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[1] Continental shelves and coastal plains are large persistent depositional landforms,
which are stationary (nonmigrating) at their proximal ends and characterized by relatively
steady long-term growth. In detail, however, their surface form and stratigraphic record is
built of transient freely migrating landscape elements. We derive the timescales of
crossover from transient to persistent topographic forms using empirical scaling relations
for mean sediment accumulation as a function of averaging time, based upon tens of
thousands of empirical measurements. A stochastic (noisy) diffusion model with drift
predicts all the gross features of the empirical data. It satisfies first-order goals of
describing both the surface morphology and stratigraphic completeness of depositional
systems. The model crossover from noise-dominated to drift-dominated behavior
corresponds to the empirical crossover from transport-dominated (autogenic) transient
behavior to accommodation-dominated (subsidence) persistent behavior, which begins at
timescales of 102–103 years and is complete by scales of 104–105 years. Because the
same long-term scaling behavior emerges for off-shelf environments, it is not entirely
explicable by steady subsidence. Fluctuations in sediment supply and routing probably
have significant influence. At short-term (transient) scales, the exponents of the scaling
relations vary with environment, particularly the prevalence of channeled sediment
transport. At very small scales, modeling sediment transport as a diffusive process is
inappropriate. Our results indicate that some of the timescales of interest for climate
interpretation may fall within the transitional interval where neither accommodation nor
transport processes are negligible and deconvolution is most challenging.
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1. Introduction

[2] The continental shelf of passive margin settings and
the adjoining coastal plain form a large, long-term, leaky
trap for terrigenous sediment. At scales of millions of years,
the trap grows by persistent tectonic subsidence of the
continental margin, augmented by the growing load of
sediment. In detail, the aggrading top of the trapped pile
of sediment responds to a cascade of transitory events and
unsteady processes. Severe weather events, biotic changes,
and climate fluctuations, for example, combine with the
internally generated (autogenic) variability in deposition
and erosion [Lyons, 2004; Kim et al., 2006] to generate a
spectrum of transient landscape elements. These are the
ripples, dunes, sand waves, channels, and bars, whose
migratory dynamics can be directly monitored on human
timescales. With long-term net deposition, these features
determine the form of buried sediment layers that build up

larger and more persistent landscape elements such as fans,
deltas and whole shelves. At what scale does transience give
way to persistence in this landscape? The answer lies
beyond direct observation but is recoverable from the nested
hierarchy of beds and bedding planes in the buried strati-
graphic record. As revealed from outcrop scale to seismic
profiles of whole shelves, the bedding planes are a patch-
work record of former landscape surfaces.
[3] Stratigraphers recognize fractal properties in the ver-

tical succession of sedimentary layers and buried bedding
planes [Plotnick, 1986; Korvin, 1992; Schlager, 2004;
Bailey and Smith, 2005]. In particular, mean accumulation
rates have a strong negative dependence on the averaging
time [Gilluly, 1949; Reineck, 1960] that can be described by
power law functions [Sadler, 1981, 1993]. The marine shelf
maintains shallow depths for periods that encompass enor-
mous numbers of beds. Because the bedding surfaces form
during intervals of erosion or nondeposition, the beds
between them must have accumulated at rates of fill that
exceed the long-term trapping rate (accommodation) of
sediment at the seafloor. Individual beds record transient
surface features; in aggregate, they record more persistent
features. The transition to persistence may be sought in the
scaling relations for mean accumulation. It seems reason-
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able to expect that a single model may be able to account for
the both the morphology of the surface landscape and the
incompleteness of sedimentary deposits built by the aggrad-
ing surface.
[4] We present empirical scaling relations that summarize

thousands of published measurements of sediment aggrada-
tion on coastal plains andmarine shelf bottoms (e.g., Figure 1).
Single power laws do not satisfactorily fit the full range of
these data. Rather, there is a rollover between two asymp-
totic regimes with different slopes at the long-term and
short-term ends. We recognize corresponding crossovers in
the dominant processes and in the topographic forms. With
increasing timescale, the determinative process changes
from sediment transport to accommodation. The surface
topography changes from transient fully mobile bed forms
(e.g., ripples, bars, and leveed channels, which have both
erosional and depositional portions) to more persistent
forms that are anchored at their upstream ends (e.g., fans,
deltas and whole shelves).
[5] The following sections first explain the nature of the

empirical data, then review three approaches to modeling
such data: one from sedimentology, another from stratigra-
phy, and a third that combines elements of both. We show
how a noisy diffusion model, previously fit to short-term
floodplain deposits [Pelletier and Turcotte, 1997], can
reproduce the rollover at longer time spans. By comparing
floodplain data with those from marine shelf and deeper off-
shelf environments, we gain further insight from short-
comings of the model.

2. Data and Model Representation

[6] Power laws that describe stratigraphic, geomorphic,
and paleontologic change have traditionally been illustrated

by plotting mean rates of change (e.g., sediment surface
aggradation rate, @h/@t) against the time spans (T) of
measurement [Sadler, 1981; Gingerich, 1983; Gardner et
al., 1987]. Plotting a fraction (length/time) against its
denominator (time) upset some researchers, but it effectively
revealed that no single rate measurement could reliably be
used as a general conversion factor between observed change
(e.g., preserved stratigraphic thickness) and elapsed time for
an unsteady process. With enough measurements to deter-
mine the slope of the power law, however, real insight about
the nature of the unsteadiness may emerge [Sadler and
Strauss, 1990; Sadler, 1999]. In order to avoid spurious
correlation coefficients [Kenny, 1982] and the condensation
of the length scale [Sheets and Mitchell, 2001], we present
plots of the primary variables: preserved sediment thickness
(or elevation change in the case of accommodation processes),
D, against time span. The exponents of power laws in the
two graphical formats have a straightforward relationship
(Figure 2). Add 1.0 to the exponent of the rate–time span
plot to determine the corresponding exponent on the
length–time span plot. For example, the �0.5 slopes that
characterize stationary random walks on a rate–time span
plot (@h/@t � T�0.5) transform to a +0.5 gradient on the
length–time span plot (D � T 0.5).

3. Empirical Scaling Relations

3.1. Nature of the Empirical Data

[7] Figures 1 and 3–5 summarize empirical estimates of
scaling relations for sediment accumulation and accommo-
dation at the continental margin. They are part of an active
database project that currently holds about 350,000 rate
estimates for processes crucial to understanding the con-
struction of the sedimentary stratigraphic record [Sadler,
1994, 1999]. Although a few measurements may suffice to
indicate that a power law likely describes the relationship of
mean accumulation and averaging time, individual rate
measurements vary considerably even within a narrow
window of averaging time. Consequently, huge compila-
tions are required to achieve stable estimates of the scaling
exponents. Data must be combined from numerous locali-
ties and subdivision of the data by environment or process
must remain very coarse. The resulting plots describe the
average stratigraphic record for major subdivisions of
continental margins. The actual records at real places will
surely depart from these averages which serve as baseline
expectations and a target for general models. A few more
comments about the nature of these data are in order as a
check against overinterpretation.
[8] Measurement method and ease vary with time span.

Most estimates for time intervals from seconds to a century
come from direct observations or the comparison of historic
charts. Radiocarbon dates support estimates for periods
from centuries to about 50,000 years. From this scale to
intervals of a few 100,000 years, thermoluminescence dates

Figure 1. Empirical data for sediment accumulation on marine shelf sea bottoms. (a) Scatterplot of individual
measurements. (b) Median (thick line) with 95th (thin line), 75th (top of gray band), and 25th percentiles (base of gray
band) values. (c) Arithmetic mean (thick line) and one standard deviation (gray band) values. Mean, standard deviation, and
percentile values in Figures 1b and 1c are determined for five time span units per logarithm cycle, with no overlap (i.e., no
smoothing). Mean and standard deviation are determined for untransformed values (not their logarithms).

Figure 2. Comparison of scaling curves for plots of
(a) mean net accumulation rate, @h/@t, and (b) mean net
preserved thickness, D, against averaging time, T. Model
curves are for (curve i) random walks [e.g., Strauss and
Sadler, 1989]; (curve ii) noisy diffusion [e.g., Pelletier and
Turcotte, 1997]; and (curve iii) sinusoidal models [e.g.,
Sadler and Strauss, 1990; Sadler, 1999]. Each model is
added to a steady trend or ‘‘drift’’ (curve iv), to which mean
values roll over in the long term.
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and calibrated isotopic fluctuations are the most common
source of age information. Calibrated paleomagnetic rever-
sals are useful from these scales to tens of millions of years,
where they become increasingly supplemented by biostra-
tigraphy calibrated using K-Ar and U-Pb ages. Excluded are
rates based solely on assumptions about uniform periodicity
in cyclic sediments and age estimates that assume steady
accumulation.

[9] Data are relatively sparse at scales of 50,000 to
200,000 years (Figure 1a), which fall near the limits of
readily available dating techniques. For continental shelf
sediments, intervals of 20–50 years are also underrepre-
sented, but this difficulty vanishes for alluvial plains, which
are more readily accessible to direct observation. Data
become sparse a both extremes: there is a short-term limit
to useful measurements and a long-term limit to the persis-
tence of continental margin environments. The short-term

Figure 3. Empirical scaling relations for mean aggradation on marine shelf systems compared with off-
shelf accumulation on continental rises, the abyssal plains, and the remote ocean floors where red clays
accumulate. Arithmetic means are determined for five nonoverlapping bins per log cycle; gray envelope
is fit subjectively to mean shelf values, exclusive of outliers. Data sources are as discussed by Sadler
[1993, 1999].

Figure 4. Empirical scaling relations for mean aggradation on channeled coastal plains (solid line) and
deltas (dashed line). Means are determined for five nonoverlapping bins per log cycle. Gray band is fit
subjectively to include all but outlier means. Data sources are as discussed by Sadler [1993, 1999].
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limit of practical measurement tends to increase as water
depth increases and as accumulation rate decreases. Obvi-
ously, zero rates and immeasurably slow rates are under-
represented at all scales, but to what extent? That question
motivated the original compilation effort: the significance of
the zero rates at any timescale is seen in the reduced mean
values at longer timescales. Intervals of near-zero or nega-
tive accumulation (bedding surfaces) at one scale lie within
the averaging window at longer spans. They explain the
negative association of mean accumulation with time span
which leads to estimates of the incompleteness of the
stratigraphic record [Reineck, 1960; Sadler, 1981]. In order
to manage the changes in data density and source from one
time span to another, our analyses are based on arithmetic
means of the observed values in narrow logarithmic bins.
[10] Time span cannot be fully independent of age in

these data. Closely spaced, high-precision dates are best
obtained from young rocks. Measurements for long time
intervals necessarily include old rocks. The Holocene is
overrepresented in the short-term data. It has been a time of
relative sea level rise in which the least amounts of
terrigenous sediment bypass the shelf system into deeper
water. For very short-term processes, accommodation is
not an issue and the bias becomes irrelevant. Time spans
of 5–15 kyr are resolved in the Pleistocene, so data capture
a full range of sea level dynamics. The weak dependence of
time span upon age cannot explain the first-order trends in
the data [Sadler, 1981, 1994].

3.2. Scaling Relations for Accumulation

[11] For steady sediment accumulation described as a
constant (nonfluctuating) drift, the cumulative sedimentary
thickness would increase linearly with time (D � T1). This
case would represent an idealized basin having steady
subsidence where deposition is equal to accommodation
everywhere. We might expect natural depositional systems

at equilibrium to tend toward this behavior. Unsteadiness in
deposition causes deposit thickness to increase more slowly
than linearly with time (D � T <1), where the nature of the
unsteadiness determines the scaling exponent. In the regime
where fluctuations dominate, we expect such a less-than-
linear scaling (see below). We anticipate then that at least
two processes, fluctuating transport and subsidence, exert
influence on the accumulation of sediment at short and long
times, respectively (Figure 2). Such a process transition
might be reflected in the natural data of sediment accumu-
lation in basins.
[12] No single diagram can resolve all aspects of these

large empirical data sets. We provide an illustrative suite of
diagrams for the marine shelf data (Figure 1). Figure 1a
shows the clustering of the measurements that is imposed by
uneven opportunities for dating. The frequency distribution
of values within these dense clusters is better represented by
median, percentile, mean and standard deviation values
(Figures 1b and 1c). Even though means are more sensitive
to extreme values than medians, the trend of arithmetic
mean values generally parallels the 95th, 75th, and 50th
percentile contours. Other environments and processes are
summarized by the mean values only (Figures 3–5).
[13] The empirical data plot as lines that curve gently, but

significantly. Single power law trend lines fit these data with
high correlation coefficients, however the residual misfit is
not random. Rather, the empirical trends are systematically
steeper at the long-term end than at the short-term end
(Table 1). An acceptably random distribution of residuals is
most simply achieved by fitting two power law segments
with a curved crossover at scales from 102 to 104 years (e.g.,
Figure 1). The exponents of the pairs of trend lines fitted to
the data are sensitive to the selection of the crossover time
span. Nevertheless, they place limits on the gradient of
asymptotes that will be used to evaluate different numerical
models of accumulation. In the long-term limit, models

Figure 5. Empirical scaling relations for mean sea level rise (black line and light-gray band), net
sediment accommodation determined from the depth of peritidal deposits (dashed gray line), and
subsidence (solid gray line). Lines and band are determined as in Figures 3 and 4. Data sources are as
discussed by Sadler [1994].
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must have a gradient steeper than about 0.75 (D � T >0.75),
perhaps a steady trend (D � T 1.0 and @h/@t = constant).
This long-term exponent varies little between environments;
Sadler [1981, 1994] attributed it to accommodation. The
short-term limit may be no steeper than about 0.45 (D �
T <0.45), with short-term exponents varying significantly
with environment.
3.2.1. Marine Shelf and Distal Environments (Figures 1
and 3)
[14] The data for marine shelf systems combine measure-

ments from a broad spectrum of landscape elements that are
traditionally categorized as a function of their size and
shape. In approximate order of increasing size and life span,
they are ripples, megaripples or dunes, sandwaves, bars,
barrier islands, deltas, and shelves. Each may be incorpo-
rated into the surface form and the buried deposits of larger
elements. All generate clinoform bedding surfaces which
stack hierarchically in the stratigraphic record. The first five
migrate freely; their upstream sides are sites of erosion. The
last two grow from an anchored upstream limit and con-
tribute to the empirical data at longer scales than the
transition in scaling exponents. Data from transient, migra-
tory landforms determine the short-term exponents (D �
T <0.45). Smaller short-term exponents characterize accumu-
lation near the shoreface, rather than on marine shelf floors
in general.
[15] Sediment accumulates much more slowly in deeper

water, off-shelf environments, below the reach of surface
storms. Accommodation does not limit accumulation here,
yet the empirical scaling relations for the continental slopes
and rises and the abyssal plain parallel the shelf data at long
time spans (Figure 3). Available data are not sufficient to
determine the short-term exponents of scaling relations in
these deep water environments. Rippled sediment surfaces
are generated by bottom currents on the continental rise
[Hollister and Nowell, 1991] and by turbidity currents on
the abyssal plain. Sparse data for the continental rise

[Sadler, 1993] are consistent with a rollover to smaller
scaling exponents in the short term.
3.2.2. Coastal Plains (Figure 4)
[16] At timescales from 10�3 to 102 years, the scaling

exponent for accumulation on alluvial plains (D � T 0.17) is
significantly smaller than that for marine shelf systems.
Pelletier and Turcotte [1997] obtained a larger value (D �
T 0.24), by fitting one line to all our alluvial data from 10�6

to 105 years. We chose to segment the data with regard for
the full range of averaging times and to isolate the influence
of alluvial channels. Channeled environments dominate the
supporting data (Table 1). Plotted alone, the smaller data set
from floodplain deposits generates a trend that is indistin-
guishable from that for marine shelf systems. Channels
concentrate both erosional and depositional events. They
support larger amplitude bed forms than the floodplain,
but also enforce more negative feedback, alternating fill
and flush intervals. The average fills would appear to
be 0.2–2.0 m thick (the plateau in D values from 10�3 to
102 years); scaling for events shorter than 1 day indicate
steady accumulation (D � T1.0 at timescales from 10�6 to
10�3 years), however these intervals are too short to be
adequately described by a time-averaged model and are not
considered further here.
[17] At time spans longer than 103 years, plots of the

coastal plain, delta, and marine shelf data become indis-
tinguishable. All three environments share the same
accommodation by subsidence. Large deltas support higher
mean accumulation rates, but generate the same long-term
exponents.

3.3. Scaling Relations for Accommodation

[18] In the simplest models of sediment accommodation,
the continental basement surface subsides steadily and the
sea surface oscillates regularly. Shelf sediments fill the
unsteadily increasing accommodation space between these
two surfaces and the scaling relations for accumulation are
modulated by scaling relations for the accommodation

Table 1. Summary of Model Power Law Exponents and Empirical Regressions on Plots of Mean Recorded Thickness

Against Averaging Time Span

Environment/Process

Short Term Long Term Overall

Data CountExponent R2 Exponent R2 Exponent R2

Abyssal red clay 0.83 0.95 2215
Abyssal plain 0.85 0.99 5638
Continental rise 0.37 0.62 0.86 0.97 0.65 0.94 6129
Continental slope 0.80 0.98 8202
Shelf 0.44 0.90 0.76 0.98 0.61 0.98 9632
Shore 0.23 0.56 0.78 0.77 0.43 0.88 10942
Delta 0.44 0.73 0.75 0.91 0.63 0.94 2994
Floodplain 0.48 0.96 1.00 0.84 0.74 0.91 1169
Channeled alluvial plain 0.17 0.51 0.86 0.97 0.46 0.89 11445
Total 58366
Shelf and shore 0.30 0.84 0.81 0.98 0.47 0.93 28776
Shelf, shore, and coastal plain 0.37 0.97 0.78 0.98 0.48 0.93 41390
Subsidence 0.88 0.95 6998
Sediment accommodation 0.10 0.14 0.70 0.92 0.57 0.87 10339
Sea level change 0.02 0.05 0.24 0.82 0.20 0.70 77674
Models

Random walk with drift 0.50 1.0
Noisy diffusion with drift 0.25 1.0
Fixed diffusion with drift variable 1.0
Sinusoid with drift 1.0–0.0 1.0
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processes [Sadler, 1994]. Empirical estimates of subsidence
and rising sea level reveal more complexity, of course, but
still substantiate two basic expectations of the simple model:
the scaling relation for subsidence merges with shelf accu-
mulation in the long term; and the scaling relation for sea
level rise has a much gentler slope (Figure 5).
[19] The scaling relations for subsidence and sea level

rise may be added together to estimate maximum accom-
modation as a function of time span. On logarithmic plots,
the sum closely follows the greater of the two curves and at
time spans beyond 104 years the sea level component
becomes insignificant. At shorter timescales, changes in
sea level can dominate both the marine accommodation
process (Figure 6) and the position of the coastline as base
level for fluvial systems. Falling sea level can eliminate
the space created by subsidence up to time spans about
104 years [Sadler, 1994]. Direct estimates of mean net
accommodation (Figure 5) were made by compiling the age
and modern depth of ancient peritidal deposits [Sadler, 1994].

4. Model Scaling Relations

4.1. Diffusion Model

[20] Researchers have successfully applied a diffusion
equation to model the surface of depositional landscapes.
Although its form may be justified rigorously in the context
of fluvial settings [Paola et al., 1992], the basic one-
dimensional form can be derived by assuming that sediment
flux varies linearly with slope and invoking conservation of
sediment mass to obtain [see Paola, 2000],

@h
@t

¼ v
@2h
@x2

� s; ð1Þ

where h = elevation [L], x = downstream distance [L], s =
subsidence [LT�1] and v = the diffusion coefficient [L2 T�1],
which is assumed to be constant with respect to x. To model,
for example, a fluvial depositional profile in the down-
stream (dip) direction, the input sediment flux, diffusivity,
and subsidence rate must be specified, along with two
boundary conditions. The resulting profile has the form of
an error function, and closely approximates elevation
profiles observed in many natural systems [see Paola,
2000]. One possible justification for applying the diffusion

equation to shelf systems is that the combined long-term
effect of innumerable weather-driven, wave-like events may
resemble diffusive redistribution of sediment [Niederoda et
al., 1995].
[21] The fact that the deterministic equation (1) reprodu-

ces the morphology of depositional profiles implies that
time- and space-varying fluctuations in sediment transport
average out over the long term such that they can be
neglected, at least for a first-order description of landscape
evolution in depositional settings. The time to reach equi-
librium for equation (1) may be approximated as teq = L2/v,
where L = length of the basin. This timescale is a measure of
the time it takes to achieve an equilibrium slope throughout
the depositional profile.
[22] The diffusion model with steady subsidence predicts

that sedimentary thickness increases almost linearly with
time over the entire range and therefore matches the long-
term asymptote (D � T1), but cannot satisfactorily account
for the observed data (Figures 1, 3, and 4) for timescales
less than 103 years. We hypothesize that the inability of (1)
to describe the time-dependent nature of the thickness of
sedimentary bodies is because small-scale fluctuations have
a cumulative effect on the production of stratigraphy. In
other words, errors associated with using (1) average out for
the instantaneous surface morphology, but accumulate in the
preserved record of surfaces. While unsteadiness in depo-
sition and erosion may be due to deterministic nonlinear
dynamics [e.g., Murray and Paola, 1994], this autogenic
behavior is not well understood in basin-scale systems. We
instead explore the descriptive power of a noise term, as
used in stratigraphic models.

4.2. Random Walk Models

[23] Several models of the distribution of hiatuses in
stratigraphic sections represent sediment accumulation by
one-dimensional random walks. The models predict scaling
laws for vertical accumulation rate and for the distribution
of bedding planes as indicators of gaps in the sedimentary
record. Tipper [1983] used a discrete random walk. Strauss
and Sadler [1989] developed the continuous version as a
one-dimensional Brownian motion, i.e., the cumulative sum
of a white noise, &(t), having a mean value (drift), h&i [LT�1],
and a standard deviation, s [L]. The white noise generates
random increments of deposition and erosion (the beds and
bedding planes), whose variability is determined by s. They
are summed to represent the elevation history of the surface
of the accumulating sediment fill, at one place. Successive
values of the elevation are correlated, but the sizes of
successive increments are not related to one another or the
current elevation; the process has no memory. The drift term
has obvious physical relevance. It is the mean of the
independent increments and, for h&i > 0, determines the
long-term accumulation rate of the sediment pile. For
environments at or above wave base, accommodation rate
determines this limit; below wave base, the rate of sediment
supply is the limit. Unlike a diffusion term, however, the
noise term lacks any physical explanatory power in terms of
surface morphology. The models are one-dimensional and
not intended to generate topography.
[24] The Brownian motion model successfully predicts

curved scaling relations with two asymptotes (Figure 2b,
curve i). The crossover time is determined by the ratio s/h&i:

Figure 6. Example of a periodic variation in elevation
change, such as sea level, and its effect on measured
scaling. At short times elevation change may increase
rapidly with time span (e.g., D � T1.0) as in, for example,
measured sea level rise over the Holocene; this is line 1. At
longer time spans, averaging captures some of the decrease
in sea level: this is line 2. Averaging over several cycles
yields little or no dependence of sea level on measured time
span (e.g., D � T 0); this is line 3.
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noisier systems roll over from noise-dominated to drift-
dominated accumulation at longer timescales [Strauss and
Sadler, 1989]. The long-term limit is steady accumulation
(D � T1 and @h/@t = h&i) and is feasible for the empirical
data. The short-term limit is too steep. In Brownian motion,
the standard deviation of elevation excursions grows as Tb,
where b is called the growth (or Hausdorff) exponent. The
preserved thickness of sediment scales linearly with the
magnitude of elevation excursions, and therefore random
walks generate a growth exponent of 1=2 at the short-term
limit of time span (D � T 1/2). The empirical curves are less
steep (D � T<0.45), especially in the coastal plain and shore
systems. These require a model with less short-term persis-
tence, i.e., some nonrandom negative feedback. In other
words, for short timescales the increment of accumulation in
one time interval does provide some information to aid
prediction of the increment in the next interval and the
correlation is inverse. Given rapid net accumulation in one
short time interval, for example, anticipate slow accumula-
tion or net erosion in the next interval of the same duration.
[25] Three model strategies could reduce short-term per-

sistence: (1) replace the random walk with a fractional
Brownian motion [Sadler, 1999; Molchan and Turcotte,
2002; Huybers and Wunsch, 2004] in which antipersistence
may be set to the necessary value, (2) add regular periodic
fluctuations (Figure 2b, curve iii) which can generate power
law exponents as low asD� T 0 [Sadler and Strauss, 1990],
or (3) dampen the Brownian motion with a diffusion term
[Pelletier and Turcotte, 1997]. The physical appropriateness
of fractional Brownian motions is not obvious, while the
second option is ad hoc, allowing infinite tunability. Again,
however, the stratigraphic thinking was one dimensional
and vertical. The negative feedback, or damping, was
envisioned between successive increments in a vertical
succession, not neighboring points on a surface. If every
point on the surface executed a one dimensional Brownian
motion, the surface cross section would be quite unrealistic:
a white noise. For a reasonable physical model of both
stratigraphy and topography, the damping must be applied
laterally by sediment transport processes dominant in
depositional systems. Pelletier and Turcotte [1997] realized
that a diffusion term could provide the desired damping and
add physical meaning in the form of sediment bypassing.
Gaps in deposition at one stratigraphic section correspond to
depositional increments in downslope neighbors.

4.3. Noisy Diffusion Model

[26] Pelletier and Turcotte [1997] found that a noisy
diffusion model could explain the scaling of alluvial accu-
mulation at timescales from 10�5 to 105 years, and also
generate topography with realistic surface roughness statis-
tics. They analyzed topographic sections in the lateral
(strike) direction, and envisioned the noise to be associated
with channel avulsions in fluvial systems. We develop the
noisy diffusion model as the simplest relevant representa-
tion of transport in the longitudinal (dip) direction, where
noise may be associated with storage and release events or
the passage of bed and bar forms. We test the model in
terms of its fit to the full range of timescales in both coastal
plain and shelf systems, and use it to explore the influence
of noise on equilibrium time and surface profiles.

[27] The addition to equation (1) of a noise term, &(x, t)
[LT�1], which is uncorrelated in time and space, results in

@h
@t

¼ v
@2h
@x2

þ & x; tð Þ � s; ð2Þ

the well-known EW model [Edwards and Wilkinson, 1982]
used to describe interfaces governed by random deposition
with surface relaxation [Barabási and Stanley, 1995]. The
only difference is the addition of the drift term, to account
for subsidence. From the point of view of depositional
landscapes, equation (2) models sediment transport as a
diffusive process; the noise term may be thought of as
representing stochastic fluctuations in transport at a scale
smaller than we are explicitly modeling. These small-scale
fluctuations will act to impart roughness on an otherwise
smooth surface profile. From inspection of equation (2) we
anticipate a change in the dominant process governing the
deposition of sediment. At short times, subsidence is small
compared to the instantaneous sediment transport terms
associated with diffusion and noise, and therefore its
contribution to sediment deposition is negligible. At long
times a steady state surface profile is achieved; since the
noise term has a mean of zero, its contribution becomes
negligible for the long-time dynamics of the system. It is
clear then that the accommodation of sediment by drift
(subsidence) will govern the depositional record over long
intervals.
[28] We first focus on the short-time behavior of (2), the

scaling of which has been determined analytically [see
Barabási and Stanley, 1995]. Each point on a surface
governed by equation (2) undergoes a fractional Brownian
walk, i.e., a random walk with some negative feedback
which is provided by diffusion. As in normal Brownian
motion, the standard deviation of elevation excursions
grows as Tb, however for noisy diffusion the growth
exponent takes on the value b = 1=4 (i.e., D � T1/4). Surface
roughness of a profile may be described using the interface
width, w, which is the root-mean square of surface elevation
measured over the domain length, L. The amplitude of
roughness scales with the system size, i.e., w � La, where
a = 1=2 is the roughness exponent (and is directly related to
the fractal exponent). The crossover time from roughness
growth to steady state in a system governed by noisy
diffusion scales as tx � Lg, where g = 2 is the dynamic
exponent.
[29] The dynamic exponent of the EW model is the same

as that associated with the equilibrium time in deterministic
diffusion (teq � L2). This means that it takes approximately
the same time to achieve a steady state surface profile,
whether or not there is noise. The record of deposits,
however, should be quite different for the two scenarios.
The short-time scaling from equation (2) is closer to the
empirically determined exponents than the random walk
models. The model predicts that, beyond the scaling roll-
over (103–105 years for field data, Figures 3–5), the time
dependence of aggradation disappears. With drift, the steady
subsidence dominates at long time spans Tand henceD� T 1

in the asymptotic regime. This behavior models the curved
form of our empirical scaling relations and approximates
the exponents for the shore and coastal plain systems.

F03S13 JEROLMACK AND SADLER: TRANSIENCE AND PERSISTENCE ON MARGINS

8 of 14

F03S13



[30] In order to verify the analytical results, we performed
numerical simulations of (2) using base-case values for input
sediment flux (10�4 km2 yr�1), diffusivity (0.1 km2 yr�1)
and piston subsidence (5 	 10�6 km yr�1) for a fluvial
depositional system [seeMarr et al., 2000], over a 100-point
domain with a grid spacing of 0.1 km. For this model
system, the equilibrium diffusion time is 1000 years. Var-
iations from this base case are noted in the text. Boundary
conditions maintained a constant slope at the inlet and zero
flux at the outlet (see Figure 7). The actual values for the
chosen coefficients and noise amplitude affect the magni-
tudes of model results, but have no influence on the
asymptotic scaling exponents. We solved (2) for small time
steps, dt = 0.02 years 
7 days, in order to examine the
cumulative effects of short-duration fluctuations on the
generation of stratigraphy. We varied the strength of noise
for different model runs (as measured by the standard
deviation), however noise was always uniformly distributed
and uncorrelated with a mean of zero. We estimated
sediment thickness over a given time interval from our

model runs using the method presented by Pelletier and
Turcotte [1997]. Results from ten runs show mean b = 0.25,
with a transition to the asymptotic regime (b ! 1) at long
time. The scaling behavior of D generated in our simula-
tions (Figure 8) is in agreement with analytical results, and
compares well to empirical data of time-dependent sedi-
mentation on the continental shelf (Figures 1 and 3).
[31] At long time, preserved thickness should depend

only on subsidence,

D ¼ sT : ð3Þ

[32] What determines the time required to achieve the
equilibrium condition (3)? We focus first on the effects of
varying noise strength, as measured by the standard devi-
ation of the noise, s [L]. The crossover time from noise-
dominated to drift-dominated accumulation was measured
by projecting power law slopes for the respective short- and
long-term asymptotic regimes, and finding the crossing
point (Figure 8). Numerical simulations demonstrate that
the this crossover time, txA, increases linearly with the
relative strength of noise and may be approximated as

txA 
 s

s
; ð4Þ

as found for the random walk models. The actual time to
equilibrium (equation (3)) should be several times this value –
from numerical experiments, it is 5–10 times larger.
[33] Note that the crossover timescale for aggradation (4)

is quite different from the diffusive timescale teq = L2/v.
Although an equilibrium slope may be achieved in a
depositional system in a time determined by the latter, this
does not mean that vertical deposition at each point in the
system has achieved a statistical equilibrium. In order for
sedimentation at a point to balance subsidence on average,
the accumulated sedimentary thickness must be significantly
greater than the range of vertical excursions that surface
undergoes owing to noisiness. In other words, the equilib-
rium diffusion time is a necessary but not sufficient condi-
tion to satisfy (3). The equilibrium timescale for a basin is
determined by the maximum of the two timescales; for a
very noisy system the fluctuations may be the limiting
factor, while for a less noisy system the diffusion timescale
should determine equilibrium. This is demonstrated by a
numerical experiment where diffusivity was diminished by
1 order of magnitude (thus increasing teq from 1000 years to
10,000 years) while noise was held constant (Figure 8). We
see that the time span associated with transient scaling
(D� T1/4) does not change, however the long-term behavior
shows that accumulation does not achieve a balance with
subsidence. Increasing basin size has a similar effect to
decreasing diffusivity, since teq = L2/v.
[34] Although low-amplitude temporal fluctuations in

sedimentation may not impart a large signature on the
surface topography (Figure 7), the addition of noise exerts
a strong influence on the depositional record. This may be
understood by looking at Figure 9, which shows the fractal
nature of the elevation time series and the variability of
vertical thickness of depositional bodies. A synthetic strati-
graphic column was generated by measuring the truncation
surfaces (local minima) that bound depositional units. It is

Figure 7. Numerical model results showing profiles of
basin filling in a fluvial system. (a) Deterministic diffusion
(no noise). (b) Noisy diffusion, in which the relative
strength of noise, s/s = 7. All other parameters and
boundary conditions are base case. Profiles are shown at
200-year intervals.
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apparent that random fluctuations superposed on diffusive
sediment transport produce hiatuses in deposition at all
timescales, and their corresponding truncation surfaces
reflect this behavior. The distribution of vertical thickness
is exponential, as expected from theory [Paola and Borgman,
1991; Pelletier and Turcotte, 1997] and observed in some
rock outcrops. The very large number of bedding surfaces is
due to the fact that every interval of erosion or nondeposi-
tion is preserved in the model. In real outcrops not all
bedding surfaces will be preserved, and hence very thin
beds are probably underrepresented in the geologic record
[Sinclaire and Cowie, 2003].

5. Discussion

[35] Scaling relations steepen toward the long-term limit
(D � T1.0) for all the models that incorporate a steady drift
term (Table 1). In this regard, they all fit the empirical

accumulation data equally well. The models differ signifi-
cantly in the short-term limit, where the field data (Figures 1
and 3–5) have scaling exponents (D � T <0.45) between
those expected for zero net deposition (D � T 0) and random
walks (D � T 0.5). As noted by Pelletier and Turcotte
[1997], noisy diffusion (D � T 0.25) generates a short-term
scaling exponent in this range. The roughness exponent
associated with noisy diffusion is also consistent with
measured surface roughness scaling of along-dip seismic
transects in deltaic environments [Deshpande et al., 1997].
[36] We have shown that noisy diffusion with drift

reproduces the salient crossover in the time-dependent
scaling of accumulation (Figure 8). Falling at T > 103 years,
the empirical crossover approximates the timescales at
which subsidence replaces sea level as the dominant com-
ponent of accommodation (Figure 5). This appears to justify
equating the model drift with steady subsidence.

Figure 8. Noisy diffusion scaling of preserved thickness. Numerical model with (a) base case
conditions and s/s = 1.4, (b) diffusivity changed to 0.01 km2/yr, s/s = 1.4, and (c) base case conditions
with s/s = 7. Thin solid lines show the slopes of the asymptotic limits, where long-term limit is equation (3).
Time and space scales of the model were chosen for convenience of numerical simulations, and were not
calibrated to field data. (d) Summary of noisy diffusion results under base case conditions with various
relative noise levels, as represented by the ratio s/s shown next to each curve; the data have been log
bin–averaged for clarity [cf. Sadler and Strauss, 1990, Figure 10]. Crosses show crossover times.
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[37] For more insight we address the differences between
temporal scaling exponents predicted for noisy diffusion
and those fit to empirical data. First we address the long-
term limit, then the short term. The discrepancies might be
explained (1) by terms that are neglected in our simple
model, (2) by real systems in which ‘‘noise’’ is not com-
pletely uncorrelated in space and time and ‘‘drift’’ is not
steady, or (3) by the consequences of combining empirical
data from many different locations in order to achieve a
wide coverage of time spans.
[38] All the field data converge in the long-term limit, but

none convincingly reaches the model asymptote (D � T1)
for a steady state depositional profile in which accumulation
balances steady subsidence. Scaling curves for depositional
systems with rich long-term data sets (exclude deltas and
floodplains) steepen to long-term exponents of only 0.76–
0.86. In model terms, the crossover is long and it is possible
that the data never truly saturate, as would be predicted if
the time were smaller than that required to achieve steady
state [Barabási and Stanley, 1995; Dodds and Rothman,
2000]. Certainly the boundary conditions in real deposi-
tional basins are far more complex than our idealized model.
Empirical accumulation and subsidence data do converge in
the long term, but subsidence itself does not reach the
exponent (1) for a steady process, indicating that subsidence
rates diminish with time. Minor unsteadiness may persist in
subsidence to very long timescales and subsidence rates
surely wane in basins of great age. Short-term clips of basin
history may sample any stages of subsidence, but increas-
ingly long-term clips must include more of the slower
subsidence of late stages. Additionally, it is possible that
extreme longevity in a depositional system is favored by
slower subsidence; i.e., that spatial differences in subsi-
dence are loosely translating to temporal differences in our
compilation with the effect that long-term estimates are
drawn preferentially from sites of low subsidence.
[39] Equating model drift with subsidence fits comfort-

ably with the convergence of real accumulation and subsi-

dence data, but this does not explain why the same long-
term exponents characterize environments below wave base
where subsidence is not required to accommodate sediment.
The drift term for these environments must model sediment
supply. Sea level places a lid on the shallow marine
sediment trap and excess sediment leaks away to off-shelf
environments. Because empirical estimates indicate a neg-
ligible role for sea level in long-term accommodation
(Figure 5), the scaling connection between shelf and off-
shelf systems must be sought in the sediment flux from the
continent. Like subsidence, this too may inevitably wane for
continental margins and their hinterland sources that persist
for hundreds of millions of years. We suggest thatD� T 0.85

reflects a real long-term limit for sustainability of subsi-
dence under the sediment trap and rejuvenation of sediment
sources by uplift.
[40] Notice a critical difference between trains of ripples

that represent the small-scale end of the size and life-span
spectrum and a single continental shelf at the large-scale
end. Sediment ‘‘leaked’’ from one ripple feeds the next
ripple in the train. Sediment leaked from the shelf is lost to
the shelf system. This is another factor that differentiates the
transient and persistent landscape elements.
[41] At the short-term limit, scaling in the field data varies

significantly with environment. Empirical scaling relations
for floodplains and shelves are steeper than for channeled
alluvium at scales from 10�3 to 102 years and the crossover to
accommodation-dominated scaling is delayed until longer
averaging times for channeled environments. By concen-
trating sediment transport into a narrow zone, channels
increase both the rapidity and noisiness of accumulation.
Pure floodplain environments aggrade with less noise
amplitude. This difference alone could explain why they
cross over from noise (transport)-dominated scaling to drift
(accommodation)-dominated scaling at shorter time spans
than the channeled parts of the system (Figure 8); see
equation (4). The empirical data indicate, however, that differ-
ences in noise amplitudemay not be sufficient to explain all the

Figure 9. Noisy diffusion numerical model results for (left) the elevation history and (right) the
stratigraphic distribution of beds and hiatus surfaces at a single location on the aggrading sediment fill
shown in Figure 7b.
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differences in scaling between channeled and channel-free
settings. From 10�3 to 102 years the channeled scaling
relation is less steep than predicted by the noisy diffusion
model and at averaging times shorter than 10�3 years it is
much steeper. Scaling that deviates significantly from model
predictions may indicate a regime in which slope-dependent
sediment transport is not the dominant process. Certainly,
modeling sediment transport as diffusive is inappropriate for
very short timescales over which the assumptions of steady,
uniform flow do not hold (e.g., ripples and dunes). For
fluvial systems affected by channel avulsions, one must
average over the timescale of several avulsions in order to
approximate the system as diffusive [Sun et al., 2002;
Hickson et al., 2005].
[42] The short-term data from nearshore environments

have a scaling exponent that is intermediate between accu-
mulation on floodplains and open shelves. It most closely
matches noisy diffusion (Table 1). Short-term accumulation
at the shore is uniquely sensitive to waves, tides, and
storms. Although each of these processes can impose a
periodic negative feedback, in aggregate they may combine
to resemble diffusion [Niederoda et al., 1995].
[43] In this paper we propose two timescales that describe

sedimentation. One is the classical diffusion time which is
based on mean transport characteristics and system size, and
the other is the aggradation timescale (4) which is deter-
mined by the variance of transport in time and space.
Fluctuations in sediment transport exert a first-order control
on the deposits constructed from evolving surfaces. These
fluctuations, however, need not strongly influence the
morphology of surfaces themselves. Rather, noise generates
small departures from a deterministic diffusive profile that,
to first order, may be ignored when modeling the evolution
of a depositional surface over geologic time (Figure 7). Our
numerical results show that a fluvial system subject to low-
amplitude noise achieves a steady state profile in the same
amount of time as a system with no noise, i.e., teq 
 L2/n
always.
[44] Although spatial and temporal variations may aver-

age out in the long-term evolution of depositional surfaces,
they accumulate in the stacked record of surfaces. To find
equilibrium in the stratigraphic record, we must also look at
vertical scales that are significantly larger than the range of
variability induced by transport fluctuations; the mean is not
enough. This is evident in Figure 9, which shows the
depositional record left by the profiles shown in Figure 7b.
One might be tempted to delineate zones of regular and
irregular bedding surfaces in the stratigraphic column, and
to attribute these zones to different depositional environ-
ments or forcing conditions, when in fact the stratigraphic
horizons at all scales were generated by the internal fluctu-
ations of the depositional system. In an unsteady system,
equilibrium is achieved when both the diffusive timescale
and the aggradation timescale (e.g., equation (4)) are
satisfied.
[45] Simplified models of sediment transport (e.g., diffu-

sion) neglect the transient landscape evolution that domi-
nates stratigraphy at time intervals up to tens of thousands
of years. The noisy diffusion model shows that the equilib-
rium time associated with sediment accumulation (i.e.,
when deposition rate equals subsidence) depends linearly
on the magnitude of noise. In order to compute the

averaging time required to achieve equilibrium in a strati-
graphic section, it is necessary to understand the statistics of
spatial and temporal fluctuations in sediment transport. The
magnitude of elevation fluctuations may be determined by
the internal nonlinear dynamics of a sediment transport
system, or by some environmental fluctuation like sea level.
In the modeling of a fluvial profile this noise could be
related to fluctuations of the bed associated with the passage
of dunes and bars or to scour events; therefore, its amplitude
would scale with channel depth. Applying this reasoning to
a 2-m-deep river undergoing subsidence at 1 mm/yr, we
expect a crossover time from noise to accommodation
regimes at 2000 years: this is of the same order as crossover
times observed in empirical data for alluvial plains and
deltas (Figure 4). The time to achieve equilibrium should be
several times larger than this crossover time (perhaps
10,000–20,000 years). Conversely, one may estimate the
mean subsidence rate from the long-term accumulation
curve in Figure 4 as 1 mm/yr. Estimating the crossover
time to be about 1000 years, we approximate the scale of
noise fluctuations to be of order meters. Applying the same
crude procedure to the shelf data (Figure 3) results in a noise
scale that is roughly an order of magnitude smaller, com-
mensurate with the smaller crossover time. These estimates
are only meant to qualitatively apply the principles of our
model to the data that motivated it, and should not be taken
any more seriously than that. In rivers, avulsions or other
events may introduce a characteristic noise magnitude that
is different from, and potentially larger than, the scales
outlined here; the appropriateness of the suggested noise
scales remains to be shown. Moreover, if the ‘‘noise’’ is
correlated in space or in time, rather than a white noise, the
exponent of the short-term scaling will change [Sadler,
1999; Huybers and Wunsch, 2004], and the application
of our model is inappropriate. However, even in these
cases the general concepts discussed here help to guide
interpretation.

6. Conclusions and Implications

[46] By comparing our empirical data with an array of
simple models, we can separate noise-dominated from drift-
dominated behavior in the siliciclastic depositional landscapes
of continental margins. In terms of process, these behaviors
are transport-dominated (autogenic) and accommodation-
dominated, respectively. The first is characterized by
transient landscape elements that are freely migrating land-
forms, typically arrayed in trains. The second is character-
ized by large, persistent, anchored landscape elements that
are singular, not arrayed in trains. The transition to persis-
tent landscape forms begins at timescales of 102 to 103 years
and is complete by 104 to 105 years. Noisy diffusion appears
to be the most powerful simple model for these observa-
tions. It approximates all the gross features of the empirical
data. In detail, differences between model and empirical
scaling relations may reveal systems in which a diffusive
description of sediment transport is not appropriate, or
transport fluctuations that are correlated. Real continental
margins probably depart slightly but consistently from the
model expectations at long timescales because both subsi-
dence and sediment supply tend to wane if the system
persists for hundreds of millions of years. In any case, in
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order for sedimentation to balance subsidence two condi-
tions must be satisfied: (1) the system must achieve an
equilibrium morphology (e.g., the diffusion timescale for
systems where diffusion is appropriate), and (2) the thick-
ness of deposited sediment must be significantly larger than
the range of transient scour and deposition events that occur
on the surface.
[47] It is a mathematical inevitability that unsteady sed-

imentation will produce a time dependence in the thickness
of sedimentary bodies, and hence sedimentation rates
[Sadler, 1981, 1999]. A deterministic model (1) capable
of describing the instantaneous morphology of a surface
profile fails to describe the cumulative record of surface
morphologies because this record depends on the history of
elevation fluctuations. The addition of uncorrelated noise
produces hiatuses in sedimentation at many timescales,
which some researchers would interpret as external forcing
to the system, such as climate change.
[48] We close by posing a currently crucial question.

What do these findings have to say about the chances of
being able to extract that part of the stratigraphic record of
successive landscapes that records climate change? The
power of the noisy diffusion model is discouraging in this
regard; there appears to be no need for a first-order climate-
dominated segment in the scaling relations. Climate signals
must be sought in departures from the predictions of noisy
diffusion. At long timescales the climate influences weath-
ering and sediment flux; it must be separated from tectonics.
At short timescales there is a suggestion of cycle-dominated
behavior in channeled systems. However, any cyclic envi-
ronmental signals must be deconvolved from the ‘‘noise’’
produced by the autogenic variability of the depositional
system [Lyons, 2004]. The timescales of glacio-eustasy, at
which climate change exerts a profound influence through
sea level, appear to lie in the transition from transient
transport-dominated regimes to persistent accommodation-
dominated regimes. These are the scales at which deposi-
tional landscapes and their stratigraphic record are sensitive
to the widest array of influences and the deconvolution
challenge is correspondingly hard. The challenge for geol-
ogists is to better characterize the nature of intrinsic vari-
ability in sedimentary systems. Detailed studies from the
field [Lyons, 2004] and experiments in a laboratory-scale
subsiding basin [e.g., Hickson et al., 2005; Kim et al., 2006]
are now beginning to shed light on the dynamic behavior of
depositional channels and the construction of their associ-
ated fans. Experiments can be used to study the statistical
distribution of sedimentary deposits in detail, and to relate
these deposits exactly to the physical processes that gener-
ated them. A more refined model in which autogenic
variability is understood through nonlinear dynamics, or
treated stochastically using measured distributions of fluc-
tuations, will enhance the resolution within which we can
confidently interpret the record of Earth-surface dynamics
preserved in sedimentary rocks.
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