GEQOS 22060/ GEOS 32060

What makes a planet habitable?

Lecture 16
Tuesday 22 May 2018



Today

Homework 5 is due now

Homework 6 will be issued tomorrow and is due in
class Tue 29 May

People who have not yet done 2 presentations:
identify yourselves for presenting Turbet et al. 2017
“The habitability of Proxima Centauri b: Il — Possible
climates and observability”

Presentation of Ramirez & Kasting 2016
Climate stabilization on Mars






Main drivers of atmospheric decline:
escape-to-space (including impact erosion)

Young Sun: extreme X-rays, EUV, plasma
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Evidence for water loss over time
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Climate stabilization on early Mars

MODERN MARS CLIMATE
CARBON FEEDBACKS?
SULFUR FEEDBACKS?
HYDROGEN?

INTERMITTENCY?
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ICARUS 71, 203-224 (1987)

SURFACE TEMPERATURE, K

The Case for a Wet, Warm Climate on Early Mars

J. B. POLLACK AnD J. F. KASTING

NASA Ames Research Center, Moffett Field, California 94035
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Fi1G. 1. (a) Surface temperature, 7, and (b) planetary albedo, A,, of Mars as the function of the
surface pressure of CO, for the present surface albedo and globally and orbitally averaged solar flux. In
(a), the solid curve presents results from this paper, while the other two curves represent results from

two earlier calculations.
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CO, condensation limits warming
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Figure 12. Surface temperature as a function of surface pres-
sure for four different values of the solar luminosity. Dashed
line shows the saturation vapor pressure of CO,. For the 0.7
and 0.8 luminsoity cases, pressures greater than the maximum
permitted would discontinuously move the curves down to the JGR-Planets,
saturation vapor pressure [from Kasting, 1991]. 1998

Haberle,



Problem #1: where are the carbonates?

Carbonates are expected to form by water-rock Comanche Outcrops
reaction if pCO2 was high and pH was not acidic Comanche
Spur
CO2 reservoirs 5m O /
Escape S 7"t "’;b_ - Workspace

-
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Atmosphere
Comanche: 16-34 wt% carbonate
Caps caps] (Morrisetal., 2010): but such
TS 7///////77/7, outcrops are rare
Regolith Carbonates

Figure 13. Candidate reservoirs for an carly CO, atmo-

sphere. Adding up known

" carbonate

* reservoirs yields
Haberle, " << 1barCO,
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1998



350

300+ -
3
250 ® '
~ i)
11]
[ {
(11}
m b -
200} P :
150 .
107" 10°
P, [bar]

Fig. 2. Effects of atmospheric CO, and H,0 on global temperature. Error bars show

mean and maximum/minimum surface temperature vs. pressure (sampled over one

orbit and across the surface) for dry CO, atmospheres (red), and simulations with  \N/ordsworth et al. Icarus
100% relative humidity (blue) but no H,0 clouds. Dashed and dotted black lines

show the condensation curve of CO, and the melting point of H,0, respectively. For 2013

this plot simulations were performed at 0.2, 0.5, 1 and 2 bar; the dry and wet data

are slightly separated for clarity only. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)



Problem #2: how much CO2 is
enough?

- Wordsworth et al. Icarus 2013
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In addition to greenhouse warming, a
thicker atmosphere is still useful for
suppressing evaporitic cooling
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Climate stabilization on early Mars

MODERN MARS CLIMATE
CARBON FEEDBACKS?
SULFUR FEEDBACKS?
HYDROGEN?

INTERMITTENCY?
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Fig. 1. pH dependence of aqueous 5** (black) and C (gray) speciation, expressed by the chemical
equilibrium reactions in the figure. At pH between 2 and 6, most of the S** is present as HS03~
(bisulfite), whereas carbon is predominantly in the form of CO, (aq).

Halevy et al. Science 2007



SO,-driven warming?
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Figure 2 | Radiative forcing by SO, and H,5S04-coated dust. a, Global

(dark and light blue) and subsolar zonal (red and orange) average outgoing
radiation at the steady state, compared with the incoming solar flux (black
and grey). b, Global and subsolar zonal average surface temperature at the

same steady states as in a, and during a ~30-year punctuated eruption
(triangles, see Methods). Volcanic emission rates corresponding to the
steady-state SO, mixing ratios on the horizontal axis are shown in the

centre, along with estimated emission rate ranges of terrestrial and Martian
volcanism. Numbered arrows show a possible positive feedback, described

in the text.

Halevy & Head, Nature Geoscience, 2014



Effect of Sulfur Gases on the Early Martian Atmosphere

SO02 + H2S + H20
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Even in the cases where large amounts of SO, JGR-PIaznOelt;

and H,S are added to the atmosphere, the annual

global average surface temperature does not rise
above freezing. H,S provides significantly less

warming than SO,.
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Mixing Ratio vs. Temperature
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- H2 collision-induced absorption

Fig. 2 Evolutionary tracks for the

time dependence of surface

temperature for Mars for three

early compositions and two

different bolometric Russell-Bond
albedos.
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Ramirez et al. Nature Geoscience 2014
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Olivine places an upper limit of 107 yr
of water over most of the surface

Olivine

Koeppen & Hamilton, JGR-Planets, 2008 Mean Fractional Contribtuion

15%
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0%

» Refers to soil-water contact (ice can shield soil from water)
* Physical erosion can ‘reset’ the surface



Paleolake hydrology requires >10%> continuous wet years
(e.g., seasonal runoff)
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Statistics of intermittent habitability on Mars
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[Not required for final]

Mars terraforming: very difficult at best

Bad news: No credible source for breathable levels of 02
Good news: ~1 bar CO2 would be sufficient to warm surface for

modern solar luminosity

Bad news: The CO2 may have all (or mostly) escaped to space

(Ehlmann & Edwards, Geology, 2014)

Good news: CFCs or SF6 can provide very strong warming

(Marinova et al., JGR-Planets, 2005)

Bad news: CFC/SF6 warming would probably not trigger

runaway atmospheric re-inflation
(Bierson et al. GRL 2016)
Good news: ...?

Common assumptions in the literature:
Initiate with relatively near-term
(21%t-century) technologies

Falcon Heavy:
17 tons to Mars

Length: approx.7.0 m
Width: approx.3.2 m
Height: approx.3.5 m
Operating depth 2000 m
Weight-in-air: approx.19.9
metric tons -
Weight-in-water: approx.16.0 2§80
metric tons |
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Fig. 12. Structure of SMS deposit mining machine ve h ICIeS
developed by Japan eXi st

Liu et al. Chinese J. Mech. Eng. 2016



[Not required for final] Mars terraforming: gases vs. particles

Gases option: make on surface: Marinova+ 2005 JGR Particles option: inject resonant absorbers at
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October 7, 2022 Ry Fig. 2. Example calculation of scattering and absorption spectra of pro-
late Ag spheroids in water with varying aspect ratio h (1-50), with a fixed
equivalent-volume radius ry=20 nm.

Double Asteroid Redirection Test See also Teller et al., Lawrence Livermore National Lab
(launch 2020) report UCRL-231636/UCRL JC 128715



Key points: Mars

 Current Mars T, P, and magnitude of present
day annual cycles of H,O, CO,, and dust;

* reasons in favor of, and problems with, the
CO,, SO,, and H, solutions to the

Early Mars Climate Problem;

 significance of the olivine and paleolake-
hydrology constraints on Early Mars climate.



