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Elasticity and Flexure

3.1 Introduction

In the previous chapter we introduced the concepts of stress and strain. For
many solids it is appropriate to relate stress to strain through the laws of
elasticity. Elastic materials deform when a force is applied and return to their
original shape when the force is removed. Almost all solid materials, includ-
ing essentially all rocks at relatively low temperatures and pressures, behave
elastically when the applied forces are not too large. In addition, the elastic
strain of many rocks is linearly proportional to the applied stress. The equa-
tions of linear elasticity are greatly simplified if the material is isotropic, that
is, if its elastic properties are independent of direction. Although some meta-
morphic rocks with strong foliations are not strictly isotropic, the isotropic
approximation is usually satisfactory for the earth’s crust and mantle.

At high stress levels, or at temperatures that are a significant fraction of
the rock solidus, deviations from elastic behavior occur. At low temperatures
and confining pressures, rocks are brittle solids, and large deviatoric stresses
cause fracture. As rocks are buried more deeply in the earth, they are sub-
jected to increasingly large confining pressures due to the increasing weight
of the overburden. When the confining pressure on the rock approaches its
brittle failure strength, it deforms plastically. Plastic deformation is a contin-
uous, irreversible deformation without fracture. If the applied force causing
plastic deformation is removed, some fraction of the deformation remains.
We consider plastic deformation in Section 7–11. As discussed in Chapter
1, hot mantle rocks behave as a fluid on geological time scales; that is, they
continuously deform under an applied force.

Given that rocks behave quite differently in response to applied forces,
depending on conditions of temperature and pressure, it is important to
determine what fraction of the rocks of the crust and upper mantle behave
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Figure 3.1 (a) Structure formed immediately after rapidly pouring a very
viscous fluid into a container. (b) Final shape of the fluid after a long time
has elapsed.

elastically on geological time scales. One of the fundamental postulates of
plate tectonics is that the surface plates constituting the lithosphere do not
deform significantly on geological time scales. Several observations directly
confirm this postulate. We know that the transform faults connecting offset
segments of the oceanic ridge system are responsible for the major linear
fracture zones in the ocean. That these fracture zones remain linear and
at constant separation is direct evidence that the oceanic lithosphere does
not deform on a time scale of 108 years. Similar evidence comes from the
linearity of the magnetic lineaments of the seafloor (see Section 1–8).

There is yet other direct evidence of the elastic behavior of the lithosphere
on geological time scales. Although erosion destroys mountain ranges on a
time scale of 106 to 107 years, many geological structures in the continental
crust have ages greater than 109 years. The very existence of these struc-
tures is evidence of the elastic behavior of the lithosphere. If the rocks of
the crust behaved as a fluid on geological time scales, the gravitational body
force would have erased these structures. As an example, pour a very vis-
cous substance such as molasses onto the bottom of a flat pan. If the fluid is
sufficiently viscous and is poured quickly enough, a structure resembling a
mountain forms (see Figure 3–1a). However, over time, the fluid will even-
tually cover the bottom of the pan to a uniform depth (see Figure 3–1b).
The gravitational body force causes the fluid to flow so as to minimize the
gravitational potential energy.

A number of geological phenomena allow the long-term elastic behavior of
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the lithosphere to be studied quantitatively. In several instances the litho-
sphere bends under surface loads. Direct evidence of this bending comes
from the Hawaiian Islands and many other island chains, individual islands,
and seamounts. There is also observational evidence of the elastic bending
of the oceanic lithosphere at ocean trenches and of the continental litho-
sphere at sedimentary basins – the Michigan basin, for example. We will
make quantitative comparisons of the theoretically predicted elastic defor-
mations of these structures with the observational data in later sections of
this chapter.

One important reason for studying the elastic behavior of the lithosphere
is to determine the state of stress in the lithosphere. This stress distribu-
tion is responsible for the occurrence of earthquakes. Earthquakes are di-
rect evidence of high stress levels in the lithosphere. An earthquake relieves
accumulated strain in the lithosphere. The presence of mountains is also
evidence of high stress levels. Elastic stresses must balance the gravitational
body forces on mountains. Because of their elastic behavior, surface plates
can transmit stresses over large horizontal distances.

3.2 Linear Elasticity

A linear, isotropic, elastic solid is one in which stresses are linearly propor-
tional to strains and mechanical properties have no preferred orientations.
The principal axes of stress and strain coincide in such a medium, and the
connection between stress and strain can be conveniently written in this
coordinate system as

σ1 = (λ+ 2G)ε1 + λε2 + λε3 (3.1)

σ2 = λε1 + (λ+ 2G)ε2 + λε3 (3.2)

σ3 = λε1 + λε2 + (λ+ 2G)ε3, (3.3)

where the material properties λ and G are known as Lamé parameters; G
is also known as the modulus of rigidity. The material properties are such
that a principal strain component ε produces a stress (λ+2G)ε in the same
direction and stresses λε in mutually perpendicular directions.

Equations (3–1) to (3–3) can be written in the inverse form as

ε1 =
1

E
σ1 −

ν

E
σ2 −

ν

E
σ3 (3.4)

ε2 = −
ν

E
σ1 +

1

E
σ2 −

ν

E
σ3 (3.5)
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Figure 3.2 Deformation under uniaxial stress.

ε3 = −
ν

E
σ1 −

ν

E
σ2 +

1

E
σ3, (3.6)

and E and ν are material properties known as Young’s modulus and Pois-
son’s ratio, respectively. A principal stress component σ produces a strain
σ/E in the same direction and strains (−νσ/E) in mutually orthogonal
directions.

The elastic behavior of a material can be characterized by specifying either
λ and G or E and ν; the sets of parameters are not independent. Analytic
formulas expressing λ and G in terms of E and ν, and vice versa, are ob-
tained in the following sections. Values of E, G, and ν for various rocks are
given in Section E of Appendix 2. Young’s modulus of rocks varies from
about 10 to 100 GPa, and Poisson’s ratio varies between 0.1 and 0.4. The
elastic properties of the earth’s mantle and core can be obtained from seis-
mic velocities and the density distribution. The elastic properties E, G, and
ν inferred from a typical seismically derived earth model are given in Section
F of Appendix 2. The absence of shear waves in the outer core (G = 0) is
taken as conclusive evidence that the outer core is a liquid. In the outer core
ν has the value 0.5, which we will see is appropriate to an incompressible
fluid.

The behavior of linear solids is more readily illustrated if we consider
idealized situations where several of the stress and strain components vanish.
These can then be applied to important geological problems.
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3.3 Uniaxial Stress

In a state of uniaxial stress only one of the principal stresses, σ1 say, is
nonzero. Under this circumstance Equations (3–2) and (3–3), with σ2 =
σ3 = 0, give

ε2 = ε3 =
−λ

2(λ+ G)
ε1. (3.7)

Not only does the stress σ1 produce a strain ε1, but it changes the linear
dimensions of elements aligned perpendicular to the axis of stress. If σ1 is a
compression, then ε1 is a decrease in length, and both ε2 and ε3 are increases
in length. The element in Figure 3–2 has been shortened in the y direction,
but its cross section in the xz plane has expanded.

Using Equations (3–4) to (3–6), we can also write

ε2 = ε3 = −
ν

E
σ1 = −νε1. (3.8)

By comparing Equations (3–7) and (3–8), we see that

ν =
λ

2(λ+ G)
. (3.9)

From Equations (3–1) and (3–7) we find

σ1 =
G(3λ + 2G)

(λ+ G)
ε1, (3.10)

which, with the help of Equation (3–8), identifies Young’s modulus as

E =
G(3λ+ 2G)

(λ+ G)
. (3.11)

Equations (3–9) and (3–11) can be inverted to yield the following formulas
for G and λ in terms of E and ν

G =
E

2(1 + ν)
(3.12)

λ =
Eν

(1 + ν)(1 − 2ν)
. (3.13)

The relation between stress and strain in uniaxial compression or tension
from Equation (3–8),

σ1 = Eε1, (3.14)

is also known as Hooke’s law. A linear elastic solid is said to exhibit Hookean
behavior. Uniaxial compression testing in the laboratory is one of the sim-
plest methods of determining the elastic properties of rocks. Figure 3–3
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Figure 3.3 Stress–strain curves for quartzite in uniaxial compression (Bi-
eniawski, 1967).

shows the data from such a test on a cylindrical sample of quartzite. The
rock deforms approximately elastically until the applied stress exceeds the
compressive strength of the rock, at which point failure occurs. Compressive
strengths of rocks are hundreds to thousands of megapascals. As we discussed
in the previous chapter, a typical tectonic stress is 10 MPa. With E = 70
GPa, this yields a typical tectonic strain in uniaxial stress of 1.4 × 10−4.

The dilatation ∆ or fractional volume change in uniaxial compression is,
according to Equation (3–8),

∆ = ε1 + ε2 + ε3 = ε1(1 − 2ν). (3.15)

The decrease in volume due to contraction in the direction of compressive
stress is offset by an increase in volume due to expansion in the orthogonal
directions. Equation (3–15) allows us to determine Poisson’s ratio for an
incompressible material, which cannot undergo a net change in volume. In
order for ∆ to equal zero in uniaxial compression, ν must equal 1/2. Under
uniaxial compression, an incompressible material contracts in the direction
of applied stress but expands exactly half as much in each of the perpendic-
ular directions.

There are some circumstances in which the formulas of uniaxial compres-
sion can be applied to calculate the strains in rocks. Consider, for example,
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a rectangular column of height h that is free to expand or contract in the
horizontal; that is, it is laterally unconstrained. By this we mean that the
horizontal stresses are zero (σ2 = σ3 = 0). Then the vertical stress σ1 at a
distance y from the top of the column of rock is given by the weight of the
column,

σ1 = ρgy. (3.16)

The vertical strain as a function of the distance y from the top is

ε1 =
ρgy

E
. (3.17)

The slab contracts in the vertical by an amount

δh =
∫ h

0
ε1 dy =

ρg

E

∫ h

0
y dy =

ρgh2

2E
. (3.18)

3.4 Uniaxial Strain

The state of uniaxial strain corresponds to only one nonzero component of
principal strain, ε1 say. With ε2 = ε3 = 0, Equations (3–1) to (3–3) give

σ1 = (λ+ 2G)ε1 (3.19)

σ2 = σ3 = λε1 =
λ

(λ+ 2G)
σ1. (3.20)

Equations (3–4) to (3–6) simplify to

σ2 = σ3 =
ν

(1 − ν)
σ1 (3.21)

σ1 =
(1 − ν)Eε1

(1 + ν)(1 − 2ν)
. (3.22)

By comparing Equations (3–19) to (3–22), one can also derive the relations
already given between λ, G and ν, E.

The equations of uniaxial strain can be used to determine the change in
stress due to sedimentation or erosion. We first consider sedimentation and
assume that an initial surface is covered by h km of sediments of density ρ,
as shown in Figure 3–4. We also assume that the base of the new sedimen-
tary basin is laterally confined so that the equations of uniaxial strain are
applicable. The two horizontal components of strain are zero, ε2 = ε3 = 0.
The vertical principal stress on the initial surface σ1 is given by the weight
of the overburden

σ1 = ρgh. (3.23)
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Figure 3.4 Stresses on a surface covered by sediments of thickness h.

From Equation (3–21) the horizontal normal stresses are given by

σ2 = σ3 =
ν

(1 − ν)
ρgh. (3.24)

The horizontal stresses are also compressive, but they are smaller than the
vertical stress.

It is of interest to determine the deviatoric stresses after sedimentation.
The pressure at depth h as defined by Equation (2–61) is

p =
1

3
(σ1 + σ2 + σ3) =

(1 + ν)

3(1 − ν)
ρgh. (3.25)

The deviatoric stresses are then determined from Equations (2–63) with the
result

σ′1 = σ1 − p =
2(1 − 2ν)

3(1 − ν)
ρgh (3.26)

σ′2 = σ2 − p = σ′3 = σ3 − p = −
(1 − 2ν)

3(1 − ν)
ρgh.

(3.27)

The horizontal deviatoric stress is tensional. For ν = 0.25 the horizontal
deviatoric stress is 2/9 of the lithostatic stress. With ρ = 3000 kg m−3 and
h = 2 km the horizontal deviatoric stress is −13.3 MPa. This stress is of the
same order as measured surface stresses.

We next consider erosion. If the initial state of stress before erosion is
that given above, erosion will result in the state of stress that existed before
sedimentation occurred. The processes of sedimentation and erosion are re-
versible. However, in many cases the initial state of stress prior to erosion is
lithostatic. Therefore at a depth h the principal stresses are

σ1 = σ2 = σ3 = ρgh. (3.28)
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After the erosion of h km of overburden the vertical stress at the surface is
σ̄1 = 0 (an overbar denotes a stress after erosion). The change in vertical
stress ∆σ1 = σ̄1 − σ1 is −ρgh. If only ε1 is nonzero, Equation (3–21) gives

∆σ2 = ∆σ3 =
(

ν

1 − ν

)

∆σ1. (3.29)

The horizontal surface stresses after erosion σ̄2 and σ̄3 are consequently given
by

σ̄2 = σ̄3 = σ2 + ∆σ2 = ρgh −
ν

(1 − ν)
ρgh

=
(

1 − 2ν

1 − ν

)

ρgh. (3.30)

If h = 5 km, ν = 0.25, and ρ = 3000 kg m−3, we find from Equation (3–30)
that σ̄2 = σ̄3 = 100 MPa. Erosion can result in large surface compressive
stresses due simply to the elastic behavior of the rock. This mechanism is
one explanation for the widespread occurrence of near-surface compressive
stresses in the continents.

Problem 3.1 Determine the surface stress after the erosion of 10 km of
granite. Assume that the initial state of stress is lithostatic and that ρ = 2700
kg m−3 and ν = 0.25.

Problem 3.2 An unstressed surface is covered with sediments with a den-
sity of 2500 kg m−3 to a depth of 5 km. If the surface is laterally constrained
and has a Poisson’s ratio of 0.25, what are the three components of stress
at the original surface?

Problem 3.3 A horizontal stress σ1 may be accompanied by stress in
other directions. If it is assumed that there is no displacement in the other
horizontal direction and zero stress in the vertical, find the stress σ2 in the
other horizontal direction and the strain ε3 in the vertical direction.

Problem 3.4 Assume that the earth is unconstrained in one lateral direc-
tion (σ2 = σ3) and is constrained in the other (ε1 = 0). Determine ε2 and
σ1 when y kilometers of rock of density ρ are eroded away. Assume that the
initial state of stress was lithostatic.

3.5 Plane Stress

The state of plane stress exists when there is only one zero component of
principal stress; that is, σ3 = 0, σ1 ̸= 0, σ2 ̸= 0. The situation is sketched
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Figure 3.5 Plane stress.

in Figure 3–5, which shows a thin plate loaded on its edges. The strain
components according to Equations (3–4) to (3–6) are

ε1 =
1

E
(σ1 − νσ2) (3.31)

ε2 =
1

E
(σ2 − νσ1) (3.32)

ε3 =
−ν
E

(σ1 + σ2). (3.33)

The geometry of Figure 3–5 suggests that the plane stress formulas may be
applicable to horizontal tectonic stresses in the lithosphere. Let us assume
that in addition to the lithostatic stresses there are equal horizontal com-
ponents of principal stress ∆σ1 = ∆σ2. According to Equations (3–31) to
(3–33), the horizontal tectonic stresses produce the strains

ε1 = ε2 =
(1 − ν)

E
∆σ1 (3.34)

ε3 =
−2ν

E
∆σ1. (3.35)

If the horizontal tectonic stresses are compressive, vertical columns of
lithosphere of initial thickness hL, horizontal area A, and density ρ will
undergo a decrease in area and an increase in thickness. The mass in a
column will remain constant, however. Therefore we can write

δ(ρAhL) = 0. (3.36)
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The weight per unit area at the base of the column ρghL will increase, as
can be seen from

δ(ρghL) = δ
(

ρghLA ·
1

A

)

=
1

A
δ(ρghLA) + ρghLA δ

(

1

A

)

= ρghLA
(

−
1

A2

)

δA = ρghL

(

−
δA

A

)

.

(3.37)

The term δ(ρghLA)/A is zero from Equation (3–36); δ(ρghL) is positive
because −δA/A is a positive quantity given by

−
δA

A
= ε1 + ε2 =

2(1 − ν)

E
∆σ1. (3.38)

The increase in the weight per unit area at the base of the lithospheric
column gives the increase in the vertical principal stress ∆σ3. By combining
Equations (3–37) and (3–38), we get

∆σ3 =
2(1 − ν)ρghL

E
∆σ1 (3.39)

or
∆σ3

∆σ1
=

2(1 − ν)ρghL

E
. (3.40)

Taking ν = 0.25, E = 100 GPa, ρ = 3000 kg m−3, g = 10 m s−2, and hL =
100 km as typical values for the lithosphere, we find that ∆σ3/∆σ1 = 0.045.
Because the change in the vertical principal stress is small compared with
the applied horizontal principal stresses, we conclude that the plane stress
assumption is valid for the earth’s lithosphere.

Problem 3.5 Triaxial compression tests are a common laboratory tech-
nique for determining elastic properties and strengths of rocks at various
pressures p and temperatures. Figure 3–6 is a schematic of the experimen-
tal method. A cylindrical rock specimen is loaded axially by a compres-
sive stress σ1. The sample is also uniformly compressed laterally by stresses
σ2 = σ3 < σ1.

Show that

ε2 = ε3

and

σ1 − σ2 = 2G(ε1 − ε2).
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Figure 3.6 Sketch of a triaxial compression test on a cylindrical rock sam-
ple.

Figure 3.7 An example of plane strain.

Thus if the measured stress difference σ1−σ2 is plotted against the measured
strain difference ε1 − ε2, the slope of the line determines 2G.

3.6 Plane Strain

In the case of plane strain, ε3 = 0, for example, and ε1 and ε2 are nonzero.
Figure 3–7 illustrates a plane strain situation. A long bar is rigidly confined
between supports so that it cannot expand or contract parallel to its length.
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Figure 3.8 Principal stresses and shear stresses in the case of pure shear.

In addition, the stresses σ1 and σ2 are applied uniformly along the length
of the bar.

Equations (3–1) to (3–3) reduce to

σ1 = (λ+ 2G)ε1 + λε2 (3.41)

σ2 = λε1 + (λ+ 2G)ε2 (3.42)

σ3 = λ(ε1 + ε2). (3.43)

From Equation (3–6) it is obvious that

σ3 = ν(σ1 + σ2). (3.44)

This can be used together with Equations (3–4) and (3–5) to find

ε1 =
(1 + ν)

E
{σ1(1 − ν) − νσ2} (3.45)

ε2 =
(1 + ν)

E
{σ2(1 − ν) − νσ1}. (3.46)

3.7 Pure Shear and Simple Shear

The state of stress associated with pure shear is illustrated in Figure 3–8.
Pure shear is a special case of plane stress. One example of pure shear is
σ3 = 0 and σ1 = −σ2. From Equations (2–56) to (2–58) with θ = −45◦

(compare Figures 2–14 and 3–8), we find that σxx = σyy = 0 and σxy = σ1.
In this coordinate system only the shear stress is nonzero. From Equations
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(3–31) and (3–32) we find that

ε1 =
(1 + ν)

E
σ1 =

(1 + ν)

E
σxy = −ε2, (3.47)

and from Equations (2–130) and (2–131) with θ = −45◦ we get εxx = εyy = 0
and εxy = ε1. Equation (3–47) then gives

σxy =
E

1 + ν
εxy. (3.48)

By introducing the modulus of rigidity from Equation (3–12), we can write
the shear stress as

σxy = 2Gεxy , (3.49)

which explains why the modulus of rigidity is also known as the shear mod-
ulus. (Note: In terms of γxy ≡ 2εxy,σxy = Gγxy.) These results are valid
for both pure shear and simple shear because the two states differ by a
solid-body rotation that does not affect the state of stress.

Simple shear is generally associated with displacements on a strike–slip
fault such as the San Andreas in California. In Equation (2–134) we con-
cluded that the shear strain associated with the 1906 San Francisco earth-
quake was 2.5× 10−5. With G = 30 GPa, Equation (3–49) gives the related
shear stress as 1.5 MPa. This is a very small stress drop to be associated
with a great earthquake. However, for the stress drop to have been larger,
the width of the zone of strain accumulation would have had to have been
even smaller. If the stress had been 15 MPa, the width of the zone of strain
accumulation would have had to have been 4 km on each side of the fault.
We will return to this problem in Chapter 8.

Problem 3.6 Show that Equation (3–49) can also be derived by assuming
plane strain.

3.8 Isotropic Stress

If all the principal stresses are equal σ1 = σ2 = σ3 ≡ p, then the state
of stress is isotropic, and the principal stresses are equal to the pressure.
The principal strains in a solid subjected to isotropic stresses are also equal
ε1 = ε2 = ε3 = 1

3∆; each component of strain is equal to one-third of the
dilatation. By adding Equations (3–1) to (3–3), we find

p =
(

3λ+ 2G

3

)

∆ ≡ K∆ ≡
1

β
∆. (3.50)
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The quantity K is the bulk modulus, and its reciprocal is β, the compressibil-
ity. The ratio of p to the bulk modulus gives the fractional volume change
that occurs under isotropic compression.

Because the mass of a solid element with volume V and density ρ must be
conserved, any change in volume δV of the element must be accompanied by
a change in its density δρ. The fractional change in density can be related to
the fractional change in volume, the dilatation, by rearranging the equation
of mass conservation

δ(ρV ) = 0, (3.51)

which gives

ρδV + V δρ = 0 (3.52)

or
−δV
V

= ∆ =
δρ

ρ
. (3.53)

Equation (3–53) of course assumes ∆ to be small. The combination of Equa-
tions (3–50) and (3–53) gives

δρ = ρβp. (3.54)

This relationship can be used to determine the increase in density with depth
in the earth.

Using Equations (3–11) to (3–13), we can rewrite the formula for K given
in Equation (3–50) as

K =
1

β
=

E

3(1 − 2ν)
. (3.55)

Thus as ν tends toward 1/2, that is, as a material becomes more and more
incompressible, its bulk modulus tends to infinity.

3.9 Two-Dimensional Bending or Flexure of Plates

We have already discussed how plate tectonics implies that the near-surface
rocks are rigid and therefore behave elastically on geological time scales.
The thin elastic surface plates constitute the lithosphere, which floats on
the relatively fluid mantle beneath. The plates are subject to a variety of
loads – volcanoes, seamounts, for example – that force the lithosphere to
bend under their weights. By relating the observed flexure or bending of
the lithosphere to known surface loads, we can deduce the elastic properties
and thicknesses of the plates. In what follows, we first develop the theory of
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Figure 3.9 A thin plate of length L and thickness h pinned at its ends and
bending under and applied load Va.

Figure 3.10 Forces and torques on a small section of a deflecting plate.

plate bending in response to applied forces and torques. The theory can also
be used to understand fold trains in mountain belts by modeling the folds
as deformations of elastic plates subject to horizontal compressive forces.
Other geologic applications also can be made. For example, we will apply
the theory to model the upwarping of strata overlying igneous intrusions
(Section 3–12).

A simple example of plate bending is shown in Figure 3–9. A plate of
thickness h and width L is pinned at its ends and bends under the load of a
line force Va (N m−1) applied at its center. The plate is infinitely long in the
z direction. A vertical, static force balance and the symmetry of the situation
require that equal vertical line forces Va/2 be applied at the supports. The
plate is assumed to be thin compared with its width, h ≪ L, and the vertical
deflection of the plate w is taken to be small, w ≪ L. The latter assumption
is necessary to justify the use of linear elastic theory. The two-dimensional
bending of plates is also referred to as cylindrical bending because the plate
takes the form of a segment of a cylinder.

The deflection of a plate can be determined by requiring it to be in equilib-
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rium under the action of all the forces and torques exerted on it. The forces
and torques on a small section of the plate between horizontal locations x
and x + dx are shown in Figure 3–10. A downward force per unit area q(x)
is exerted on the plate by whatever distributed load the plate is required
to support. Thus, the downward load, per unit length in the z direction,
between x and x + dx is q(x) dx. A net shear force V , per unit length in
the z direction, acts on the cross section of the plate normal to the plane
of the figure; it is the resultant of all the shear stresses integrated over that
cross-sectional area of the plate. A horizontal force P , per unit length in the
z direction, is applied to the plate; it is assumed that P is independent of
x. The net bending moment M , per unit length in the z direction, acting on
a cross section of the plate is the integrated effect of the moments exerted
by the normal stresses σxx, also known as the fiber stresses, on the cross
section. We relate M to the fiber stresses in the plate later in the discussion.
All quantities in Figure 3–10 are considered positive when they have the
sense shown in the figure. At location x along the plate the shear force is V ,
the bending moment is M , and the deflection is w; at x+dx, the shear force
is V + dV , the bending moment is M + dM , and the deflection is w + dw. It
is to be emphasized that V , M , and P are per unit length in the z direction.

A force balance in the vertical direction on the element between x and
x + dx yields

q(x) dx + dV = 0 (3.56)

or
dV

dx
= −q. (3.57)

The moments M and M +dM combine to give a net counterclockwise torque
dM on the element. The forces V and V +dV are separated by a distance dx
(an infinitesimal moment arm) and exert a net torque V dx on the element
in a clockwise sense. (The change in V in going from x to x + dx can be
ignored in calculating the moment due to the shear forces.) The horizontal
forces P exert a net counterclockwise torque −P dw on the element through
their associated moment arm −dw. (Note that dw is negative in going from
x to x + dx.) A balance of all the torques gives

dM − P dw = V dx (3.58)

or
dM

dx
= V + P

dw

dx
. (3.59)

We can eliminate the shear force on a vertical cross section of the plate V
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Figure 3.11 The normal stresses on a cross section of a thin curved elastic
plate.

from Equation (3–59) by differentiating the equation with respect to x and
substituting from Equation (3–57). One obtains

d 2M

dx2
= −q + P

d 2w

dx2
. (3.60)

Equation (3–60) can be converted into a differential equation for the deflec-
tion w if the bending moment M can be related to the deflection; we will
see that M is inversely proportional to the local radius of curvature of the
plate R and that R−1 is −d 2w/dx2.

To relate M to the curvature of the plate, we proceed as follows. If the
plate is deflected downward, as in Figure 3–11, the upper half of the plate
is contracted, and the longitudinal stress σxx is positive; the lower part of
the plate is extended, and σxx is negative. The fiber stress σxx is zero on the
midplane y = 0, which is a neutral unstrained surface. The net effect of these
stresses is to exert a counterclockwise bending moment on the cross section
of the plate. The curvature of the plate has, of course, been exaggerated in
Figure 3–11 so that x is essentially horizontal. The force on an element of
the plate’s cross section of thickness dy is σxx dy. This force exerts a torque
about the midpoint of the plate given by σxxy dy. If we integrate this torque
over the cross section of the plate, we obtain the bending moment

M =
∫ h/2

−h/2
σxxy dy, (3.61)

where h is the thickness of the plate.
The bending stress σxx is accompanied by longitudinal strain εxx that is

positive (contraction) in the upper half of the plate and negative (extension)
in the lower half. There is no strain in the direction perpendicular to the
xy plane because the plate is infinite in this direction and the bending is
two-dimensional or cylindrical; that is, εzz = 0. There is also zero stress
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normal to the surface of the plate; that is, σyy = 0. Because the plate is
thin, we can take σyy = 0 throughout. Thus plate bending is an example
of plane stress, and we can use Equations (3–31) and (3–32) to relate the
stresses and strains; that is,

εxx =
1

E
(σxx − νσzz) (3.62)

εzz =
1

E
(σzz − νσxx). (3.63)

In writing these equations, we have identified the principal strains ε1, ε2
with εxx, εzz and the principal stresses σ1, σ2 with σxx,σzz. With εzz = 0,
Equations (3–62) and (3–63) give

σxx =
E

(1 − ν2)
εxx. (3.64)

Equation (3–61) for the bending moment can be rewritten, using Equation
(3–64), as

M =
E

(1 − ν2)

∫ h/2

−h/2
εxxy dy. (3.65)

The longitudinal strain εxx depends on the distance from the midplane
of the plate y and the local radius of curvature of the plate R. Figure 3–12
shows a bent section of the plate originally of length l (l is infinitesimal).
The length of the section measured along the midplane remains l. The small
angle φ is l/R in radians. The geometry of Figure 3–12 shows that the change
in length of the section ∆l at a distance y from the midplane is

∆l = −yφ = −y
l

R
, (3.66)

where the minus sign is included because there is contraction when y is
positive. Thus the strain is

εxx = −
∆l

l
=

y

R
. (3.67)

Implicit in this relation is the assumption that plane sections of the plate
remain plane.

The local radius of curvature R is determined by the change in slope of the
plate midplane with horizontal distance. The geometry is shown in Figure
3–13. If w is small, −dw/dx, the slope of the midplane, is also the angular
deflection of the plate from the horizontal α. The small angle φ in Figure
3–13 is simply the change in α, that is, dα, in the small distance l or dx.
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Figure 3.12 Longitudinal extension and contraction at a distance y from
the midplane of the plate.

Thus

φ = dα =
dα

dx
dx =

d

dx

(

−
dw

dx

)

dx = −
d2w

dx2
dx,

(3.68)

and we find
1

R
=
φ

l
≈

φ

dx
= −

d2w

dx2
. (3.69)

Finally, the strain is given by

εxx = −y
d 2w

dx2
, (3.70)

and the bending moment can be written

M =
−E

(1 − ν2)

d 2w

dx2

∫ h/2

−h/2
y2 dy

=
−E

(1 − ν2)

d 2w

dx2

(

y3

3

)h/2

−h/2

=
−Eh3

12(1 − ν2)

d 2w

dx2
. (3.71)

The coefficient of −d 2w/dx2 on the right side of Equation (3–71) is called
the flexural rigidity D of the plate

D ≡
Eh3

12(1 − ν2)
. (3.72)
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Figure 3.13 Sketch illustrating the geometrical relations in plate bending.

According to Equations (3–69), (3–71), and (3–72), the bending moment is
the flexural rigidity of the plate divided by its curvature

M = −D
d 2w

dx2
=

D

R
. (3.73)

Upon substituting the second derivative of Equation (3–73) into Equation
(3–60), we obtain the general equation for the deflection of the plate

D
d4w

dx4
= q(x) − P

d 2w

dx2
. (3.74)

We next solve Equation (3–74) for plate deflection in a number of simple
cases and apply the results to the deformation of crustal strata and to the
bending of the lithosphere.

3.10 Bending of Plates under Applied Moments and Vertical
Loads

Consider a plate embedded at one end and subject to an applied torque Ma

at the other, as shown in Figure 3–14. Assume for simplicity that the plate
is weightless. With q = 0, Equation (3–57) shows that the shear stress on
a section of the plate V must be a constant. In fact, V = 0, since there is
no applied force acting on the plate. This can easily be seen by considering
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Figure 3.14 An embedded plate subject to an applied torque.

Figure 3.15 Force and torque balance on a section of the plate in Figure
3–14.

a force balance on a section of the plate, as shown in Figure 3–15. Since
P = 0 and since we have established V = 0, Equation (3–59) requires that
M = constant. The constant must be Ma, the applied torque, as shown by
a moment balance on an arbitrary section of the plate (Figure 3–15).

To determine the deflection of the plate, we could integrate Equation (3–
74) with q = P = 0. However, since we already know M ≡ Ma, it is simpler
to integrate Equation (3–73), the twice integrated form of the fourth-order
differential equation. The boundary conditions are w = 0 at x = 0 and
dw/dx = 0 at x = 0. These boundary conditions at the left end of the plate
clarify what is meant by an embedded plate; the embedded end of the plate
cannot be displaced, and its slope must be zero. The integral of Equation
(3–73) subject to these boundary conditions is

w =
−Max2

2D
. (3.75)

The bent plate has the shape of a parabola. w is negative according to the
convention we established if M is positive; that is, the plate is deflected
upward.

Problem 3.7 What is the displacement of a plate pinned at both ends
(w = 0 at x = 0, L) with equal and opposite bending moments applied at
the ends? The problem is illustrated in Figure 3–16.

As a second example we consider the bending of a plate embedded at
its left end and subjected to a concentrated force Va at its right end, as
illustrated in Figure 3–17. In this situation, q = 0, except at the point
x = L, and Equation (3–57) gives V = constant. The constant must be
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Figure 3.16 Bending of a plate pinned at both ends.

Figure 3.17 An embedded plate subjected to a concentrated load.

Va, as shown by the vertical force balance on the plate sketched in Figure
3–18. With P also equal to zero, Equation (3–59) for the bending moment
simplifies to

dM

dx
= Va. (3.76)

This equation can be integrated to yield

M = Vax + constant, (3.77)

and the constant can be evaluated by noting that there is no applied torque
at the end x = L; that is, M = 0 at x = L. Thus we obtain

M = Va(x − L). (3.78)

The bending moment changes linearly from −VaL at the embedded end to
zero at the free end. A simple torque balance on the section of the plate
shown in Figure 3–18 leads to Equation (3–78), since M must balance the
torque of the applied force Va acting with moment arm L − x.

The displacement can be determined by integrating Equation (3–74),
which simplifies to

d4w

dx4
= 0, (3.79)

when q = P = 0. The integral of Equation (3–79) is

d3w

dx3
= constant. (3.80)



208 Elasticity and Flexure

Figure 3.18 Forces and torques on a section of a plate loaded at its right
end by a force Va.

Figure 3.19 A uniformly loaded plate embedded at one end.

The constant can be evaluated by differentiating Equation (3–73) with re-
spect to x and substituting for dM/dx from Equation (3–76). The result
is

d3w

dx3
= −

Va

D
. (3.81)

A second-order differential equation for w can be obtained by integrating
Equation (3–81) and evaluating the constant of integration with the bound-
ary condition d 2w/dx2 = 0 at x = L. Alternatively, the same equation can
be arrived at by substituting for M from Equation (3–78) into Equation
(3–73)

d 2w

dx2
= −

Va

D
(x − L). (3.82)

This equation may be integrated twice more subject to the standard bound-
ary conditions w = dw/dx = 0 at x = 0. One finds

w =
Vax2

2D

(

L −
x

3

)

. (3.83)

Problem 3.8 Determine the displacement of a plate of length L pinned
at its ends with a concentrated load Va applied at its center. This problem
is illustrated in Figure 3–9.

As a third and final example, we consider the bending of a plate embedded
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at one end and subjected to a uniform loading q(x) = constant, as illustrated
in Figure 3–19. Equation (3–74), with P = 0, becomes

d4w

dx4
=

q

D
. (3.84)

We need four boundary conditions to integrate Equation (3–84). Two of
them are the standard conditions w = dw/dx = 0 at the left end x = 0.
A third boundary condition is the same as the one used in the previous
example, namely, d 2w/dx2 = 0 at x = L, because there is no external
torque applied at the right end of the plate – see Equation (3–73). The fourth
boundary condition follows from Equation (3–59) with P = 0. Because there
is no applied concentrated load at x = L, V must vanish there, as must
dM/dx and from Equation (3–73), d3w/dx3. After some algebra, one finds
the solution

w =
qx2

D

(

x2

24
−

Lx

6
+

L2

4

)

. (3.85)

The shear force at x = 0 is −D(d3w/dx3)x=0. From Equation (3–85)
this is qL, a result that also follows from a consideration of the overall
vertical equilibrium of the plate because qL is the total loading. The shear
stress on the section x = 0 is qL/h. The bending moment on the section
x = 0 is −D(d 2w/dx2)x=0 or −qL2/2. The maximum bending or fiber stress,
σmax

xx = σxx at y = −h/2, is given, from Equations (3–85), (3–64), and (3–
70), by

σmax
xx =

E

(1 − ν2)

h

2

d 2w

dx2
=

6

h2
D

d 2w

dx2
= −

6M

h2
.

(3.86)

At x = 0, σmax
xx is 3qL2/h2. The ratio of the shear stress to the maximum

bending stress at x = 0 is h/3L, a rather small quantity for a thin plate. It
is implicit in the analysis of the bending of thin plates that shear stresses in
the plates are small compared with the bending stresses.

Problem 3.9 Calculate V and M by carrying out force and torque bal-
ances on the section of the uniformly loaded plate shown in Figure 3–20.

Problem 3.10 A granite plate with ρ = 2700 kg m−3 is embedded at one
end. If L = 10 m and h = 1/4 m, what is the maximum bending stress and
the shear stress at the base?

Problem 3.11 Determine the displacement of a plate that is embedded
at the end x = 0 and has a uniform loading q from x = L/2 to x = L.
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Figure 3.20 Section of a uniformly loaded plate.

Figure 3.21 Plate buckling under a horizontal force.

Problem 3.12 Determine the deflection of a plate of length L that is
embedded at x = 0 and has equal loads Va applied at x = L/2 and at
x = L.

Problem 3.13 Find the deflection of a uniformly loaded beam pinned at
the ends, x = 0, L. Where is the maximum bending moment? What is the
maximum bending stress?

Problem 3.14 A granite plate freely supported at its ends spans a gorge
20 m wide. How thick does the plate have to be if granite fails in tension at
20 MPa? Assume ρ = 2700 kg m−3.

Problem 3.15 Determine the deflection of a freely supported plate, that
is, a plate pinned at its ends, of length L and flexural rigidity D subject to
a sinusoidal load qa = q0 sinπx/L, as shown in Figure 3–21.

3.11 Buckling of a Plate under a Horizontal Load

When an elastic plate is subjected to a horizontal force P , as shown in Fig-
ure 3–22a, the plate can buckle, as illustrated in Figure 3–22b, if the applied
force is sufficiently large. Fold trains in mountain belts are believed to result
from the warping of strata under horizontal compression. We will therefore
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Figure 3.22 A freely supported plate loaded sinusoidally.

consider the simplest example of plate buckling under horizontal compres-
sion to determine the minimum force required for buckling to occur and
the form, that is, the wavelength, of the resulting deflection. In a subsequent
section we will carry out a similar calculation to determine if the lithosphere
can be expected to buckle under horizontal tectonic compression.

We consider a plate pinned at both ends and subjected to a horizontal
force P , as shown in Figure 3–22. The deflection of the plate is governed by
Equation (3–74) with q = 0:

D
d4w

dx4
+ P

d 2w

dx2
= 0. (3.87)

This can be integrated twice to give

D
d 2w

dx2
+ Pw = c1x + c2. (3.88)

However, we require that w is zero at x = 0, L and that d 2w/dx2 = 0 at
x = 0, L, since there are no applied torques at the ends. These boundary
conditions require that c1 = c2 = 0, and Equation (3–88) reduces to

D
d 2w

dx2
+ Pw = 0. (3.89)

Equation (3–89) has the general solution

w = c1 sin
(

P

D

)1/2

x + c2 cos
(

P

D

)1/2

x, (3.90)

where c1 and c2 are constants of integration. Because w is equal to zero at
x = 0, c2 must be zero, and

w = c1 sin
(

P

D

)1/2

x. (3.91)
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But w must also vanish at x = L, which implies that if c1 ̸= 0, then

sin
(

P

D

)1/2

L = 0. (3.92)

Thus (P/D)1/2L must be an integer multiple of π,

(

P

D

)1/2

L = nπ n = 1, 2, 3, . . . (3.93)

Solving this equation for P , we get

P =
n2π2

L2
D. (3.94)

Equation (3–94) defines a series of values of P for which nonzero solutions
for w exist. The smallest such value is for n = 1 when P is given by

P = Pc =
π2

L2
D. (3.95)

This is the minimum buckling load for the plate. If P is smaller than this
critical value, known as an eigenvalue, the plate will not deflect under the
applied load; that is, c1 = 0 or w = 0. When P has the value given by
Equation (3–95), the plate buckles or deflects under the horizontal load. At
the onset of deflection the plate assumes the shape of a half sine curve

w = c1 sin
(

P

D

)1/2

x

= c1 sin
πx

L
. (3.96)

The amplitude of the deflection cannot be determined by the linear analysis
carried out here. Nonlinear effects fix the magnitude of the deformation.

The application of plate flexure theory to fold trains in mountain belts
requires somewhat more complex models than considered here. Although a
number of effects must be incorporated to approximate reality more closely,
one of the most important is the influence of the medium surrounding a
folded stratum. The rocks above and below a folded layer exert forces on
the layer that influence the form (wavelength) of the folds and the critical
horizontal force necessary to initiate buckling.

3.12 Deformation of Strata Overlying an Igneous Intrusion

A laccolith is a sill-like igneous intrusion in the form of a round lens-shaped
body much wider than it is thick. Laccoliths are formed by magma that



3.12 Deformation of Strata Overlying an Igneous Intrusion 213

is intruded along bedding planes of flat, layered rocks at pressures so high
that the magma raises the overburden and deforms it into a domelike shape.
If the flow of magma is along a crack, a two-dimensional laccolith can be
formed. Our analysis is restricted to this case. A photograph of a laccolithic
mountain is given in Figure 3–23 along with a sketch of our model.

The overburden or elastic plate of thickness h is bent upward by the
pressure p of the magma that will form the laccolith upon solidification.
The loading of the plate q(x) is the part of the upward pressure force p in
excess of the lithostatic pressure ρgh:

q = −p + ρgh. (3.97)

This problem is very similar to the one illustrated in Figure 3–19. In both
cases the loading is uniform so that Equation (3–84) is applicable. We take
x = 0 at the center of the laccolith. The required boundary conditions are
w = dw/dx = 0 at x = ±L/2. The solution of Equation (3–84) that satisfies
these boundary conditions is obtained after some algebra in the form

w = −
(p − ρgh)

24D

(

x4 −
L2x2

2
+

L4

16

)

. (3.98)

Note that because of the symmetry of the problem the coefficients of x and
x3 must be zero. The maximum deflection at the center of the laccolith,
x = 0, is

w0 = −
(p − ρgh)L4

384D
. (3.99)

In terms of its maximum value, the deflection is given by

w = w0

(

1 − 8
x2

L2
+ 16

x4

L4

)

. (3.100)

Problem 3.16 Show that the cross-sectional area of a two-dimensional
laccolith is given by (p − ρgh)L5/720D.

Problem 3.17 Determine the bending moment in the overburden above
the idealized two-dimensional laccolith as a function of x. Where is M a
maximum? What is the value of Mmax?

Problem 3.18 Calculate the fiber stress in the stratum overlying the two-
dimensional laccolith as a function of y (distance from the centerline of the
layer) and x. If dikes tend to form where tension is greatest in the base of
the stratum forming the roof of a laccolith, where would you expect dikes
to occur for the two-dimensional laccolith?
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3.13 Application to the Earth’s Lithosphere

When applying Equation (3–74) to determine the downward deflection of
the earth’s lithosphere due to an applied load, we must be careful to include
in q(x) the hydrostatic restoring force caused by the effective replacement
of mantle rocks in a vertical column by material of smaller density. In the
case of the oceanic lithosphere, water fills in “the space vacated” by mantle
rocks moved out of the way by the deflected lithosphere. In the case of the
continental lithosphere, the rocks of the thick continental crust serve as the
fill. Figure 3–24a illustrates the oceanic case. The upper part of the figure
shows a lithospheric plate of thickness h and density ρm floating on a “fluid”
mantle also of density ρm. Water of density ρw and thickness hw overlies the
oceanic lithosphere. Suppose that an applied load deflects the lithosphere
downward a distance w and that water fills in the space above the plate, as
shown in the bottom part of Figure 3–24a. The weight per unit area of a
vertical column extending from the base of the deflected lithosphere to the
surface is

ρwg(hw + w) + ρmgh.

The pressure at a depth hw + h + w in the surrounding mantle where there
is no plate deflection is

ρwghw + ρmg(h + w).

Thus there is an upward hydrostatic force per unit area equal to

ρwghw + ρmg(h + w) − {ρwg(hw + w) + ρmgh}
= (ρm − ρw)gw (3.101)

tending to restore the deflected lithosphere to its original configuration. The
hydrostatic restoring force per unit area is equivalent to the force that re-
sults from replacing mantle rock of thickness w and density ρm by water
of thickness w and density ρw. The net force per unit area acting on the
lithospheric plate is therefore

q = qa − (ρm − ρw)gw, (3.102)

where qa is the applied load at the upper surface of the lithosphere. Equation
(3–74) for the deflection of the elastic oceanic lithosphere becomes

D
d4w

dx4
+ P

d 2w

dx2
+ (ρm − ρw)gw = qa(x). (3.103)

Figure 3–24b illustrates the continental case. The upper part of the figure
shows the continental crust of thickness hc and density ρc separated by the
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Moho from the rest of the lithosphere of thickness h and density ρm. The
entire continental lithosphere lies on top of a fluid mantle of density ρm. The
lower part of Figure 3–24b shows the plate deflected downward a distance
w by an applied load such as excess topography. The Moho, being a part of
the lithosphere, is also deflected downward a distance w. The space vacated
by the deflected lithosphere is filled in by crustal rocks. The crust beneath
the load is effectively thickened by the amount w by which the Moho is
depressed. The weight per unit area of a vertical column extending from the
base of the deflected plate to the surface is

ρcg(hc + w) + ρmgh.

The pressure at a depth hc + h + w in the surrounding mantle far from the
deflected plate is

ρcghc + ρmg(h + w).

The difference between these two quantities is the upward hydrostatic restor-
ing force per unit area

ρcghc + ρmg(h + w) − {ρcg(hc + w) + ρmgh}
= (ρm − ρc)gw. (3.104)

The restoring force is equivalent to the force that results from replacing
mantle rock by crustal rock in a layer of thickness w. The net force per unit
area acting on the elastic continental lithosphere is therefore

q = qa − (ρm − ρc)gw. (3.105)

Equation (3–74) for the deflection of the plate becomes

D
d4w

dx4
+ P

d 2w

dx2
+ (ρm − ρc)gw = qa(x). (3.106)

We are now in a position to determine the elastic deflection of the lithosphere
and the accompanying internal stresses (shear and bending) for different
loading situations.

3.14 Periodic Loading

How does the positive load of a mountain or the negative load of a valley
deflect the lithosphere? To answer this question, we determine the response
of the lithosphere to a periodic load. We assume that the elevation of the
topography is given by

h = h0 sin 2π
x

λ
, (3.107)
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where h is the topographic height and λ is its wavelength. Positive h cor-
responds to ridges and negative h to valleys. Since the amplitude of the
topography is small compared with the thickness of the elastic lithosphere,
the influence of the topography on this thickness can be neglected. The
load on the lithosphere corresponding to the topography given by Equation
(3–107) is

qa(x) = ρcgh0 sin 2π
x

λ
(3.108)

where ρc is the density of the crustal rocks associated with the height vari-
ation. The equation for the deflection of the lithosphere is obtained by sub-
stituting this expression for qa(x) into Equation (3–106) and setting P = 0
to obtain

D
d4w

dx4
+ (ρm − ρc)gw = ρcgh0 sin 2π

x

λ
. (3.109)

Because the loading is periodic in x, the response or deflection of the
lithosphere will also vary sinusoidally in x with the same wavelength as the
topography. Thus we assume a solution of the form

w = w0 sin 2π
x

λ
. (3.110)

By substituting Equation (3–110) into Equation (3–109), we determine the
amplitude of the deflection of the lithosphere to be

w0 =
h0

ρm

ρc
− 1 +

D

ρcg

(

2π

λ

)4 . (3.111)

The quantity (D/ρcg)1/4 has the dimensions of a length. It is proportional
to the natural wavelength for the flexure of the lithosphere.

If the wavelength of the topography is sufficiently short, that is, if

λ≪ 2π
(

D

ρcg

)1/4

, (3.112)

then the denominator of Equation (3–111) is much larger than unity, and

w0 ≪ h0. (3.113)

Short-wavelength topography causes virtually no deformation of the litho-
sphere. The lithosphere is infinitely rigid for loads of this scale. This case is
illustrated in Figure 3–25a. If the wavelength of the topography is sufficiently
long, that is, if

λ≫ 2π
(

D

ρcg

)1/4

, (3.114)
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Figure 3.25 Deflection of the lithosphere under a periodic load. (a)
Short-wavelength loading with no deflection of the lithosphere. (b) Long-
wavelength loading with isostatic deflection of the lithosphere.

Figure 3.26 Buckling of an infinitely long plate under an applied horizontal
load with a hydrostatic restoring force.

then Equation (3–111) gives

w = w0∞ =
ρch0

(ρm − ρc)
. (3.115)

This is the isostatic result obtained in Equation (2–3). For topography of
sufficiently long wavelength, the lithosphere has no rigidity and the topog-
raphy is fully compensated; that is, it is in hydrostatic equilibrium.

The degree of compensation C of the topographic load is the ratio of the
deflection of the lithosphere to its maximum or hydrostatic deflection

C =
w0

w0∞
. (3.116)

Upon substituting Equations (3–111) and (3–115) into the equation for C,
we obtain

C =
(ρm − ρc)

ρm − ρc +
D

g

(

2π

λ

)4 . (3.117)
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Figure 3.27 Dependence of the degree of compensation on the nondimen-
sional wavelength of periodic topography.

This dependence is illustrated in Figure 3–26. For a lithosphere with elastic
thickness 25 km, E = 70 GPa, ν = 0.25, ρm = 3300 kg m−3, and ρc =
2800 kg m−3 we find that topography is 50% compensated (C = 0.5) if
its wavelength is λ = 420 km. Topography with a shorter wavelength is
substantially supported by the rigidity of the lithosphere; topography with
a longer wavelength is only weakly supported.

3.15 Stability of the Earth’s Lithosphere under an End Load

We have already seen how a plate pinned at its ends can buckle if an applied
horizontal load exceeds the critical value given by Equation (3–95). Let us
investigate the stability of the lithosphere when it is subjected to a horizontal
force P . We will see that when P exceeds a critical value, an infinitely long
plate (L → ∞) will become unstable and deflect into the sinusoidal shape
shown in Figure 3–27.

The equation for the deflection of the plate is obtained by setting qa = 0
in Equation (3–103):

D
d4w

dx4
+ P

d 2w

dx2
+ (ρm − ρw)gw = 0. (3.118)

This equation can be satisfied by a sinusoidal deflection of the plate as given
in Equation (3–110) if

D
(

2π

λ

)4

− P
(

2π

λ

)2

+ (ρm − ρw)g = 0, (3.119)

a result of directly substituting Equation (3–110) into Equation (3–118).
Equation (3–119) is a quadratic equation for the square of the wavelength
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of the sinusoid λ. Its solution is
(

2π

λ

)2

=
P ± [P 2 − 4(ρm − ρw)gD]1/2

2D
. (3.120)

Because the wavelength of the deformed lithosphere must be real, there can
only be a solution if P exceeds the critical value

Pc = {4Dg(ρm − ρw)}1/2. (3.121)

Pc is the minimum value for P for which the initially horizontal lithosphere
will become unstable and acquire the sinusoidal shape. If P < Pc, the hori-
zontal lithosphere is stable and will not buckle under the end load.

The eigenvalue Pc can also be written

Pc =
(

Eh3(ρm − ρw)g

3(1 − ν2)

)1/2

= σch, (3.122)

where σc is the critical stress associated with the force Pc. Solving Equation
(3–122) for the critical stress we find

σc =
(

Eh(ρm − ρw)g

3(1 − ν2)

)1/2

. (3.123)

The wavelength of the instability that occurs when P = Pc is given by
Equation (3–120):

λc = 2π
(

2D

Pc

)1/2

= 2π
(

D

g(ρm − ρw)

)1/4

= 2π
(

Eh3

12(1 − ν2)(ρm − ρw)g

)1/4

. (3.124)

We wish to determine whether buckling of the lithosphere can lead to
the formation of a series of synclines and anticlines. We consider an elastic
lithosphere with a thickness of 50 km. Taking E = 100 GPa, ν = 0.25,
ρm = 3300 kg m−3, and ρw = 1000 kg m−3, we find from Equation (3–123)
that σc = 6.4 GPa. A 50-km-thick elastic lithosphere can support a hori-
zontal compressive stress of 6.4 GPa without buckling. Because of the very
large stress required, we conclude that such buckling does not occur. The
lithosphere fails, presumably by the development of a fault, before buckling
can take place. In general, horizontal forces have a small influence on the
bending behavior of the lithosphere. For this reason we neglect them in the
lithosphere bending studies to follow.

Horizontal forces are generally inadequate to buckle the lithosphere be-
cause of its large elastic thickness. However, the same conclusion may not


