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What makes a planet habitable?
Mars



Logistics

* People who have not yet done (or signed-up for)
2 presentations (Adina, Thomas, Aaron, Charlie,
Sadhana, Sasha): identify yourselves for
presenting either (a) Grotzinger et al. Science
2014 “A habitable fluvio-lacustrine environment
at Yellowknife Bay, Gale Crater, Mars” (next Tue)
or (b) Spencer & Nimmo Annual Reviews 2014
“Enceladus: An Active Ice World In The Saturn

System” (next Thu)
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Immediately after the origin of life(?)
Abiotic organic matter for early heterotrophs

Table 7.1 Comparison of various potential sources of organic compounds on Earth around 4.0 Ga.

Source Organic production: Organic production:
reduced atmosphere neutral atmosphere
(kg yr) (kg yr')
Lightning 3x107 3x 107
Ultraviolet light 2x 10" 3x10°
Atmospheric shocks from meteors 1x107 3x 10!
Atmospheric shocks from postimpact plumes 2x10'° 4x10°
Interplanetary dust particles 6x 107 6x 107
Hydrothermal synthesis 2x10® 2x10®

Note: Hydrothermal synthesis data from Shock (1992), all other data from Chyba and Sagan (1992).

Today: 100 Gton C/yr (approx. 2000 Tmol/yr )

K. Konhauser, ‘Geomicrobiology,” 2009



Methanogenesis is a possible pre-
photosynthetic energy source

CO, + 4H, = CH, + 2H,0O

Mars: unconfirmed reports of
unknown amounts of atmospheric CH4
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ExoMars TGO: first science results last month



Early photosynthesis was limited by
the availability of reductants

e.g. Fe?* from weathering, sulfides (S%) from
hydrothermal vents ...

Reduction of H,O would be ideal, but this required a
complicated evolutionary innovation that only
happened once in Earth history (in an early
cyanobacterium) and may have taken 2 Gyr to occur
(Fischer et al., Annual Reviews, 2016). Water oxidation
requires an oxidant with a potential of +0.8V (2x what
is found in any anoxygenic phototroph). Water
splitting system is from one clade of prokaryotes, the
other photosystem from a separate clade.



Key points for Lecture 14

Mechanisms by which biology / organic carbon
sequestration might affect long-term climate
regulation

Understand/explain the Daisyworld model

How ‘Li may be used to track weathering
intensity vs. time: examples from the geologic
record

Discuss nutrient limitation on modern Earth; pre-
photosynthetic Earth; and Earth when dominated
by anoxygenic photosynthesis.
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Main drivers of atmospheric decline:
escape-to-space (including impact erosion)

Young Sun: extreme X-rays, EUV, plasma
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Evidence for water loss over time
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Climate stabilization on early Mars

MODERN MARS CLIMATE
CARBON FEEDBACKS?
SULFUR FEEDBACKS?
HYDROGEN?

INTERMITTENCY?
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ICARUS 71, 203-224 (1987)

SURFACE TEMPERATURE, K

The Case for a Wet, Warm Climate on Early Mars

J. B. POLLACK AnD J. F. KASTING

NASA Ames Research Center, Moffett Field, California 94035
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Fi1G. 1. (a) Surface temperature, 7, and (b) planetary albedo, A,, of Mars as the function of the
surface pressure of CO, for the present surface albedo and globally and orbitally averaged solar flux. In
(a), the solid curve presents results from this paper, while the other two curves represent results from

two earlier calculations.
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CO, condensation limits warming
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Figure 12. Surface temperature as a function of surface pres-
sure for four different values of the solar luminosity. Dashed
line shows the saturation vapor pressure of CO,. For the 0.7
and 0.8 luminsoity cases, pressures greater than the maximum
permitted would discontinuously move the curves down to the JGR-Planets,
saturation vapor pressure [from Kasting, 1991]. 1998

Haberle,



Problem #1: where are the carbonates?

Carbonates are expected to form by water-rock Comanche Outcrops
reaction if pCO2 was high and pH was not acidic Comanche
Spur
CO2 reservoirs 5m O /
Escape S 7"t "’;b_ - Workspace

-
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Comanche: 16-34 wt% carbonate
Caps caps] (Morrisetal., 2010): but such
TS 7///////77/7, outcrops are rare
Regolith Carbonates

Figure 13. Candidate reservoirs for an carly CO, atmo-

sphere. Adding up known

" carbonate

* reservoirs yields
Haberle, " << 1barCO,
JGR-Planets, equivalent

1998



Insufficient warming from CO2+H20 alone
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Fig. 2. Effects of atmospheric CO, and H,0 on global temperature. Error bars show

mean and maximum/minimum surface temperature vs. pressure (sampled over one

orbit and across the surface) for dry CO, atmospheres (red), and simulations with  \N/ordsworth et al. Icarus
100% relative humidity (blue) but no H,0 clouds. Dashed and dotted black lines

show the condensation curve of CO, and the melting point of H,0, respectively. For 2013

this plot simulations were performed at 0.2, 0.5, 1 and 2 bar; the dry and wet data

are slightly separated for clarity only. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)



Problem #2: how much CO2 is
enough?

- Wordsworth et al. Icarus 2013
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Climate stabilization on early Mars

MODERN MARS CLIMATE
CARBON FEEDBACKS?
SULFUR FEEDBACKS?
HYDROGEN?

INTERMITTENCY?
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Fig. 1. pH dependence of aqueous 5** (black) and C (gray) speciation, expressed by the chemical
equilibrium reactions in the figure. At pH between 2 and 6, most of the S** is present as HS03~
(bisulfite), whereas carbon is predominantly in the form of CO, (aq).

Halevy et al. Science 2007



SO,-driven warming?
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Effect of Sulfur Gases on the Early Martian Atmosphere

SO02 + H2S + H20

SO2 +H20. |
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Even in the cases where large amounts of SO, JGR-PIaznOelt;

and H,S are added to the atmosphere, the annual

global average surface temperature does not rise
above freezing. H,S provides significantly less

warming than SO,.
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MODERN MARS CLIMATE
CARBON FEEDBACKS?
SULFUR FEEDBACKS?
HYDROGEN?
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- H2 collision-induced absorption

Fig. 2 Evolutionary tracks for the

time dependence of surface

temperature for Mars for three

early compositions and two

different bolometric Russell-Bond
albedos.
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H, collision-induced absorption
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Olivine places an upper limit of 107 yr
of water over most of the surface

Olivine

Koeppen & Hamilton, JGR-Planets, 2008 Mean Fractional Contribtuion

15%
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» Refers to soil-water contact (ice can shield soil from water)
* Physical erosion can ‘reset’ the surface



Paleolake hydrology requires >10%> continuous wet years
(e.g., seasonal runoff)
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Statistics of intermittent habitability on Mars

‘ Orbital integration #6
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[Not required for final]
Mars terraforming: very difficult at best

Bad news: No credible source for breathable levels of 02

Good news: ~1 bar CO2 would be sufficient to warm surface for
modern solar luminosity

Bad news: The CO2 may have all (or mostly) escaped to space
(Ehlmann & Edwards, Geology, 2014)

Good news: CFCs or SF6 can provide very strong warming
(Marinova et al., JGR-Planets, 2005)

Bad news: CFC/SF6 warming would probably not trigger
runaway atmospheric re-inflation
(Bierson et al. GRL 2016)

Good news: ...?

Common assumptions in the literature:
Initiate with relatively near-term
(21%t-century) technologies

Falcon Heavy:
17 tons to Mars




[Not required for final] Mars terraforming: gases vs. particles

Particles option: inject resonant absorbers at

Gases option: make on surface: Marinova+ 2005 JGR

Thermal Radiation
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Fig. 2. Example calculation of scattering and absorption spectra of pro-
late Ag spheroids in water with varying aspect ratio h (1-50), with a fixed
equivalent-volume radius ry=20 nm.
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Key points: Mars

 Current Mars T, P, and magnitude of present
day annual cycles of H,O, CO,, and dust;

* reasons in favor of, and problems with, the
CO,, SO,, and H, solutions to the

Early Mars Climate Problem;

 significance of the olivine and paleolake-
hydrology constraints on Early Mars climate.



