrate melting that drives lateral migration
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of the channel bank. Because the timescale for water advec-
tion is much shorter than the timescale for melting, flow is
effectively steady on bank migration timescales. Spatially
variable heat transfer occurs as a result of this flow field,
which then drives bank melting and migration.

[11] We do not attempt to construct a complete descrip-
tion of supraglacial meltwater routing and note here several
important assumptions in our model. We utilize depth-
averaged, linearized governing equations, studying the ini-
tial perturbations to straight channel geometry rather than
finite amplitude effects. We assume constant channel width
and neglect vertical structure within the flow. We neglect
the time variation of solar forcing (diurnal and seasonal),
and the total surface energy balance that provides a tem-
porarily and spatially varying meltwater flux to channels.
We also neglect the variations in channel slope that often
occur over the length of a supraglacial stream, and hence
develop a local model in which these parameters are fixed.
Our work is a parameter-sensitivity test that aims to identify
a physical mechanism for the onset of meander instabilities,
rather than a study of broader-scale channel sinuosity devel-
opment. In what follows, symbols are defined in the text,
with a complete list of variables and parameter ranges in
Tables 1 and 2.

3.1. Flow in Meandering Coordinates
[12] We now develop a model for the flow field in

supraglacial streams, using meandering coordinates to
express the appropriate conservation equations in a trans-
lating coordinate system that tracks the channel centerline
described by coordinates

�
X*

0(s*), Y*
0(s*), Z*

0
�

(Figure 2). This
coordinate system, in which s* and n* represent downstream
and cross-stream positions (asterisks indicate dimensional

Table 1. Model Variables

Variable Description Units

s*, n* Downstream, cross-stream coordinates m
X*, Y* Cartesian coordinates m
z* Depth coordinate m
S* Glacier surface height m
�*

m Bank perturbation wave number 1/m
k* Flow perturbation wave number 1/m
!* Perturbation frequency 1/s
�* Stream radius of curvature 1/m
N Metric coefficient –
t* Time s
u*, U* Downstream velocity m/s
v*, V* Cross-stream velocity m/s
w Vertical stream velocity m/s
A1,B1,D1,H1 Perturbation amplitudes –
U * Water speed m/s
d*, D* Channel depth m
h*, H* Water surface height m
y*

b, y*
c Channel bank, channel centerline m

W* Ice thermal boundary layer m
T* Water temperature ıC
�*

T Turbulent diffusivity of heat m2/s
�*

T Turbulent diffusivity of momentum m2/s
a* Viscous dissipation W/m2

�*
s ,�*

n Wall shear stress Pa
`* Lateral boundary layer in stream m
" Expansion parameter –
Cf Wall friction –

Figure 2. Model geometry and coordinate system definition.

variables), is mapped to a fixed cartesian basis (X*, Y*, Z*)
via �

X*, Y*, Z*� =
�
X*

0 + n* sin� , Y*
0 + n* cos� , Z*� , (1)

from which we obtain the metric coefficients�
h*

s , h*
n, h*

z
�

=
�
1 + n*�*(s*), 1, 1

�
, (2)

where �*(s*) = d�/ds* is the curvature of the channel center-
line. The angle of the centerline from the X* axis is �, and
the slope of the channel axis is assumed to be small. More
details about the derivation of this coordinate system and the
resulting curvilinear differential operators may be found in
the alluvial meander literature, for example, Seminara and
Tubino [1992]. The radius of curvature scales with its typical
length scale R*

0 as 1/�* = R*
0/�.

3.2. Governing Equations for Flow
[13] In the meandering coordinate system, flow variables

scale as

(s, n) =
(s*, n*)

B*
0

, v = (u, v, w) =
(u*, v*, w*)

U*
0

, (h, D, z) =
(h*, D*, z*)

D*
0

,

(3)

where (u, v, w) are components of the velocity vector v tak-
ing characteristic value U*

0, and (h, D, z) are the water surface
height, water depth, and height above a datum, respectively
(Figure 2), that all scale with the characteristic depth D*

0.
B*

0 is the channel half width. The Reynolds equations for
momentum and mass conservation are

N
@

@s
�
u2� +

@

@n
(uv) + ˇ

@

@z
(uw) + 2�0N�uv

= –
N

Fr2
@h
@s

+ ˇ
p

Cf
@

@z

�
�T
@u
@z

�
,

N
@

@s
(uv) +

@

@n
�
v2� + ˇ

@

@z
(vw) + �0N�

�
v2 – u2�

= –
1

Fr2
@h
@n

+ ˇ
p

Cf
@

@z

�
�T
@v
@z

�
,

N
@u
@s

+
�
@

@n
+ �0N�

�
v + ˇ

@w
@z

= 0,

(4)
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Table 2. Model Parameters With the Range of Values Considered

Parameter Description Range Units

B*
0 Channel half width [0.1, 1] m

D*
0 Channel scale depth [0.05,0.5] m

U*
0 Scale velocity [0.25, 2.5] m/s

R*
0 Scale radius of curvature – 1/m
� * Scale time – s
L* Latent heat of fusion 334 kJ/kg
�* Ice/water density 1000 kg/m3

g* Gravitational constant 9.81 m/s2

	 * Solar forcing constant [10,50] W/m2 K
k*

I Ice thermal conductivity 2 W/m2 K
˛ Exponent, boundary layer scaling 0.5 –

* Water kinematic viscosity 10–6 m2/s
c*

p Specific heat capacity 4200 J/kg K
�T*

a Temperature difference water and air 10 ıC
�T*

G Temperature difference water and ice [0.05,0.5] ıC
J * Coupling constant temperature model [10–5, 10–2] s/m
C* Coupling constant boundary layer [10–1, 101] W /m2K
Cb Proportionality between lateral and vertical melting [0.25, 4] –
� * Wall roughness height 0.001 m

Dimensionless parameters – –
C0 Wall friction base state – –
�0 Ratio half width to radius of curvature – –
ˇ Ratio half width to depth – –
Fr Froude number – –
Ec Eckert number – –
…0 Ratio of melting to dissipation – –
…1 Ratio of advection to dissipation – –
…2 Ratio of conduction to dissipation – –
…3 Ratio of solar forcing to dissipation – –
…4 Ratio of lateral heat transfer to dissipation – –

where N = (1 + �0n�)–1 is the longitudinal metric coeffi-
cient of the coordinate system with �0 = B*

0/R*
0, ˇ = B*

0/D*
0

is the half width to depth ratio, Fr = U*
0/
p

g*D*
0, is the

Froude number, Cf is a dimensionless friction coefficient,
while �T = �*

T/(C1/2
f U*

0D*
0) is a dimensionless eddy viscosity.

Hydrostatic pressure is incorporated into equations (4),
while the Reynolds stresses and lateral bed stress have been
neglected.

[14] After applying the depth averaging operation h�i =
D–1

R h
h–D(�) dz, equations (4) become

NU
@U
@s

+ V
@U
@n

+ �0N� UV + N
@H
@s

+
ˇ�s

D
= 0,

NU
@V
@s

+ V
@V
@n

– �0N�U2 +
@H
@n

+
ˇ�n

D
= 0, (5)

N
@

@s
(DU) +

@

@n
(DV) + �0N�DV = 0.

Here U = hui, V = hvi are the depth-averaged velocities
and H = h/Fr 2, while �s, �n are the downstream and cross-
stream shear stresses. Equations (5) are identical to those
of Blondeaux and Seminara [1985], who similarly neglect
the vertical structure of the flow. Such an approximate
description of the flow is appropriate for channels wider
than they are deep, a condition that is generally satisfied by
supraglacial streams although we note that channel aspect
ratios are generally smaller than their alluvial counterparts.

We also make the common assumption [e.g., Smith and
McLean, 1984] that depth averages may be decomposed for
general variables ‰,‚ as h‰‚i � h‰ih‚i.

3.3. Heat Transfer
[15] Equations (5) are coupled to the Reynolds-averaged

heat equation. We do not attempt a global energy balance
which would set the total meltwater production for a given
glacial surface lowering, thus, the slope does not enter
explicitly into our formulation (slope sets the scale for flow
variables). Instead, we use a local energy equation for which
the dimensional viscous dissipation a*, turbulent diffusivity
�*

T , and water temperature T* scale as

a =
D*

0

�*U*3
0

a*, �T =
�*

T

U*
0D*

0
, T =

T*

�T*
G

, (6)

where �* is water density and �T*
G is the bulk temperature

difference between the stream water and the glacier ice.
[16] The Reynolds-averaged dimensionless heat equation

in meandering coordinates may be written as

r �

�
vT –

�T

ˇ
rT
�

= Ecˇa, (7)

where Ec = U*2
0 /c*

p�T*
G is the Eckert number measuring the

relative importance of kinetic energy and enthalpy and �T
is a turbulent diffusivity defined in equation (6). We note
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that in meandering coordinates the divergence of a vector
r = (rs, rn, rz) is

r � r = N
@rs

@s
+ �0N�rn +

@rn

@n
+ ˇ

@rz

@z
, (8)

while the gradient operator is r =
�
N @

@s , @
@n ,ˇ @

@z

�
. Equation

(7) utilizes a mixing length model to relate the time aver-
age of fluctuating temperature and velocity field to the mean
temperature gradient in the flow.

[17] We make the further assumption that mean tempera-
ture gradients track velocity gradients via the Reynolds anal-
ogy rT = J *U*

0rU where the flow speed is U =
p

U2 + V2.
The empirical and dimensional constant J * measures the
strength of coupling between velocity and temperature gra-
dients. For flow past a flat plate with Prandtl number Pr
equal to unity, J * = 1/U*

0 [Schlichting, 1960], but we leave
it here as an adjustable parameter.

[18] After applying continuity and modeling �T = UD, the
depth average of equation (7) is

J *U*
0

ˇEc

�
NUD

@U
@s

+ VD
@U
@n

–
1
ˇ

�
N
@

@s

�
UD2 @U

@s

�

+
@

@n

�
UD2 @U

@n

�
+ �0N� UD2 @U

@n

��

=
1

�*U*3
0

(q*|z=h–D – q*|z=h) + haiD, (9)

where q*|z=h–D is the (dimensional) vertical heat transport
in the water at the water-ice interface and q*|z=h is the ver-
tical heat transport in the water at the water-air interface.
Boundary terms associated with turbulent advection of heat
are ignored, and we have simplified the gradient operator in
the mixing length model by neglecting terms associated with
the meandering coordinate system. These terms drop out
in the linearization of equation (9) performed in section 4,
so are unnecessary for our study. Equation (9) balances the
rate of heat generation by viscous dissipation at the smallest
length scales in the stream with heat transport at the top and
bottom boundaries, as well as advection by the mean flow.

[19] At the air-water interface, transport of both sensi-
ble and latent occurs by a combination of radiation (solar
forcing) and advection by wind. We assume that

q*|z=h = –	*�T*
A, (10)

with�T*
A = T*

a–T*
w the temperature difference between water

and air and 	 * the coefficient of heat transfer at the water-air
interface.

[20] Heat transfer at the bottom boundary is normal to the
ice-water interface and follows a kinematic Stefan condition
for boundary melting

�*L*D*
0


*
@(h – D)
@t

= q*|z=h–D – q*
I , (11)

where �* is the density of ice (assumed equal to the density
of water) and L* is the latent heat of fusion.

[21] The heat flux through the glacier q*
I is modeled by

q*
I = –

k*
I (T*

w – T*
G)

W* = –
k*

I�T*
G

W* , (12)

where T*
w, T*

G are the mean air and bulk glacier ice tempera-
tures, W* is a conductive boundary layer in the ice that scales
with the flow depth D*

0, and k*
I is thermal conductivity.

[22] Because supraglacial stream water is strongly
buffered toward 0ıC [Isenko et al., 2005], the water temper-
ature is a good approximation to the ice melting temperature
in equation (12). We thus neglect diurnal fluctuations in
stream water temperature. In supraglacial streams, �T*

G
will be a function of latitude and altitude, close to zero in
temperate glaciers and larger in polar settings.

[23] The characteristic time for channel lowering is a
melting timescale, 
 *

melt = L*D*
0/U*3

0 , which is far greater
than the timescale for advection 
 *

advect = B*
0/U*

0. Thus, the
problem of flow in supraglacial streams is largely decoupled
from bank and basal melting. However, this balance sets the
equilibrium depth of the channel and thus determines the
flow field.

[24] Dissipation hai in the stream is modeled following
Parker [1975]:

hai =
�sU + �nV

D
, (13)

with the near-bed shear stress terms (�s, �n) represented as

(�s, �n) =
(�*

s , �*
n )

�* U*2
0

= Cf U (U, V). (14)

[25] The friction factor Cf is given by an empirical
approximation for rough-walled pipe flow [Colebrook,
1939; Parker, 1975]:

(Cf)–1/2 = –2 log

 
�*

3.7D* +
2.5

Re
p

Cf

!
. (15)

The Reynolds number is Re = U*
0D*/�*, with �* the water

kinematic viscosity and �* a characteristic roughness height
of the channel walls.

[26] Inserting models (11)–(15) into equation (9) gives the
final energy equation, balancing the divergence of heat from
the channel cross-section boundary with internal frictional
dissipation:

…0
@(h – D)
@t

= …1

�
NUD

@U
@s

+ VD
@U
@n

�

–
…1

ˇ

�
N
@

@s

�
NUD2 @U

@s

�
+
@

@n

�
UD2 @U

@n

�

+ �0N�UD2 @U
@n

�

+…2
1
W

–…3 – CfU3. (16)

[27] The dimensionless numbers

…0 =
L*D*

0


*U*3
0

, …1 =
J *c*

p�T*
G

ˇU*
0

,

…2 =
k*

I�T*
G

D*
0�

*U*3
0

, …3 =
	*

E�T*
a

�*U*3
0

, (17)

compare dissipation with melting over time (…0), advection
of mean temperature (…1), conduction in the ice (…2), and
solar forcing (…3). We use the melting timescale 
 * = 
*

melt =
LD*

0/U*3
0 so that…0 = 1 in what follows. For a range of phys-

ical parameter values (Table 2), all the terms that appear on
the right-hand side of equation (16) are of similar magnitude.
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3.4. Lateral Channel Migration and
Boundary Conditions

[28] A kinematic (Stefan) condition governs the lateral
migration of the channel bank y*

b on the melting timescale,
normal to the lateral channel boundaries:

�*L* @y*
b

@t*
= q*

w – q*
I at n* ˙ B*

0, (18)

where q*
w and q*

I are the lateral heat fluxes at the ice-water
interface through water and ice.

[29] Heat transfer at the bank scales with boundary layer
thickness `*, which depends on flow Reynolds number to
some power ˛ as ` � Re–˛ .

q*
w �

�T*
G

`* = C*�T*
GRe˛ = C*�T*

G

�U*D*

�*

�˛
, (19)

with C* a dimensional scaling factor.
[30] Heat lost to ice is given by equation (12), but with the

opposite sign because of how channel migration is defined.
This implies that the thermal boundary layer in glacier ice
is similar on the sides and the bottom of the stream. In
dimensionless form, the lateral migration condition is

…0ˇ
@yb

@t
= …4(UD)˛ –…2

1
W

, (20)

where

…4 =
C*�T*

GU*˛–3
0 D*˛

0
�*�*˛ (21)

is a dimensionless ratio of melting and boundary layer heat
transfer at the channel walls. We use ˛ = 0.5 for turbulent
flow [Schlichting, 1960].

[31] The governing equations (5) and (16) contain four
unknown flow variables and are closed with four bound-
ary conditions. We therefore supplement equation (20) with
Dirichlet conditions stating that the channel walls are imper-
meable to flow:

V = 0 at n = ˙1. (22)

[32] Implicit in our model development is the assumption
that a steady channel shape is maintained, which requires
that large-scale lowering of the glacier surface keeps pace
with lateral migration to maintain constant channel width.
This assumption is grounded in observations of nearly con-
stant width channels (Figure 2) and is similar to early allu-
vial meandering studies [Blondeaux and Seminara, 1985;
Seminara, 2006] that separate the problem of meander for-
mation from that of channel geometry. In our case this
assumption implies that lowering of the channel relative to
the glacier surface S* [Parker, 1975] (Figure 2) is propor-
tional to the lateral migration of channel bank y*

b:

@y*
b

@t*
= Cb

�
@S*

@t*
–
@(h* – D*)

@t*

�
, (23)

where Cb is a parameter of order unity. Our prob-
lem is thus completely specified, with control parameters
…0,…1,…2,…3,…4, ˇ, and Fr.

4. Linear Stability Analysis
[33] We now perform a linear stability analysis on govern-

ing equations (5) and (16), in a similar manner to Blondeaux
and Seminara [1985], where further details may be found.
We examine a channel whose centerline exhibits small-
amplitude perturbations, a straight base state, and investigate
the conditions for these perturbations to grow in time. We
make the harmonic perturbation (noting that here and else-
where the complex conjugate of the perturbations must be
added to form a real quantity)

� =
1

R0
ei(�ms–!t), (24)

where 
m is a nondimensional meander wave number scaled
by the half width B*

0 and ! is a complex frequency that
dictates the growth rate as well as propagation direction and
speed of harmonic disturbances.

[34] The channel centerline is perturbed as

yc = " ei(kx–!t), (25)

where yc, ", k, and x are quantities normalized by the half
width B*

0 and " � 1 is a small parameter for the Taylor
expansions involved in the linearization.

[35] For this assumption to hold, we must also have

�0 = k2", 
m = k + O("2k2), s = x + O("2k2). (26)

We follow Blondeaux and Seminara [1985] in assuming that
the flow is fully developed in the s direction, with no sec-
ondary flow. We perturb the flow variables (U, V, h, D) as an
expansion in ":

(U, V, h, D) = (1, 0, h0, 1) + " (A1,B1,H1,D1) ei(kx–!t) + O("2k2),
(27)

where A1, B1, H1, D1 are all functions of n alone and h0 is
the nondimensional unperturbed depth.

[36] The thermal boundary layers in ice surrounding the
stream W are assumed to track perturbations in the flow
depth D0 and channel lateral boundaries, respectively, with
base states that scale with the flow depth. These are modeled
by

W = 1 + "D1ei(kx–!t) + O("2k2). (28)

Expanding Cf as a function of U and D in powers of ",
we have

Cf = C0 + "
@Cf

@U
@U
@"

ˇ̌̌
ˇ
"=0

+ "
@Cf

@D
@D
@"

ˇ̌̌
ˇ
"=0

+ O("2). (29)

This gives

�s = C0

�
1 + "(s1A1 + s2D1)ei(�ms–!t)

�
+ O("2)

�n = " B1C0ei(
ms – !t) + O("2) (30)

where

s1 = 2 +
1

C0

@Cf

@U , s2 =
1

C0

@Cf

@D
. (31)

The zeroth-order friction parameter C0 as well as the deriva-
tives @Cf/@U and @Cf/@D may be evaluated in closed form
using the principal solution for w in z = wew.
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4.1. Solution of the Linearized Problem
[37] Substituting all the expansions into the governing

differential system (5) and (16), at O("0), we find the
uniform flow solution and energy balance within the stream:

1
Fr2

dh0

ds
= –ˇC0, (32)

…0
dh0

dt
= …2 –…3 – C0 (33)

In equation (33), a nonzero right-hand side sets the average
lowering rate of the stream relative to glacier surface low-
ering [Parker, 1975]. Background lowering of the glacier
surface enters through …2 and …3, with …3 measuring net
solar radiation. We neglect relative motion between stream
lowering and ice surface lowering.

[38] At O("1), we have2
6664

a1
d
dn 0 a1

a2 0 a3 a4

0 a5 a6
d
dn 0

a7 + a8
d2

dn2 0 a9 a10

3
7775
2
6664
A1
B1
H1
D1

3
7775 =

2
6664

0
–n
2

m�0


2
m

0

3
7775 . (34)

with �0 = ˇC0, and the coefficients ai (i = 1, 2, : : : , 10)
defined by

a1 = i
m, a2 = i
m + �0s1,

a3 = i�m
Fr2 , a4 = �0(s2 – 1),

a5 = i
m + �0, a6 = 1
Fr2 ,

a7 = C0(s1 + 1) –…1(i
m + 
2
m/ˇ),

a8 = …1/ˇ, a9 = –i!…0

a10 = C0s2 + i!…0 +…2.

9>>>>>>>>>=
>>>>>>>>>;

(35)

By manipulating this system, we obtain a simpler fourth-
order equation in B1

†0B1 +†2
d2B1

dn2 +†4
d4B1

dn4 = � (36)

where

†0 = a5

�
a10 – a7 –

(a4 – a2)a9

a3

�
, (37)

†2 = –a5a8 +
a6(a2a10 – a7a4)

a1a3
, (38)

†4 =
–a4a6a8

a1a3
, (39)

� = 
2
m

�
(a10 – a7)

�
a6�0

a3
+ 1
�

–
a9

a3
(a4 – a2)

	
. (40)

This is coupled to equations in the other variables. Equation
(36) has the form of a forced linear oscillator, which is also
characteristic of alluvial meander models [Blondeaux and
Seminara, 1985].

[39] With some manipulation, the boundary conditions
equations (20) and (22) at O("1) become

d2B1

dn2 = � at n = ˙1, (41)

B1 = 0 at n = ˙1, (42)

where

� =
a1…2


2
m(a6�0 + a3)

a6(a2a3…2 – (a4 – a2)˛…4)
. (43)

We solve the differential equation (36) with boundary
conditions (41) and (42) giving

B1(n) =
�

†0
+ C1 cosh (�+n) + C2 cosh (�–n), (44)

where

�˙ =

0
B@–†2 ˙

q
†2

2 – 4†0†4

2†4

1
CA

1/2

, (45)

and

C1 =
�†0 + �2

– �

cosh (�+) †0 (�2
+ – �2

– )
, (46)

C2 = –
�†0 + �2

+ �

cosh (�–) †0 (�2
+ – �2

– )
. (47)

Perturbation amplitudes A1, D1, and H1 follow from substi-
tuting equation (44) into (34).

[40] We accept only those perturbations that do not
change the discharge of the stream and the overall sur-
face slope. These are expressed at linear order through the
following integral conditions:

Z n=1

n=–1
A1(n) + D1(n) dn = 0, (48)

Z n=1

n=–1
H1(n) – D1(n) dn = 0, (49)

which state that perturbations to the flow field do not affect
the overall discharge and surface slope, respectively. A1,H1,
and D1 are all odd functions of n and thus satisfy these
conditions.

[41] Perturbations to the flow field will lead to harmonic
meandering instabilities on the timescale of melting. The
linear contribution to this balance governs the amplification
of perturbations to the channel centerline, while the zeroth
order contribution is lateral migration in the unperturbed
state. The channel width is assumed to be fixed

yb|n=˙1 = yc ˙ 1, (50)

and we also assume that the zeroth-order lateral migration
is balanced by glacial surface lowering so that dS*/dt* =
dh*

0/dt*. At linear order, however, equation (23) becomes
(evaluated at the outside of the meandering bend)

1/Cb = H1(1) – D1(1). (51)

Equation (51) provides an implicit dispersion relation
between! and 
m for acceptable growth rate amplitudes (the
real part of i!) and propagation velocities (the imaginary
part of i!) of harmonic channel perturbations.
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Figure 3. Solution to the dispersion relation equation (51)
as a function of wave number 
m for U*

0 = 1 m/s, B*
0 =

0.5 m, D*
0 = 0.2 m, J * = 10–4 s/m, �T*

G = 0.025ıC, C* =
0.1 W/m2 K, Cb = 0.25. Solid curve (real part of i!) shows
that growth rate of perturbations has a single maximum wave
number, while dashed curve (imaginary part of i!) shows
downstream meander propagation.

5. Results
[42] A typical solution to the dispersion relation equation

(49) is given in Figure 3, in which we see that the plot-
ted most unstable wave number also exhibits downstream
propagation (imaginary part of i! is positive) with growth
rates similar to the propagation speed (real and imaginary
parts of i! are similar magnitude). Both downstream and
upstream meander propagation occur in our model, although
the parameter space of realistic flow variables exhibits
downstream propagation. We explore the behavior of the
dispersion relation by varying flow variables, channel aspect
ratio, and adjustable constants in the governing equations.

[43] We find that for a range of realistic parameters
(Table 2), channel bank perturbations are unstable with a
maximum wave number, indicating a fastest-growing mode.

The parameter dependencies of this most unstable wave
number are shown in Figure 4, plotting the dimensional
wavelength (2� /
*

m) as a function of control parameters in
the problem. The channel aspect ratio ˇ generally exerts
greatest control on meander wavelength, and Figure 4 com-
pares the effect of control parameters Fr, …1 and …4 with ˇ.
Parameter …2 is generally small compared to other thermal
parameters in the parameter range of interest, and …3 does
not enter the O("1) solution. In Figure 4, we take �T*

G =
0.025ıC (making the role of conductive heat losses small—
this is chosen to match field data, see section 6), J * =
10–4 s/m, C* = 0.1 W/m2 K, channel half width B* = 0.5 m,
and all other parameters as in Table 2.

[44] We see that meander wavelength varies by about a
factor of 10 for the range of parameters considered, includ-
ing a range of wavelengths (2� /
*

m = (8.014 ˙ 0.517)2B*
0)

that is consistent with observed meander wavelengths (gray
shading, see section 6). Increasing ˇ generally decreases
meander wavelength, while increasing the Froude number
decreases the wavelength (Figure 4a). At low Froude num-
ber, perturbations are stable (real part of i! < 0) indicating
no meandering. The transition from stable to unstable per-
turbations has a weak dependence on aspect ratio ˇ. The
transition to meandering occurs around Fr � 0.2 for ˇ � 1
and around Fr � 0.4 for ˇ � 5. …1 (increasing dissipation
relative to temperature advection toward boundaries) and
…4 (coupling to lateral boundary migration) have generally
weak influence on meander wavelength, but in both cases
a transition to no meandering occurs as these parameters
increase (Figure 4b).

[45] We also explore the effect of varying adjustable
constants J *, C*, Cb and water temperature difference �T*

G
(Figure 5). Meander wavelength generally increases with
increasing �T*

G, although the dependence diminishes for
large temperature differences and the hydraulic parameters
considered (U*

0 = 0.5 – 1.5 m/s, D*
0 = 0.2 m, B*

0 = 0.5 m,
J * = 10–4 s/m, C* = 0.1 W/m2 K in Figure 5a). At low
velocities, increasing�T*

G can make perturbations stable and
shut off meandering. Meander wavelength increases with J *

(Figure 5b, fixing �T*
G = 0.025ıC). Coupling constant C*
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Figure 4. Regime diagram for the parameter ranges in Table 1 with B*
0 = 0.5 m, contouring dimensional

wavelength (2� /
*
m, numbered) as a function of (a) Froude number Fr versus aspect ratio ˇ, with gray bar

illustrating the range of wavelengths that are consistent with natural meanders. (b) …1,…4 versus aspect
ratio ˇ. Dashed lines correspond to …4 while solid lines correspond to …1 in the same range. The dotted
lines in both panels signify a transition to stable perturbations (no meander formation). Downstream
meander propagation occurs for all parameter choices in this figure.
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Figure 5. Effect on dimensional meander wavelength 2� /
*
m of varying (a) bulk temperature difference

�T*
G and (b) coupling constant J * for temperature field advection. Curves vary the characteristic velocity

scale U*
0. Dotted lines signify the transition to stable perturbations for U*

0 = 0.5 m/s in Figure 5a and for
U*

0 = 1.5 m/s in Figure 5b. Parameters not listed are the same as in Figure 3.

and ratio of lateral to vertical heat transfer Cb do not affect
predicted meander wavelengths more than 5% for the range
of parameters explored here (Table 2).

6. Discussion
[46] In our model, the origin of meandering in

supraglacial channels is an instability driven by channel cur-
vature that enhances heat transfer (hence melting) along the
outside of bends. The meander wavelength and amplitude
are modulated by the glacier’s surface slope which sets the
total potential energy available for flow, a result suggested
by some field studies [e.g., Ferguson, 1973]. Flow variables
in general are not independent: A surface energy balance
connects solar radiation to total available meltwater flux and
thus flow speed, water temperature, and channel aspect ratio.
Channel geometry does not remain static in supraglacial
streams, and coevolves with variable solar forcing. We do
not address these complexities but rather identify a range of
flow conditions for which meandering can occur.

[47] However, even in the context of this parameter study,
it is interesting to compare model results with field data.
Detailed hydraulic parameters are poorly constrained in gen-
eral for supraglacial streams, but there are a number of stud-
ies that provide meander wavelengths and channel widths
[Leopold and Wolman, 1960; Parker, 1975; Knighton, 1981;
Marston, 1983]. We have compiled these meander wave-
length and channel width data and collected additional data
from the Juneau Icefield and from IKONOS satellite pho-
tos (July 2007) of the West Greenland Icesheet. These
data are plotted in Figure 6 and show a power law rela-
tionship between channel width and meander wavelength
for supraglacial streams over three orders of magnitude in
channel width (Figure 6). Such behavior is consistent with
the power law channel width versus meander wavelength
relationship also found for alluvial and bedrock meanders.
Although the coefficients of these empirical relations appear
to differ by up to an order of magnitude as the composition
of the erodible substrate varies [Leopold et al., 1964], the
power does not differ and remains similar to unity.

[48] The paucity of available data on supraglacial streams
makes it premature to evaluate the significance of the data
in Figure 6 in the context of other meandering systems.

A direct comparison between our model and the observed
supraglacial channel widths and wavelengths seen in the
field is also not attempted here, as the covariance of flow
parameters (the hydraulic geometry and slope variations) for
supraglacial streams is not yet well constrained. However,
we can find a range of parameters (Figure 4a, gray bar)
that are consistent with conditions often found in natural
channels and that reproduce the empirical scaling between
channel width and supraglacial meander wavelength in
Figure 6. We find that it is necessary to choose a low tem-
perature difference between stream water and boundary ice
to generate meandering wavelengths that match field data
(�T*

G less than 0.05ıC, Figure 5a). Because water tem-
perature is strongly buffered toward zero in these systems,
such small temperature differences may be reasonable. How-
ever, it is also possible that higher order effects on the
curvature-induced redistribution of heat within the stream
(e.g., secondary current not modeled here [Seminara, 2006])
may be important for the details of realistic meander wave-
length prediction. We expect that a more complete treatment
of variable glacier surface energy balance and of flow within
the stream may better constrain the temporal evolution of
meanders. However, the present model appears satisfactory
in predicting the onset of lateral channel instabilities.

[49] Agreement between modeled and observed mean-
der wavelength/width scaling allows us to constrain the
mechanisms for meander formation in supraglacial streams
(relative magnitude of forcing terms for model solutions
that overlap with observations). The gray bar in Figure 4
shows that meanders form when flow is slightly subcriti-
cal to supercritical (Fr >� 0.4) with channel aspect ratios
ˇ � 2.5 – 5. Comparing the relative magnitudes of the
thermal control parameters, we see that the advective terms
…1,…4 likely dominate conductive losses through ice (…2)
when balanced against dissipation. Thus, the enhanced heat
production through dissipation and increased lateral heat
transfer induced by curvature are the primary thermal drivers
of meandering.

[50] The present model differs from previous modeling
by Parker [1975] in two important aspects. First, we find
that meanders migrate downstream, consistent with our field
observations and those of others [Marston, 1983]. Sec-
ond, we find that meanders also occur for subcritical flow
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Figure 6. Compilation of supraglacial stream channel width versus meander wavelength derived from
field studies, using the Levenberg-Marquardt algorithm for the power law fit. Standard error in the
intercept is 0.517 and for the exponent is 0.043. Data sources: a. Authors’ measurements; b. Marston
[1983]; c. Knighton [1981]; d. Leopold and Wolman [1960]; e. Parker [1975]; f. pixel counting IKONOS
1 m resolution satellite images, taken July 2007.

(Fr < 1). Neither of these conditions were predicted by the
linear stability analysis of Parker [1975], which did not
solve explicitly for the stream velocity field or account
for the effects of channel curvature on flow. Thus, as in
alluvial meanders [Seminara, 2006], consideration of the
coupling between evolving channel geometry and the stream
flow field appears to be an important aspect of modeling
supraglacial stream morphodynamics.

[51] The rate for meander development may be estimated
from our model through the growth rate of linear pertur-
bations. For the range of parameters listed in Table 1, we
find maximum growth rates in range of 1–10 mm/h. Despite
the implicit neglect of time-dependent forcing in this esti-
mate, this is roughly consistent with measured maximum
supraglacial stream incision rates of several centimeters per
day [Marston, 1983] in warm temperate setting where total
yearly lowering of the ablation zone may exceed 10 m
(E. Hood, personal communication, 2013). Such rapid
incision raises the possibility that the drainage network
as well as the planform geometry of supraglacial streams
may evolve significantly over the course of one melt sea-
son. While there are limited data suggesting that this does
occur on multiyear timescales [Leopold and Wolman, 1960],
intraseason reorganization of the supraglacial network could
also occur. In the context of high volume systems such as on
the Greenland ice sheet, this dynamic reorganization inter-
acts with englacial and subglacial meltwater routing through
the drainage of supraglacial lakes [Box and Ski, 2007], which
may affect the large-scale dynamics of ice sheet movement
[der Wal et al., 2008].

[52] Predicted depth perturbations are antisymmetric with
respect to the channel centerline, deepening on the out-
side edges of bends and shallowing on the insides. It is the
addition of background lowering of the channel from solar

forcing that sets the balance between lateral and vertical inci-
sion. Channel depth below the glacier surface in our model
is set by the difference between surface lowering rate and
the zeroth-order stream lowering rate dS*/dt* – dh*

0/dt* aris-
ing from equation (23). This difference may generally be a
small negative quantity (net lowering), due to dissipation of
heat in the stream and albedo differences between water and
ice. Although we anticipate that in some cases (for example,
warm rainwater input), significant deepening of channels
below the surface may occur [Jarosch and Gudmundsson,
2012], in the present study we neglect the relative incision of
channels with respect to the surface. For 	�Ta in the range
of � 100–500 W/m2 as the solar forcing for stream incision,
perturbed lateral migration rates are proportional to vertical
incision perturbations through equation (23), and equation
(33) predicts lowering at rates similar to migration speeds.
This is consistent with the observation of approximately
constant channel width in supraglacial streams. However,
we do not rule out that variable absorbed solar radiation and
a time-varying energy balance are reflected in downstream
variations that do exist in channel width.

[53] Supraglacial streams are distinct from other mean-
dering fluvial channels in several important ways. First, the
instability driving lateral channel migration is thermal rather
than mechanical, such that hydrodynamics in the stream are
coupled to bank erosion through forced spatial variations in
heat flux at the channel wall. This is fundamentally differ-
ent than the coupling of hydrodynamics to erosion through
sediment transport that occurs in alluvial settings, although
it may be more similar to dissolution meanders in Karst
settings [Ford and Williams, 2007].

[54] A distinctive feature of supraglacial streams is that
the discharge is strongly diurnal, especially for streams in
which rain or other stored meltwater does not constitute
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a large fraction of the total water mass. A supraglacial
stream will experience a smoothly varying hydrograph each
day, with the same period but slightly out of phase with
solar forcing [Marston, 1983]. To attain a regular sinusoidal
meandering planform, then, would imply that this pattern
is either set early on or is set by the average daily maxi-
mum discharge. We believe that the latter case is more likely,
because the timescale over which meanders adjust their
planform geometry is rapid [Marston, 1983]. We also note
that meander wavelengths are not generally constant over
the full length of a reach (e.g., Figure 1a). The parameter
study here predicts that as increasing slope increases aver-
age streamwise velocities, dominant meander wavelengths
will get smaller. However, the regime diagram of Figure 4a
suggests that all else constant, the velocity dependence of
meander wavelength becomes negligible for high velocity
flows.

[55] Supraglacial channels represent a mechanistic end
member in the spectrum of natural channelization features
that exhibit meandering (only thermal erosion), which also
includes lava tubes and flows, alluvial rivers, and dissolution
channels. A metric relating supraglacial channel morphol-
ogy to the rates and mechanisms of incision would be a
useful remote means of monitoring seasonal meltwater rout-
ing on ice sheets, but may be applicable in a much broader
planetary context as well. On Earth, it has been suggested
that sinuosity of bedrock channels varies as a function of
underlying geology and may contain a climate signature
[Stark et al., 2010]. Some sinuous channels on Mars record
meandering lava flows, as they do on the Moon [Hauber
et al., 2009], but others may record fluvial activity from a
wetter period of Martian history [Malin and Edgett, 2003].
On Titan, present-day cycling of liquid methane is likely
responsible for meandering channels on the icy surface
[Lunine and Atreya, 2008], but the rates and mechanisms
of incision are currently unknown. The work here proposes
mechanistic controls on meandering for thermally eroded
supraglacial streams. If it is possible to separate the domi-
nant scales of thermally eroded meanders from those formed
through mechanical erosion (for example, through the large
intercept of the relationship between width and meander
wavelength in alluvial rivers [Leopold and Wolman, 1960]),
this can be used to better understand landscape evolution on
terrestrial planets and moons in our solar system that exhibit
sinuous channels.
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