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What makes a planet habitable?

Lecture 9
Thursday 26 April 2018



Today

Reminder: Graduate students + undergraduates who
choose the term paper option: Send term paper topics to
kite@uchicago.edu before end Fri 27 for approval. Term
papers due in at the start of the final (10:30a-12:30p, Thu
7 June , HGS 180)

Seeking volunteers for Yang et al. 2013 ‘Stabilizing cloud

feedback dramatically expands the habitable zone of
tidally locked planets’ (to be presented on Tue 8 May)

Homework 3 is due in class Tue 1 May
Office hours after class today
Wrap-up of impact erosion

Runaway greenhouse




Wrap-up: impact erosion
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(a) In the first stage of the gas gun (blue shading), hot-burning
gases from gunpowder drive a piston, which in turn compresses
hydrogen gas. (b) In the second stage (pink shading), the high-
pressure gas eventually ruptures a second-stage valve,
accelerating the impactor down the harrel toward its target.

Two-stage gas gun

Terrestrial impact craters



The atmosphere-loss escape efficiency of giant impacts is set by the ground-motion speed
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Impacts by small asteroids/comets efficiently eject ~1 bar atmospheres
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Fig. 9 Ratio of atmospheric mass ejected to impactor mass, M gject/mpmp. Numerical values are scaled

to the current Earth’s atmosphere and shown for vjppn/vesc ~ 1. Small impactors with ry = /3 min are the
most efficient impactors per unit mass in ejecting the atmosphere and the ejection efficiency decreases rapidly
for larger planetesimals. Whether or not planetesimal impacts will lead to a net loss of planetary atmospheres
depends on the impactor sizes distribution, their volatile budget and the amount of outgassing their impacts
can initiate. The three dotted horizontal lines correspond to volatile contents of 5 wt.% (representative of some
of the most water rich carbonaceous chondrites), 0.05 wt.% (representative of the average water content in the
bulk Earth excluding the hydrosphere) and 0.0005 wt.% corresponding to an estimate of the minimum water
content of the bulk moon (McCubbin et al. 2010). For comparison, data from oblique impact simulations
for escape velocities of 11.2 km/s and impact velocities of 30 km/s from Shuvalov (2009) are shown by the
orange points. Figure after Schlichting et al. (2015)



Ocean removal by giant impacts?

(Ocean vaporization is not sufficient for ocean removal)
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Simulations suggest that the Moon-
forming impact was marginally able
to remove any pre-existing Earth
ocean

Q, ~ v,2for oligarchic impact
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There have also been major recent developments in our understanding of Moon formation,
the Moon’s orbital evolution, and Moon-induced tidal heating, but orbital/tidal effects are

not part of this course.



Total impactor mass needed to eject the atmosphere as a function of impactor radius
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History of Earth’s volatile delivery and removal

Magma oceans, outgassed atmosphere,
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An uptick in bombardment ~3.9 Ga?
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Effect of basin-forming impacts on habitability: impact frustration of life
establishing itself on Earth?

Based on Lunar cratering record, 10-100 Hellas-sized events
would have occurred on the Earth (which has since been resurfaced by plate tectonics)

3500 I I I 1 I I I 1 1 1000
3000
....... 4100
2500
2 E o 3
g %_ =000 Ocean Depth g
52 o
5 2 2
g_ § 1500+ 11 S
|q_') L rock .Q.
O 1000l  vapor
b o
S00F _ _ —--1 -'o;an i \.‘\_’ Figure 6.19 The environmental conse-
' guences on the early Earth of an impactor
0 L L L L - L L L 0.01 that released 10?7 J, comparable to that
0.001 0.01 0.1 1 10 100 200 300 400 500 600 700 that caused the 2100 km-wide Hellas

Time (years)

Time (years)

(Ocean vaporization is not sufficient for ocean removal)

e.g. Maher & Stevenson 1987

Microbial life might persist km deep within the crust

basin on Mars. Ocean depth, ocean tem-
perature, and atmospheric temperature
are shown as a function of time, along
with the pressure of rock vapor
and steam. (From Nisbet et al. (2007a).
Reproduced with permission of Springer.
Copyright 2007, Springer Science + Busi-
ness Media, Inc.)



Runaway greenhouse — key points

The (H20-)runaway greenhouse is a geologically
rapid increase in planet surface temperature from
<400K to >1000K caused by a positive feedback
between the saturation vapor pressure of water
vapor and the

Be able to explain the mechanism of the runaway
greenhouse

It is almost certain that release of CO2 by humans
cannot cause a runaway greenhouse

The exact threshold for the runaway greenhouse
depends on cloud cover, land fraction, and planet
rotation rate



Venus is dry
today
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The inner edge of the habitable zone is
defined by the runaway greenhouse limit
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Clasius-Clapeyron relation:
exponential increase in water vapor
partial pressure with increasing T
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section 1.1.3.5 of Catling & Kasting, ch. 1




Definitions:
adiabat and moist
adiabat
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Definitions: adiabat and moist adiabat

Condensible “c” (e.g. water) and noncondensible “a” (e.g. O,/N,)
Assume instant precipitation of condensate

(Mg + me)0R = mycpdT — %dpa + mecpcdT — %dpc + Ldm,.

a Pc

zero by definition
of adiabat

Assuming saturation (relative humidity = 1),

dinT o Ra 1 RfTrsat

dlnp,  cpa 1+ (2= 4 (£

In the limit r_, = 0 (dry atmosphere), this equation

gives the dry adiabat . _
Mixing ratio at

In the limit where water vapor is the dominant constituent saturation

of the atmosphere, this tends to the saturation vapor pressure curve.



As temperature increases, the moist adiabat increasingly diverges from the dry adiabat

Moist adiabat, water vapor in air
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Stratospheric cold-trap
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The runaway greenhouse leads to the end of habitability
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Figure 1. Radiation limits (solid lines) as a function of surface temperature, after Nakajima
et al. [13]. Inaccessible regions are shaded. All of the white area can, in theory be occupied
depending on the amount of non-condensible greenhouse gas (e.g. carbon dioxide) present, but
at higher temperatures, outgoing flux will tend towards the tropospheric limit, as indicated
by the arrows. Present day mean surface temperature is 289 K with an outgoing thermal flux
of 239Wm™2. Note that the change in temperature with flux is equivalent to the climate
sensitivity, so the horizontal lines of the radiation limits imply infinite climate sensitivity, hence a
runaway greenhouse.

Goldblatt & Watson 2012, following Nakajima 1992



Condensable greenhouse gases lead to climate instability
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Figure 4. Temperature structure of the atmosphere with increasing surface temperature.
A background pressure of 10° Pa is assumed, equal to that of Earth’s atmosphere.

Goldblatt & Watson 2012



450

slightly less than the black-body

400 flux corresponding to the
temperature one optical depth

down from the top of the atmosphere
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Figure 5. Increase in outgoing thermal flux as a function of surface temperature, after Nakajima
et al. [13]. Black lines marked from 1 to 3 show how the top of atmosphere flux changes
with increasing surface temperature for successively higher concentrations of a non-condensible
greenhouse gas (e.g. carbon dioxide). Line 2 corresponds to Earth’s present amount of non-
condensible greenhouse gases and lines 1 and 3 are illustrative of lower and higher concentrations,
respectively. All lines are for an amount of background, non-condensible and non-radiatively active
gas similar to Earth’s (see fig. 6 of Nakajima et al. [13] for other background gas inventories).
Radiation limits are shown in colour (see figure 1 for labels). Fig. 9 of Kasting [12], derived from
a spectrally resolved model, has similar features. Goldblatt & Watson 2012



The runaway greenhouse leads to the loss of surface liquid water
(However, a supercritical H20-rich C-poor phase may persist)

OLR

Pierrehumbert 2010 figure 4.4



Two key windows in the water vapor absorption spectrum: 8-12 microns and <~4 microns
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Figure 6. Absorption spectrum of water vapour (0.3—40 pm) shown at 220Pa and 260 K. Note

the ‘window’ regions where the absorption coefficient is low and the general decline of absorption
coefficient at a shorter wavelength.
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Anthropogenic greenhouse gases (probably) cannot
trigger the runaway greenhouse.

Goldblatt et al. Nature Geoscience 2014
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Earth today is close to the runaway greenhouse limit. The runaway
greenhouse can be triggered by an increase in solar luminosity
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High gravity moves the runaway greenhouse limit closer to the star
e.g. metal-rich planet, larger-radius super-Earth

Temperature = vapor pressure

Vapor pressure x humidity / gravity = column mass of greenhouse gas

Column mass = greenhouse effect.
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flux corresponding to the temperature one optical
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Inner Habitable Zone

Model Moist Runaway

greenhouse | greenhouse

Mars-sized planet* 1.035 AU | 1.033 AU
Earth 0.99 AU 0.97 AU
Super-Earth** 0.94 AU 0.92 AU
pCO; = 5.2 x 1072 bar’ | 1.00 AU | 0.97 AU
pCO, =5.2x 1072 bar | 1.02 AU 0.97 AU
pCO2 =5.2x 107! bar | 1.02 AU 0.97 AU
pCO, = 5.2 bar 0.99 AU 0.97 AU

* Surface gravity = 3.73 m.s~2

** Surface gravity = 25 m.s™

2




Latitude

Latitude

High-albedo clouds can shift the runaway GH boundary closer to the star.
High-albedo clouds are at the substellar point when the planet is slowly
rotating (e.g., tidally locked and in the habitable zone).
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Runaways due to the GH-effect of a condensable apply to

O condensates as well —e.g., CO2 on Mars
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Kite et al. arXiv:1709.08302

Also: N2 runaway on Early Titan?

Fig. 3. Phase portrait for atmospheric collapse on Mars, showing how atmospheric collapse
drives H20-ice distribution (this calculation uses the GCM of ref. 17). Thin black lines show
annual-mean polar temperature as a function of atmospheric pressure assuming Faint
Young Sun luminosity. Thick black line is the condensation curve for CO2; atmospheres
below this line are collapsing onto polar COz ice caps (e.g., A->B). Blue dashes outline the
approximate pressures and obliquities below which H;0 ice is stable only at Mars’ poles
[e.g. 17, 29, 54]. Collapse leads to relocation of surface H20 ice from highlands to poles. In
this GCM, for an initial COz inventory of 8x1018 kg (= 2 bar), the atmosphere is stable until
@ < 15 deg (at A). Rapid collapse (~103 yr) moves the system to point B. Increasing
obliquity (over 105-107 yr) moves the (ice cap)/atmosphere system along the condensation
curve to C, (the highest ¢ consistent with permanent COz ice caps). Further ¢ rise leads to
sublimation of the COz ice cap (~103yr) and the system returns to A.



The runaway & moist
greenhouses:
under the hood

Raising temperature raises the H,0
mixing ratio at the cold trap (assumed

isothermal)
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FiG. 1S5. Calculated pseudoadiabatic temperature
profiles for various values of the H,O mass mixing
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dayside temperature profile below 9% km in the present
Venus atmosphere.
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How was the
last 10t of
Venus’ ocean
removed?
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F1G. 17. Relationship between the H,) mass mixing
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three different values of the pressure p,, at the bottom
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Kasting 1988 lines labeled A to D correspond to the cases described
in the text.



Runaway greenhouse — key points

The (H20-)runaway greenhouse is a geologically
rapid increase in planet surface temperature from
<400K to >1000K caused by a positive feedback
between the saturation vapor pressure of water
vapor and the

Be able to explain the mechanism of the runaway
greenhouse

It is almost certain that release of CO2 by humans
cannot cause a runaway greenhouse

The exact threshold for the runaway greenhouse
depends on cloud cover, land fraction, and planet
rotation rate



Backup/additional slides
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Figure 3. (a) Change in temperature structure and (b) moisture structure for warming atmospheres.
A background pressure of 10° Pa is assumed, equal to that of Earth’s atmosphere.

Goldblatt & Watson 2012



