
5 Escape of Atmospheres to Space

So far, our discussion of atmospheric evolution has
concentrated on atmosphere and climate fundamentals.
Climate constrains possible life and, as we will see later
in this book, the way that climate is thought to have
evolved can explain many environmental differences
between Earth, Venus, and Mars. Climate is closely tied
to the composition of a planet’s atmosphere, which deter-
mines the greenhouse effect. Consequently, to understand
how climate has changed over time, we must consider
how atmospheric composition has evolved. In turn, we
must examine how atmospheric gases can be lost.

Gases are lost at an atmosphere’s upper and lower
boundaries: the planet’s surface and interplanetary space.
In this chapter, we consider the latter. Studies of the Solar
System have shown that some bodies are vulnerable to
atmospheric escape (Hunten, 1990). Indeed, many smaller
objects, e.g., most moons and essentially all asteroids, are
airless because of escape, making the theory of atmos-
pheric escape crucial for explaining differences in surface
volatiles. Escape processes can help us understand the
lack of atmospheres on the Moon and Mercury, the barren
nature of the Galilean satellites versus Titan (Griffith and
Zahnle, 1995; Gross, 1974; Zahnle et al., 1992), why the
atmosphere of Mars is thin (Brain and Jakosky, 1998;
Melosh and Vickery, 1989; Zahnle, 1993b), the red color
of the Martian surface (Hartman and McKay, 1995; Hun-
ten, 1979c), the lack of oceans on Venus (Kasting and
Pollack, 1983) (see Ch. 13), and possibly the oxidizing
nature of the Earth’s atmosphere and surface (Catling
et al., 2001) (See Ch. 10).

We can group various types of atmospheric escape
into three categories following Catling and Zahnle (2009).
(i) Thermal escape is when irradiation from a parent star
(or, less commonly, a very high heat flux from a planet or
moon interior) heats an atmosphere, causing atmospheric
molecules to escape to space. Two end-member approxi-
mations of thermal escape are appropriate under different

circumstances: Jeans’ escape, where individual mol-
ecules evaporate into a collisionless exosphere, and
hydrodynamic escape, which is a bulk outflow with a
velocity driven by atmospheric heating that induces an
upward pressure gradient force (e.g., Johnson et al.,
2013d; Walker, 1982). (ii) Suprathermal (or nonthermal)
escape is where individual atoms or molecules are
boosted to escape velocity because of chemical reactions
or ionic interactions. Finally, (iii) impact erosion is where
atmospheric gases are expelled en masse as a result of
large body impacts, such as the cumulative effect of
asteroids hits. Of these three types, nonthermal escape is
generally slow because if it were fast the molecules would
collide and the escape would be in the thermal category.
Theory suggests that the two mechanisms that can most
efficiently cause substantial atmospheric loss are hydro-
dynamic escape driven by stellar irradiation (Lammer
et al., 2008; Sekiya et al., 1981; Sekiya et al., 1980a;
Watson et al., 1981; Zahnle et al., 1990; Zahnle and
Kasting, 1986) and impact erosion (Griffith and Zahnle,
1995; Melosh and Vickery, 1989; Walker, 1986; Zahnle
et al., 1992). In addition, hydrodynamic escape from early
hydrogen-rich atmospheres on the terrestrial planets is
relevant for observations of noble gases and their iso-
topes, as discussed in Ch. 6, because such escape can
drag along heavier gases.

In this chapter, we focus particularly on the escape of
hydrogen, for two reasons. First, hydrogen is the lightest
gas and consequently the most prone to escape. Second,
later in the book, we will see that substantial loss of
hydrogen can affect the redox chemistry of a planet’s
atmosphere and surface, changing the chemical character
of a planet. Rocky planets, as a whole, become more
oxidized when hydrogen escapes to space. This oxidation
occurs irrespective of whether the hydrogen is transported
through the atmosphere as H2, H2O, CH4, HCN, NH3, or
some other H-bearing compound. Oxidation occurs
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because the hydrogen atom that escapes ultimately
derives from some oxidized form of hydrogen such as
water (H2O), water of hydration in silicate rocks (–OH),
or hydrocarbons (–CH). It was in these compounds that
hydrogen was originally incorporated into planets like the
Earth. Consequently, when hydrogen escapes, matter
somewhere on a planet’s surface or subsurface is irrevers-
ibly oxidized.

Oxidation is most obvious if we consider hydrogen
that escapes after atmospheric water vapor undergoes
photolysis. Consider water vapor photolysis and escape
in the upper atmosphere of the Earth. In this case, the
oxygen left behind can oxidize the Earth’s surface so that
any further oxygen produced (by photolysis and hydrogen
escape) is less likely to be taken up by the crust and more
liable to remain in the atmosphere. However, today’s
abiotic production rate of oxygen is ~102 times smaller
than the rate of O2 production from photosynthesis and,
hence, plays a negligible role in the atmospheric oxygen
budget. It is nonetheless important to understand such
abiotic oxygen, both because of its possible effect on very
early life on this planet and because of its future signifi-
cance in interpreting spectra that may be obtained from
exoplanets.

The effect of the escape of hydrogen in oxidizing
surfaces is also widely considered to be responsible for
the oxidized states of Venus and Mars, as illustrated by
the red color of the Martian surface (Hartman and
McKay, 1995; Hunten, 1979c). Ancient hydrogen escape
has also been proposed as a means of oxidizing the
Earth’s atmosphere, crust, and mantle (Catling et al.,
2001; Kasting et al., 1993a; Zahnle et al., 2013) (see
Ch. 10).

5.1 Historical Background to
Atmospheric Escape

The idea of the escape of gases from the Earth’s atmos-
phere is as old as kinetic theory and has an unusual
history. A Scottish amateur scientist, John Waterston
(1811–1883), first developed a theory of gases in which
the mean kinetic energy of each species was proportional
to temperature, and he also introduced the notion of
atmospheric escape (Haldane, 1928, pp. 209–210). How-
ever, the Royal Society rejected Waterston’s paper
describing kinetic theory in 1845, and it remained
unknown until Lord Rayleigh rediscovered the manu-
script in 1891. By then, Waterston’s ideas had been
overtaken by the work of Clausius, Maxwell, and Boltz-
mann, while Waterston disappeared in 1883, presumed to
have drowned near Edinburgh.

Later, the Irish physicist George Stoney (who gave us
the term electron) understood that a few gas particles in
the high-velocity tail of a Maxwell–Boltzmann distribu-
tion of velocities would have sufficient energy to escape
from a planet’s upper atmosphere even if an average
particle did not (Stoney, 1898, 1900a, b, c, 1904). This
process is nowadays called Jeans’ escape after Sir James
Jeans, who described its physics in The Dynamical
Theory of Gases (1954, first edition 1904). At that time,
in the early twentieth century, balloon soundings in
Earth’s lower atmosphere were extrapolated to the entire
upper atmosphere, which was assumed to be isothermal at
~220 K. The hot, 1000–2000 K thermosphere was
unknown. Consequently, Jeans incorrectly calculated an
exceedingly low escape rate of hydrogen.

Later, the Space Age provided data from rocket
soundings. As a result, in the next major treatment of
atmospheric escape, Spitzer (1952) corrected Jeans’
earlier mistake by using more realistic thermospheric
temperatures. From the 1950s to the present day, data
have become directly available on the number density of
hydrogen and the temperature in the upper atmosphere.
Measurements include satellite drag through the thermo-
sphere, in situ mass spectrometer measurements, and
images of the geocorona, which is a glow at the Lyman-
α wavelength (121 nm) caused by resonant scattering of
solar ultraviolet (UV) by a cloud of atomic hydrogen that
surrounds the Earth. UV images taken by spacecraft show
the hydrogen atoms. Atoms are on ballistic trajectories
back to Earth, escaping, or in orbit (Fig. 5.1).

For astrobiology, we note that about half of the hydro-
gen atoms seen in Fig. 5.1 derive from decomposition of
methane (CH4), ~90% of which enters the atmosphere
from the biosphere. Most of the other half of the
H atoms originates from the photodissociation of water
vapor. In Fig 5.1, we catch a glimpse of some of the
93 000 tonnes of hydrogen that escape each year (or
3 kg/s) from the Earth.

In the past 60 years, planetary exploration and astron-
omy have widened our perspective of both atmospheric
escape and of aeronomy, the study of processes in the
rarefied atmosphere from the stratosphere to interplanet-
ary space. Space science led to the recognition of
suprathermal escape, hydrodynamic escape, and impact
erosion, as discussed in various reviews (e.g., Ahrens,
1993; Chamberlain, 1963; Hunten, 1990, 2002; Hunten
and Donahue, 1976; Hunten et al., 1989; Johnson et al.,
2008c; Lammer, 2013; Shizgal and Arkos, 1996; Strobel,
2002; Tinsley, 1974; Walker, 1977). Recently, the dis-
covery of exoplanets has made atmospheric escape a
fundamental consideration in understanding exoplanetary
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atmospheres and whether they vanish, persist, or change
composition (Koskinen et al., 2014; Lammer et al.,
2003b; Luger and Barnes, 2015; Luger et al., 2015;
Owen and Jackson, 2012).

5.2 Overview of Atmospheric Escape
Mechanisms

Table 5.1 summarizes the three principal categories of
escape of atmospheric gases. Below, we give a brief
overview of each type of escape. Then, the rest of the
chapter examines the physics describing common ways
that atmospheric gases escape, with particular emphasis
on the two forms of thermal escape.

5.2.1 Thermal Escape Overview
Thermal escape is when heating of an atmosphere allows
molecules to escape. In basic models, the theory assumes
neutral species with a Maxwellian velocity distribution,
which occurs when collisions between molecules are fre-
quent. The “Jeans’ escape” and “hydrodynamic escape”
end-member approximations to thermal escape apply
under different circumstances of atmospheric heating that
we summarize below and discuss in further detail in
Sec. 5.10.1.

Jeans’ escape is when a relatively small number of
high-energy molecules in the tail of the thermal distribu-
tion of velocities of molecules have sufficient kinetic
energy to escape into a nearly collisionless exosphere
from the collisional atmosphere below (see Sec. 5.6 for
the physics). This process is important for the loss of
hydrogen, a low-mass species that more easily attains
escape speed at a given temperature. As such, Jeans’
escape was likely influential in the atmospheric evolution
of all the early terrestrial planets. Jeans’ escape currently
accounts for a non-negligible fraction of hydrogen escap-
ing from Earth, Mars, and Titan, but it is negligible for

Table 5.1 Mechanisms for the escape of atmospheric gases and ions.

Impact erosion (different
approximations)

Thermal escape (different end-member
approximations)

Suprathermal (or nonthermal)
escape (different mechanisms)

Walker “cookie cutter”
Ahrens”‘bomb analogy”
Melosh “tangent plane”

Jeans’ escape
Hydrodynamic escape

Photochemical escape
Charge exchange
Ion pickup
Sputtering
The polar wind
Bulk removal

Figure 5.1 Earth imaged in the vacuum ultraviolet (VUV) by NASA’s
Dynamics Explorer 1 (Rairden et al., 1986). Left panel: View with the
spacecraft at 16 500 km altitude above 67�N latitude at 2017UT on
October 14, 1981. Glow beyond the limb of the planet (red false
color) is due to Lyman-α (121 nm) solar radiation resonantly scat-
tered by Earth's extended hydrogen atmosphere or geocorona. Ener-
getic hydrogen atoms in the geocorona are escaping to space.
Features on the Earth’s disk (dayglow from the sunlit atmosphere, a
northern auroral oval, and equatorial airglow) are due to the emission
of atomic oxygen at 130.4 and135.6 nmand emission in the Lyman–
Birge–Hopfield band of N2 (140–170 nm). Isolated points of light are
background stars that are bright in the VUV. Right panel: A view of
Earth's dark hemisphere at 0222 UT on February 16, 1982, with the
Sun behind Earth. Spacecraft altitude and latitude are 19,700 km
and 13� N, respectively. Equatorial airglow straddles the magnetic
equator in the pre-midnight sector. (Image credit: NASA.) (A black
and white version of this figure will appear in some formats. For the
color version, please refer to the plate section.)
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Venus because of a cold upper atmosphere combined with
relatively high gravity.

Hydrodynamic escape occurs when heating in the
collisional region of an atmosphere causes an upward
pressure gradient force that drives a bulk, radial outflow
(see Sec. 5.10 for the physics). Under such collisional
circumstances, the pressure force can remain active up to
very high altitudes with the result that the whole upper
atmosphere expands as a fluid into space and gases attain
escape velocity.

Hydrogen-rich atmospheres on relatively low-
gravity rocky planets or very hot hydrogen-rich
atmospheres on bigger planets are susceptible to
hydrodynamic escape, which can drag along heavier
gases in a way that is moderately mass fractionating
(see Sec. 5.11). Shklovskii (1951) and Öpik (1963) first
discussed the concept that heavy gases might be dragged
along by a large hydrogen escape flux from primitive
atmospheres but, compared with other escape mechan-
isms, hydrodynamic escape only received limited atten-
tion prior to the 1980s (Gross, 1972; McGovern, 1973;
Ziering and Hu, 1967; Ziering et al., 1968). The lack of
attention is probably because hydrodynamic escape was
not thought to be active on any planet-sized body in the
Solar System.

However, increasing evidence from within our Solar
System and beyond suggests that warm hydrogen-rich
atmospheres are prone to undergo hydrodynamic escape.
The depletion of some light isotopes of noble gases in the
atmospheres of Earth, Venus, and Mars, suggests that
hydrodynamic escape may have operated very early in
Solar System history if the very earliest atmospheres on
these planets had been composed of a significant fraction
of hydrogen in any chemical form. Beyond our Solar
System, the gas giant HD 209458b, which orbits a Sun-
like star at 0.05 AU, has hot H atoms beyond its Roche
lobe, containing O, C+, and Si2+, presumably dragged
there by hydrodynamic hydrogen flow (Linsky et al.,
2010; Vidal-Madjar et al., 2003; Vidal-Madjar et al.,
2004; Vidal-Madjar et al., 2008). Near-UV spectra sug-
gest that hot Jupiter WASP-12B also has metals in its
Roche lobe (Fossati et al., 2013; Fossati et al., 2010;
Haswell et al., 2012).

Hydrodynamic escape and Jeans’ escape are both
approximations to thermal escape in different ways.
Hydrodynamic escape is approximate because it neglects
the fact that at very high altitudes there will eventually be
few collisions and so a fluid description of the flow
becomes invalid. Classical Jeans’ escape neglects distor-
tions of the particle velocities away from a Maxwellian
distribution because of mass motion.

Specific conditions indicate when it is appropriate to
apply the approximations of classical Jeans escape or
purely fluid flow for hydrodynamic escape. The Jeans
case applies when the atmosphere is essentially hydro-
static and when stellar heating of a thermosphere results
in production and loss of electrons and ions, which con-
duct heat down to the lower thermosphere and mesopause
where heat is efficiently radiated away (see Sec 1.1.1).
Such atmospheres have roughly isothermal upper thermo-
spheres. Jeans evaporation of atoms or molecules occurs
from a static atmosphere into an essentially collisionless
exosphere.

A hydrodynamic situation can occur when the heating
of an upper atmosphere is strong enough to drive a bulk
outflow. The bulk upward flow can attain the speed of
sound in the collisional domain at an altitude called the
sonic level. The speed of sound usound, can be compared
with the root mean square speed of the molecules from
kinetic theory urms, as follows,

usound ¼ γp
ρ

� �1=2

urms ¼ 3p
ρ

� �1=2

(5.1)

where p is pressure, ρ is density, and γ is the ratio of
specific heats. Because γ ~ 1.4 for linear diatomic gases
(e.g., H2), we can see from comparing usound and urms that
gas traveling at the speed of sound moves at a velocity
similar to the mean thermal velocity of molecules, which
is responsible in kinetic theory for providing the pressure
of a gas (i.e., p ¼ 1=3ð Þρurms

2). In such a fast-moving
fluid, a pressure gradient drives an upward bulk flow and
the velocity increases above the sonic level to supersonic
and then escape velocity. Because the density of the
atmosphere decreases with altitude, and matter must be
conserved, the flow velocity in such a case increases with
altitude in order to maintain a constant mass flux [kg s–1]
through ever-larger planet-centered spheres. Under these
circumstances, the fluid equations of hydrodynamic
theory are reliable approximation, as noted by Walker
(1977 pp. 149–151; 1982). The vertical profiles of density
and velocity are relatively unaffected when the transition
to the nearly collisionless domain occurs above the level
from sonic to supersonic flow (Holzer et al., 1971).
Figure 5.2 shows a schematic diagram of these two end-
member cases of thermal escape: Jeans’ escape and
transonic hydrodynamic escape.

In hydrodynamic escape, the temperature profile
depends on the balance of adiabatic cooling from the
expansion of the atmosphere and absorption of stellar
radiation. If adiabatic cooling dominates, atmospheric
temperature can decline with increasing altitude. How-
ever, temperature can also increase with altitude if
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absorption of stellar radiation is strong (e.g. Sekiya et al.,
1981; Sekiya et al., 1980a).

When heating is smaller, or if there exists a sufficient
backpressure at the top of the atmosphere, the outgoing
flow may remain subsonic at all levels. An example of the
latter might be escape in the direction towards the parent
star, where eventually the escaping, and partly ionized,
gas encounters the bow shock formed by interaction with
a strong stellar wind. Perhaps more importantly, in an
atmosphere that is weakly heated, or in which hydrogen
is not sufficiently abundant, the atmosphere expands, but
it is invalid to apply purely fluid hydrodynamic equations
because the atmosphere becomes increasingly collision-
less above some level. The application of hydrodynamic
equations is a reasonable approximation if the mean free
path remains smaller than the density scale height below
the sonic level. But in the case when expanding gas
becomes collisionless without reaching the speed of
sound, it still exerts pressure, but that pressure cannot be
calculated in the normal statistical way, which assumes a
Maxwellian velocity distribution. Sophisticated models
can be used to treat the transition from collisional to

rarefied domains in order to calculate a realistic tempera-
ture density, temperature and flow structure. Such
methods are based on the Boltzmann equation, which in
its most general form is an equation for the time evolution
of the velocity distribution function of species in a gas
mixture as a result of external forces and collisions (see
Ch. 3 of Schunk and Nagy, 2009).

Using the Boltzmann equation for a single-
component atmosphere, Merryfield and Shizgal (1994)
found that escape can be fractionally (~30%) greater than
Jeans’ escape due to streaming of particles from the
heavy, denser regions below. Another such model of gas
flow is “direct simulation Monte Carlo” (DSMC), in
which a large set of particles is followed subject to colli-
sions, heating and gravity (Bird, 1994; Volkov et al.,
2011a). DSMC models show that purely hydrodynamic
models that were once applied to N2 escape from Pluto
(where a sonic level probably does not occur in the colli-
sional domain) produce an erroneous atmospheric struc-
ture of temperature and density (Erwin et al., 2013;
Johnson et al., 2013d). Another key prediction of DMSC
models, at least for single component atmospheres, is a

(a)

(b)

Figure 5.2 Schematic diagram of ther-
mal escape end-members. (a) Jeans’
escape is escape of molecules or atoms
with an upward-directed component of
velocity bigger than the escape velocity
from the collisional part of the atmos-
phere into a virtually collisionless exo-
sphere. (b) Transonic hydrodynamic
escape is where the upper atmosphere
has sufficient heating to produce a radial
outward velocity u, at the speed of
sound (usound) in the collisional part of
the atmosphere at the radius labeled
sonic level. Heating is typically by soft
x-rays and extreme ultraviolet radiation
(EUV). The atmosphere flows out to the
vacuum of space driven by a pressure
gradient (with the boundary condition
set at the sonic level) and the supersonic
flow reaches escape velocity, vescape. At
very high levels, the atmosphere will
have very few collisions and the fluid
assumption of hydrodynamic escape
breaks down. However, under the tran-
sonic circumstances depicted, the fluid
equations extrapolated to infinity provide
a reasonable approximation to the dens-
ity, temperature, and flow profiles.
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sharp transition from “Jeans-like” escape to rapid, tran-
sonic hydrodynamic escape as the thermal energy of
upper atmosphere gas molecules is increased relative to
their gravitational binding energy (Volkov and Johnson,
2013; Volkov et al., 2013; Volkov et al., 2011b).

The physics of hydrodynamic escape of planetary
atmospheres is analogous to the solar wind – the fully
ionized, electrically neutral plasma that is a supersonic
expansion of the solar corona as a result of a pressure
difference between the corona and the interstellar
medium. (See Ch. 4 of Kivelson (1995) for an introduc-
tion to the solar wind.) Essentially, the solar corona – the
plasma that we see around the Sun in a total solar eclipse –
is so hot that the Sun’s gravity cannot hold on to it and it
flows out as the solar wind. Consequently, hydrodynamic
escape of a planetary atmosphere is sometimes called a
planetary wind. However, there are differences. The key
one is that the fluid description of solar wind in the
vacuum of space works because of quasi-collisional
effects caused by electromagnetic interactions between
charged particles, whereas neutral species generally dom-
inate planetary atmospheres and cannot be assumed to
behave like that.

Finally, we note that some authors use the term blow-
off interchangeably with “hydrodynamic escape” (e.g.,
Volkov et al. (2013); Hunten (1973)). Unfortunately,
there are different definitions about the meaning of the
term blowoff. Chamberlain and Hunten (1987, p. 377)
state that blowoff is “when an escaping light gas is able to
carry heavier constituents along with it.” Lammer (2013,
p.30) describes blowoff as when “the whole exosphere
evaporates” because “the mean thermal energy...of gases
at the exobase level exceeds their gravitational energy.”
Because of such difference in definitions, in the rest of the
chapter, we avoid the term blowoff.

5.2.2 Suprathermal (or Nonthermal) Escape,
in Brief

Suprathermal escape refers to loss processes that affect
either neutral species or ions that attain a velocity signifi-
cantly greater than that corresponding to the background
neutral temperature. Consequently, suprathermal escape
is also called nonthermal escape (Hunten, 2002), Most
suprathermal processes involve ions, which may them-
selves have a Maxwellian velocity distribution but with a
temperature exceeding that of the neutral population.
Various types of suprathermal escape are as follows.

Photochemical escape occurs when atoms resulting
from various photochemical reactions attain sufficient
energy to escape to space. Such escape can happen when

a neutral species is photoionized by solar EUV radiation
and recombines with an electron to form a fast neutral
atom. Photochemical escape is important for the loss of C,
O, and N from Mars (Sec 12.2.4).

Charge exchange is where a fast ion can impart its
charge to a neutral atom through collision, and become a
fast neutral atom with escape velocity (Sec 5.7, below). In
today’s terrestrial atmosphere, charge exchange is usually
the dominant mechanism for hydrogen escape, although it
is exceeded by Jeans’ escape at solar maximum.

Ion pickup occurs when atmospheric ions are
exposed to an electric field from the magnetized solar
wind. Atmospheric particles are ionized either by solar
UV radiation (photoionization) or by charge exchange.
Acceleration of ions due to the electric field can cause
some ions to reach escape velocity, whereas others head
into the atmosphere where they may cause sputtering, as
we describe next.

Sputtering occurs when ions that have been picked
up by the magnetic field embedded in the solar wind
impact a planetary atmosphere and undergo charge
exchange. Charge exchange neutralizes the ions, which
can impart their large energies to surrounding particles by
collision. Upward-directed energetic particles can then
escape. This process may have been important on early
Mars, after it lost its magnetic field and was no longer
shielded from the solar wind.

The polar wind is a stream of hydrogen ions
(protons) that flows upward near the poles where Earth’s
magnetic field lines are more or less vertical. These field
lines do not necessarily reconnect, or they do so only
sporadically, and so these hydrogen ions are eventually
swept away by the solar wind.

Bulk removal is caused by instabilities at the solar
wind–atmosphere interface that can strip away large por-
tions of ionized atmosphere (Perez-de-Tejada, 1987) or
cause ion outflow (Hartle and Grebowsky, 1990) from
planets, such as Mars and Venus, that lack a protective
magnetic field. This process is currently poorly
understood.

5.2.3 Impact Erosion, in Brief
Impact erosion occurs when the hot vapor plume or
high-speed ejecta associated with a large asteroid or
comet impact imparts sufficient kinetic energy to atmos-
pheric molecules for them to escape en masse (Sec. 5.12).
The impactor is vaporized along with part of the target
body. This erosion process affects smaller target bodies
more strongly than larger ones and could have been
important for removing virtually the entire early Martian
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atmosphere (Sec. 12.3.3). Impact erosion may also
explain why Titan has a thick atmosphere whereas the
Galilean moons of Jupiter, which are subject to more
energetic impacts, remain largely barren (Zahnle et al.,
1992).

5.2.4 The Upper Limit of Diffusion-Limited
Escape, in Brief

Diffusion-limited escape of hydrogen is an upper limit on
the escape rate set when the escape rate of hydrogen is not
controlled by processes at high altitude but is regulated by
the rate that hydrogen can diffuse up from the lower
atmosphere (see Sec. 5.8.3, 5.8.4 and 5.8.9 for details).
For example, in Earth’s current atmosphere, hydrogen
does not simply escape via Jeans’ escape determined by
the temperature of the exobase. Instead, both Jeans’
escape and suprathermal processes remove hydrogen rap-
idly from the exobase, and the rate-limiting step is the
relatively slow upward diffusion of hydrogen through the
layer of background air between the homopause and
exobase. Basically, the hydrogen escape rate is limited
both by the supply of hydrogen from below and upward
diffusion. Diffusion-limited escape is a remarkably suc-
cessful theory that appears to apply to hydrogen escape
from the current atmospheres of Earth, Venus, Mars, and
Titan, as well as can be determined from the available
data (Sec. 5.8.4 and Sec. 5.9).

Diffusion-limited escape can also apply as an upper
limit to hydrodynamic escape. In this case, the upper limit
on the rate of escape is set by diffusion of hydrogen
through a layer of background air of heavier species
beneath the level where hydrogen is accelerated radially
outwards because of heating caused by the absorption of
shortwave light from the parent star.

5.3 Breakdown of the Barometric Law

We begin our more detailed description of atmospheric
escape by showing that the barometric law, which
describes the vertical pressure distribution in the lower
parts of Earth’s atmosphere, must break down at some
altitude above the surface. Our discussion follows that of
Walker (1977), pp. 147–151.

In Ch. 1, we showed that (averaged over horizontal
distances of several km), atmospheric pressure varies
with altitude z according to the hydrostatic equation
(eq. (1.12)):

p zð Þ ¼ psurf exp �z=Hað Þ (1.12)

Here psurf is the surface pressure and Ha = kT/(mg) is the
atmospheric scale height, where k is Boltzmann’s con-
stant, T is temperature, m is mean molecular mass, and g
is gravitational acceleration.

We can write eq. (1.12) in differential form as
follows:

1
p
dp ¼ �mg

kT
dz ¼ � 1

Ha
dz (5.2)

To extend this relation high up in the atmosphere, the
variation of g with altitude must be considered according
to g = GM/r2, where G is the universal gravitational
constant (6.672�10–11 N m2 kg–2), M is the mass of the
planet, and r is the radial distance from a planet’s center.
Then, eq. (5.2) may be rewritten as

1
p
dp ¼ �GMm

r2kT
dr (5.3)

Integrating from the surface at radial distance rsurf up to
radial distance r yields

p rð Þ ¼ psurf exp
GMm

kT

1
r
� 1
rsurf

� �� �
(5.4)

Now, consider what happens as r ! ∞. In this case, we
obtain

p∞ ¼ psurf exp � GMm

kTrsurf

� �
(5.5)

If this result were valid, it would imply that the pressure at
infinity is small but finite; hence, the atmosphere would
have infinite mass. For example, using m = 29 atomic
mass units (the mean molecular mass in the Earth’s lower
atmosphere),M = 5.97�1024 kg, a temperature typical for
the thermosphere of T = 1000 K, and rsurf = 6371�103 m,
eq. (5.5) predicts that p∞/psurf ~ 2�10–95. If we take m =
1 a.m.u. instead, reflecting the fact that the uppermost
atmosphere is composed mostly of atomic hydrogen, we
get p∞/psurf ~ 5�10–4. Neither result is physically realis-
tic, but they demonstrate that the atmospheric pressure
would be significant at high altitudes were the barometric
law to apply in this way.

In fact, the actual pressure at the upper boundary of
the Earth’s atmosphere depends on location. It is highest
in the sunward direction where the solar wind impinges
on the magnetosphere, i.e., the region where the Earth’s
magnetic field dominates. At the subsolar magnetopause,
which is at a distance of ~10 Earth radii, the ram pressure
of the solar wind is ~3 nPa and balances plasma pressure
within the magnetosphere. By comparison, the calculated
pressures at infinity for the two cases above are ~10–90 Pa
and 50 Pa, respectively. For the pure atomic H case, the
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solar wind would not be able to supply the necessary
backpressure even in the sunward direction. In the anti-
sunward direction, the effective backpressure should be
essentially zero. The barometric law obviously cannot
apply at great distances from the Earth.

How can the breakdown of the barometric law be
resolved? Two different possibilities exist: one that
applies to the present terrestrial atmosphere and one that
may have applied to the primitive atmospheres of the
terrestrial planets.

For the present atmosphere, the key is that the
atmosphere becomes virtually collisionless at some
altitude. Once the atmosphere becomes collisionless, the
atmosphere is no longer in a hydrodynamic regime of
“continuum flow” but “free molecular flow.” Equations
(5.3)–(5.5) no longer apply once the velocity distribution
in the collisionless region deviates from a Maxwellian
distribution. The exobase or critical level is the altitude
above which the virtually collisionless region occurs.

A different situation may have existed for Earth's
primitive atmosphere shortly after it formed at 4.5 Ga
and possibly for hundreds of millions of years afterwards.
This very early atmosphere is thought to have been
hydrogen-rich (see Sec. 6.5.2). In this case, absorption
of EUV and x-rays in the upper atmosphere should have
driven a bulk outflow from the upper atmosphere, which
was not hydrostatic. Upwards-flowing hydrogen would
have been pushed along by a pressure differential under
hydrodynamic escape. The atmosphere literally should
have expanded into the vacuum of space. We discuss
the physics of hydrodynamic escape in detail in Sec. 5.10.

5.4 The Exobase or “Critical Level”

The exosphere is the uppermost layer of an atmosphere
that is essentially collisionless. This means that the mean
free path is so long that collisions can largely be neg-
lected. We denote the height of the bottom of the exo-
sphere, i.e., the exobase, as the radius rexob, above a
planet’s center. The exobase is defined as the height
where a proportion e�1 (~1/3) of fast, upward-directed
particles experience no collisions and hence escape.
Equivalently, the exobase can be defined as the altitude
at which the mean free path of a molecule (in the hori-
zontal direction) is equal to the local scale height. (The
reason for stating “horizontal direction” is explained
below.)

The fractional decrease of the upward flux of par-
ticles, Φ, from distance r0 = r to r0 = ∞ due to collisions
is given by

Φ∞

Φr
¼ exp �

ð∞
r
n r0ð Þσcdr0

� �
(5.6)

Here, σc is the collision cross-section of a molecule and
n(r0) is the number density of all molecules at distance r0.
The decrease of upward-directed particles caused by col-
lisions is analogous to the Beer–Lambert–Bouguer Law
in radiative transfer (Sec. 2.4.2.1). Thus, the term in the
exponential is analogous to optical depth, except that the
photon absorption cross-section has been replaced by a
molecular collision cross-section and we deal with mol-
ecules instead of photons.

If the probability of escaping above the exobase
is e�1 (i.e., Φ∞/Φr = e�1) then the term inside the
square brackets of eq. (5.6) must equal minus one for
r = rexob, i.e.,ð∞
rexob

n r0ð Þσcdr0 ¼ 1 (5.7)

From eq. (1.21), the above integral is related to the
atmospheric molecular column density, N(r), overlying
the exobase at radius rexob by

N rð Þ ¼
ð∞

rexob

n r0ð Þdr0 ffi n rexobð ÞHa rexobð Þ (5.8)

Thus, at the exobase, the number density n and scale
height Ha, respectively, are:

In the expression for the local scale height in eq. (5.9), the
right-hand side is approximately the definition of mean free
path ℓmfp, for airwith number densityn rexobð Þ, i.e., ℓmfp along
a horizontal path at an altitude at radius rexob. This explains
the exobase definition given earlier. Strictly, for molecules
with a Maxwellian velocity distribution, the relationship is

ℓmfp rð Þ =1= ffiffiffi
2

p
nσc

� �
, but we ignore the

ffiffiffi
2

p
factor.

Another common way of quantifying the importance
of collisions is the Knudson number, Kn, which is defined
as follows:

Kn rð Þ ¼ ℓmfp rð Þ
Ha rð Þ ¼ mean free path

local scale height
(5.10)

The Knudson number grows with altitude and the exo-
base occurs where Kn = 1.

n rexobð Þ � 1
σcHa rexobð Þ , Ha rexobð Þ � 1

σcn rexobð Þ ¼ m:f:p: for air of densityn rexobð Þ (5.9)
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Following Jeans (1954), we can combine eqs. (5.8)
and (5.9) to write the condition for the exobase as

σcN rexobð Þ ¼ 1 (5.11)

The thoughtful reader will reflect that the exobase where
particles can escape is analogous in its definition to the
level of unity optical depth where photons can escape
(Sec. 2.4.4), merely by swapping photons for molecules,
as noted above.

The number density at Earth’s exobase can be esti-
mated from eq. (5.9), taking σc ~3�10–15 cm2. Gravity
will be smaller at high altitude, i.e., at 500 km altitude,
rexob = 6870 km and g = 8.44 m s–2. Thus, Ha = RT/Mg =
(8.314 J mol–1 K–1)(1500 K)/[(0.016 kg mol–1)
(8.44 m s–2)] ffi 92 km, or roughly 100 km (= 107 cm),
where we use a molar mass appropriate for atomic
oxygen, the dominant constituent of the thermosphere.
Thus, nexob ffi 3.6�107 cm–3, which is roughly similar to
the value at the exobase on most planets and satellites. For
this exobase number density, the corresponding altitude
on Earth varies from solar minimum to solar maximum,
but is typically around 450–500 km.

Of course, the exobase is an idealized concept. We
have assumed that the transition from continuum flow to
free molecular flow is sharp, but in reality it is gradual.
However, we will show in Sec. 5.5.1 that defining the
exobase in this way does not significantly affect calcula-
tions. It is also important to recognize that the dominant
species at today’s terrestrial exobase is atomic oxygen,
which does not escape. The O atoms provide a static
background from which hydrogen atoms evaporate off
into space. The process of evaporation is described in
Sec 5.6 below.

5.5 Escape Velocity

In Earth’s present atmosphere, hydrogen atoms are lost to
space by reaching escape velocity at the exobase. The
escape velocity ve, is attained when the kinetic energy of
an atom of mass m equals its gravitational potential
energy:

1
2
mv2e ¼

GMm

r
(5.12)

or

ve ¼
ffiffiffiffiffiffiffiffiffiffiffi
2GM
r

r
(5.13)

Here, M is the mass of the planet, G the universal gravita-
tional constant, and r the radius from the center of the
planet.

Atoms that have speeds in excess of ve and whose
velocities are directed upwards have a 1/e (i.e., 37%)
probability of escaping at the exobase by avoiding colli-
sions above it. For Earth, eq. (5.13) gives ve ~10.8 km s–1

at the exobase. Escape velocities for other planets are 5.0
km s–1 for Mars, 10.4 km s–1 for Venus, and 60.2 km s–1

for Jupiter.
Two salient points arise from eq. (5.13). First, for

planets of roughly similar mean density, we find ve /ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rp

3=Rp

q
/ Rp, where Rp is the planetary radius. Thus,

Mars’ escape velocity is roughly half that of Earth or
Venus because Mars has about half the diameter of these
planets. But the escape energy is ~1/4 as high for Mars as
for Earth or Venus because the energy is / ve

2. Second,
although eq. (5.13) shows that the escape velocity is
independent of the mass of the escaping molecule, lighter
molecules more easily attain escape velocity for a given
kinetic temperature than heavier molecules. This is a
consequence of the equipartition theorem in kinetic
theory for an ideal gas with purely translational energy.
This theorem states that molecules of different masses
have the same average kinetic energy, given that the
mixture of gases has a well-defined temperature.

The mean thermal velocity of a hydrogen atom at
Earth’s exobase can easily be calculated. If we assume
that atoms at the top of the atmosphere are in thermal
equilibrium, the mean thermal energy of particles is (3/2)
kT, so that the kinetic energy is:

1
2
mv2 ¼ 3

2
kT (5.14)

Taking a thermosphere temperature of ~1000 K, the
root mean square speed is v = (3kT/m)½ = [3�(1.38�
10–23 J K–1)�(1000 K)/(1.67�10–27 kg)]1/2 � 5 km s–1.
This speed is lower than the escape speed of 10.8 km s–1

at the exobase. Thus, even the lightest atom, hydrogen,
does not have sufficient mean energy to escape from
Earth. Instead, it is energetic atoms in the tail of the
Maxwell–Boltzmann distribution of velocities that escape
rather than those with typical speed, as illustrated sche-
matically in Fig. 5.3.

Given that only the energetic atoms escape, integra-
tion over the Maxwell–Boltzmann velocity distribution is
needed to calculate the escape flux of a particular gas, as
discussed below in Sec. 5.6. A rule-of-thumb approach
found in elementary textbooks is that if the average speed
of a molecule or atom exceeds one-sixth of the escape
speed, then escape is generally possible for that species.
The average speed obviously depends on the temperature
at the exobase. Consequently, Fig 5.4 illustrates the
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stability of gas species against Jeans’ escape for planets in
the Solar System using exobase temperatures. This dia-
gram is a rough summary, but its general inferences are
valid: Nothing escapes from the giant planets, whereas the
smaller, rocky planets lose light gases.

In viewing Fig. 5.4, one should remember that
suprathermal mechanisms that are not based on thermal
equilibrium distributions of molecules allow light gases to
escape. For example, O, C, and N can escape slowly from
Mars via photochemical or ionic reactions; Fig 5.4 does
not include such effects, which we discuss in Sec. 12.2.4.

5.6 Jeans’ Thermal Escape of Hydrogen

5.6.1 Concept and Mathematical Derivation
Our purpose in what follows is to derive a general expres-
sion for the Jeans’ thermal escape flux of hydrogen and
other gases. Molecules in a collisional gas have a
Maxwell–Boltzmann speed distribution (Box 5.1) and
we have to integrate over the “tail” of the distribution
above the escape speed to obtain the escape flux.

The number of molecules with speeds between v and
v+dv is given by

Figure 5.3 The Maxwell–Boltzmann
speed distribution function f (v), for hydro-
gen atoms at 1000 K. The escape speed
at Earth’s exobase and the root mean
square (rms) speed of the atoms are indi-
cated. Only those atoms in the energetic
tail of the speed distribution with speeds
exceeding the escape speed (shaded) are
able to undergo Jeans’ thermal escape. In
contrast, atoms with the most probable
speed at the peak of the distribution, or
with the slightly higher rms speed, are
unable to escape.

Figure 5.4 A schematic graph showing
gas species that are prone to undergo
thermal escape from planets in the Solar
System on the basis of the “rule of
thumb” approach discussed in the text.
For bodies with substantial atmospheres,
the temperature corresponds to the aver-
age exobase temperature. For the Moon
and Mercury, the temperature is the
mean surface temperature. The sloping
lines correspond to the root mean square
speed of the various gas molecules at the
given temperature.
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nf vð Þdv ¼ 4nffiffiffi
π

p m

2kT

	 
3=2
v2 exp �mv2

2kT

� �
dv (5.15)

Here, n represents the total number density of the con-
stituent being considered.

Now we make the further assumption that the velocity
distribution is isotropic, so that the same number of mol-
ecules travels in every direction. In spherical polar coord-
inates, with azimuth angle ϕ and polar angle θ, an element
of solid angle dΩ, is given by the following (see Fig. 5.5):

dΩ ¼ sin θdθdϕ (5.16)

Integrating around azimuth angle ϕ, gives dΩ =
2π sin θdθ. Thus, the fraction of upward traveling mol-
ecules is 2π sin θdθ=4π. In turn, the number of molecules
with velocities between v and v+dv travelling at an angle
between θ and θ+dθ from the vertical is given by

nf vð Þdv2 =π sin θdθ

4 =π
¼ 1

2
nf vð Þdv sin θdθ (5.17)

The vertical flux of molecules, Φ, is found by multiplying
by the vertical component of velocity, vcos θ, and inte-
grating over the upwards hemisphere from θ = 0 to π/2:

vertical flux with speed v¼Φdv¼
ðπ=2
0

1
2
nf vð Þvdvcosθ sinθdθ

(5.18)

Noting that d sin 2θð Þ=dθ ¼ 2 sin θ cos θ, we can evaluate
the integral in eq. (5.18) using

ðπ=2
0

cos θ sin θdθ ¼ 1
2

sin 2θ
� �π=2

0 ¼ 1
2

(5.19)

Thus, the vertical flux of molecules with velocity v is
given by

Φdv ¼ 1
4
nf vð Þvdv (5.20)

The total escape flux (with SI units of particles m–2 s–1) is
found by setting n = nexob, the number density at the

Box 5.1 The Maxwell–Boltzmann Velocity Distribution

Derivation of the Maxwell–Boltzmann distribution starts with the translational kinetic energy of each molecule,
E = ½mv2. Then the probability that a molecule has a particular speed is proportional to the Boltzmann factor, i.e.,

probability of particular speed / exp �E=kTð Þ ¼ exp �mv2=2kT
� �

For the distribution of velocities, imagine a sphere representing velocity parameter space, centered on vx, vy, vz axes.
Within a shell of thickness Δv at radius v, the volume is proportional to the square of the radius times the thickness,
i.e. v2Δv. So the number of speed states between v and v+Δv is / v2Δv. Thus, the probability of finding a given
molecule in the speed range v to v+Δv follows the proportionality

probability of finding a
given molecule in speed
range v to v þ dv

0
@

1
A / no: of microstates

in the speed range

� �
�

probability of finding
the molecule in a given
microstate in the speed range

0
@

1
A

f ðvÞdv / v2 exp �mv2

2kT

� �
dv

A proportionality constant is then selected to satisfy the condition
Ð∞
0 f vð Þdv ¼ 1, i.e. that all molecules must be in

some state. This results in eq. (5.15).

x

y

z

v

q

f

Figure 5.5 The geometry for Jeans’ escape of a molecule with
velocity v, in spherical polar coordinates, where θ is zenith angle
and ϕ is azimuthal angle.
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exobase, substituting for nf(v)dv from eq. (5.15), and
integrating over all velocities exceeding the escape vel-
ocity, ve

Φesc ¼
ð∞
ve

Φdv ¼ nexobffiffiffi
π

p m

2kT

	 
3=2
ð∞
ve

v3 exp �mv2

2kT

� �
dv

(5.21)

To evaluate the integral, we substitute x = v2, dx = 2vdv,
and integrate by parts, giving,

One can simplify this expression by using eq. (5.13)
to substitute for the square of the escape velocity at
level rexob,

v2e ¼
2GM
rexob

(5.23)

Also, let us define, vs, which is the most probable speed in
the Maxwell–Boltzmann speed distribution function

vs � 2kT
m

� �1=2

(5.24)

We also introduce the (Jeans) escape parameter, λJ,
which is the ratio of gravitational potential energy
GMm/r to thermal energy ~kT (Chamberlain, 1963),

λJ � GMm

kTr
; at exobase, λJexo � GMm

kTrexob
� rexob

Hexob
� ve2

vs2

(5.25)

Then, eq. (5.22) becomes

escape flux ¼ Φesc ¼ nexob
2

ffiffiffi
π

p 1
vs

v2e þ v2s
� �

exp � v2e
v2s

� �

or

Φesc ¼ 1
2

ffiffiffi
π

p nexobvs 1þ λJexoð Þe�λJexo (5.26)

This is a convenient expression by which one may evalu-
ate the Jeans escape flux.

Equation (5.26) for the Jeans escape rate can differ
from the actual rate of escape because of evaporative
cooling of the exobase and distortions in the velocity
distribution function. Several papers have suggested that

the expression overestimates the number of high-
velocity molecules at the exobase that escape because
escape depletes the high-speed molecules and can cool
the background gas. The overestimate is ~20%–30%
when hydrogen escapes from a two- or multi-component
gas model (Brinkmann, 1971; Pierrard, 2003; Shizgal
and Blackmore, 1986) for Earth or Titan (Tucker et al.,
2013). Figure 5.6 shows a variety of estimates of the
correction factor for the Earth in the range ~0.6-0.8.
Fortunately, we can often ignore such discrepancies in
atmospheric evolution studies given that other uncertain-
ties dominate, such as the bulk composition of ancient
atmospheres.

Volkov et al. (2011a; 2011b), who considered the
angular distribution of the velocity distribution at the exo-
base for a single-component gas, found that Jeans escape
can underestimate the actual thermal escape in that case.
The ratio of actual escape to the Jeans escape rate at the
exobase in their model was ~1.4–1.7 for an atmosphere
with Jeans’ parameter ranging from 6 to 15. This arose
because some molecules gained energy to escape from

escape flux ¼ Φesc ¼ nexobffiffiffi
π

p m

2kT

	 
3=2 kT

m

� �
v2e þ

2kT
m

� �
exp �mv2e

2kT

� �
(5.22)

Figure 5.6 The ratio of the non-Maxwellian escape flux of hydrogen, F, to the Maxwellian Jeans’ escape
flux, FJ, versus the temperature at the Earth’s exobase (from Pierrard, 2003). The solid line (P) shows
the results of Pierrard (2003). Results are compared with those obtained with Monte Carlo simulations
represented by different symbols: CC (Chamberlain and Campbell, 1967); L (Lew, 1967);
B (Brinkmann, 1970); CS (Chamberlain and Smith, 1971); BL (Barakat and Lemaire, 1990). The
other lines correspond to analytic solutions: HL (Hays and Liu, 1965); F (Fahr, 1976); FW (Fahr and
Weidner, 1977); SL (Shizgal and Lindenfeld, 1980), SB (Shizgal and Blackmore, 1986).
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collisions above the exobase. See Sec. 5.10.1 for further
discussion of such enhanced Jeans-like escape.

The value of the escape parameter, λJexo, is important
in eq. (5.26). When the gravitational binding energy
(GMm=rexob) is much larger than kT, λJexo is large, caus-
ing a small exponential factor e�λJexo in eq. (5.26) and a
small escape rate. In contrast, if the gravitational binding
energy is much smaller than kT and λJexo is small, the
exponential factor in eq. (5.26) approaches unity, gas
expands into the vacuum of space, and an atmosphere is
unstable such as on the Moon.

One criticism of the above derivation is that the
definition of the exobase is somewhat arbitrary. Why
should it be the height where σN(r) = 1? After all, only
H atoms whose velocities are directed precisely upwards
will have a 1/e chance of escaping. Those headed off at
some other angle will have a somewhat lower probability
of doing so. Fortunately, it can be shown that the escape
flux is only weakly sensitive to the exact value of rexob
(c.f., Walker (1977)). Suppose, for example, that we
picked some other altitude rexob0 as the location of the
exobase. Let the number density at that altitude be nexob0.
Then, using the analog to eq. (5.4), but picking the refer-
ence point to be rexob rather than rsurf, and taking T to be
constant, allows us to write

n0exob ¼ nexob exp
GMm

kT

1
r0exob

� 1
rexob

� �� �
(5.27)

Using the definition of λJexo above allows us to rewrite
this as

n0exobe
�λ0Jexo ¼ nexobe

�λJexo (5.28)

The Jeans escape flux evaluated at distance rexob0 would
be related to the flux at distance rexob by

Φ0

Φ
¼ n0exob 1þ λ0Jexo

� �
e�λ0Jexo

nexob 1þ λJexoð Þe�λJexo
¼ 1þ λ0Jexo

1þ λJexo
� 1 (5.29)

Because λJ is only a slowly varying function of r, the
Jeans escape flux is relatively insensitive to the exact
altitude at which it is evaluated.

5.6.2 Effusion Velocity
To provide some physical insight into the implications of eq.
(5.26), let us calculate the effective effusion velocity (m s–1)
for hydrogen escaping from Earth’s atmosphere, which is
the average rate at which hydrogen atoms or molecules are
drifting upwards. Using eq. (5.26), we can write

effusion velocity, vJ ¼ ΦJ

nexob
¼ 1

2
ffiffiffi
π

p vs 1þ λJexoð Þe�λJexo

(5.30)

In Earth’s upper atmosphere, the temperature varies from
~1000 K at solar minimum to 1500 K or more at solar
maximum. As a result of these hot temperatures, molecu-
lar hydrogen is broken down efficiently into atomic
hydrogen by the reaction

H2 þ O ! Hþ OH (5.31)

Thus, the dominant form of hydrogen at the exobase on
Earth is H, rather than H2. This is not true on Mars or
Titan, where the upper atmosphere is much colder. There,
H2 and H are both important hydrogen-bearing constitu-
ents at high altitudes.

If we calculate the numbers for atomic H at Earth’s
exobase, we find λc = 7 and vJ = 0.87 m s–1 for T∞ =
1000 K, and λJexo = 4.7 and vJ = 110 m s–1 for T∞ =
1500 K. This tells us two things. First, it shows why
elements heavier than He do not escape from Earth’s
atmosphere. The next lightest gas-forming element,
carbon (C), has a mass number of 12 and, thus, λJexo
>50. For example, at 1500 K, λJexo for C is 12 times the
value for atomic hydrogen, giving 12 � 4.7 = 56.4.
Because λJexo appears as a negative exponential in
eq. (5.26), this effectively precludes thermal loss of C or
any heavier element from Earth’s atmosphere. Second, it
shows that effusion velocities for atomic H vary widely
from solar minimum to solar maximum. As we will see in
the next section, Jeans’ escape is the dominant escape
mechanism for hydrogen at solar maximum, but is out-
weighed by suprathermal hydrogen loss processes at solar
minimum. In fact, overall suprathermal (or nonthermal)
processes dominate the time-averaged loss rate.

5.7 Suprathermal (Nonthermal) Escape
of Hydrogen

Thermal loss is only one of several possible mechanisms
by which gases can escape from atmospheres. Various
suprathermal loss processes (also called nonthermal)
dominate Earth’s current hydrogen escape. Suprathermal
molecules or atoms are particles whose velocities exceed
the expected values from the Maxwellian distribution
because they acquire kinetic energy in ways other than
purely thermal collisions. What suprathermal processes
have in common is that a boost from a chemical reaction
or electrical or magnetic acceleration imparts escape vel-
ocity to single particles.

The two most important suprathermal hydrogen loss
mechanisms for Earth are as follows.
(a) H–H+ charge exchange. In this process, neutral
H atoms in the upper atmosphere exchange charge with
fast-moving (“hot”) H+ ions in Earth’s plasmasphere

5.7 Suprathermal (Nonthermal) Escape of Hydrogen
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Hþ Hþ hotð Þ ! Hþ þ H hotð Þ (5.32)

The plasmasphere is the region, including the ionosphere
(60–3000 km) and magnetosphere, where large
numbers of ionized species are present. The ion tem-
perature in Earth’s plasmasphere is ~ 5000–20 000 K. It
is much hotter than the neutral temperature because of
heating by Coulomb collisions, i.e. acceleration due to
ion charge attraction and repulsion. When these hot ions
exchange charge and become neutral hydrogen atoms,
they retain their original high velocities, which can be
approximated by a Maxwellian distribution at a much
higher temperature. Hence, the fraction of these hydro-
gen atoms that exceed escape velocity is far higher than
for the neutral background population. According to
model calculations by Yung et al. (1989), about 75%
of Earth’s hydrogen escapes suprathermally when
averaged over time. Charge exchange reactions account
for ~50% of the escape. At solar maximum, however,
the majority of the hydrogen follows the Jeans
escape path.
(b) The polar wind. Near the magnetic poles of the
Earth, the magnetic field lines are open over about 1/40

of the Earth’s surface, that is, they do not connect to field
lines that re-enter the Earth’s surface (see Fig. 5.7(a)).
Thus, hydrogen ions that are accelerated upwards along
these field lines can escape. A well-known mechanism
exists to produce such upward acceleration. When solar
extreme ultraviolet radiation and x-rays ionize neutral
atoms and molecules in the upper atmosphere, the lighter
(and more mobile) electrons congregate higher up than
the heavier, less mobile ions. This produces a charge
separation electric field that has the effect of accelerating
positively charged ions in the upward direction. The
dominant ion in the F region (150–800 km) of the iono-
sphere, where most of atomic ion production occurs, is
O+. These oxygen ions are too heavy to escape. Rather,
they remain fixed and sustain the electric field, while
hydrogen atoms that become ionized in Earth’s polar
regions are accelerated out to space. According to Yung
et al. (1989), about 15% of the hydrogen that escapes
from Earth does so by this process. Details of the polar
wind process are reviewed by Schunk (1988) and Ganguli
(1996).
For present-day Earth, the loss mechanisms for hydrogen
in order of contribution are 60%–90% for charge

Figure 5.7 (a) Interaction of the solar wind with a planet that has a significant magnetic field, e.g. Earth
(and similar also for Jupiter, Mercury, Saturn, and Uranus). Inside the magnetopause, the magnetic
field is dominated by that of the planet and solar wind particles that are thermalized at the bow shock
(where the wind is brought to rest) flow around the magnetopause and have little influence on the
atmospheric evolution. Open field lines, however, allow ions to escape from the poles if they exceed the
escape velocity. (b) Interaction of the solar wind with a planet without a significant magnetic field, e.g.
present-day Mars or Venus. A bow shock is formed much closer to the planet due to an induced field in
the ionosphere. Thermalized solar wind particles can interact directly with the atmosphere. (c) The
solar wind collides directly with a body that has low electrical conductivity, no ionosphere/atmosphere,
and no magnetic field, e.g. the Moon. (Adapted from Fig. 3.8 in Lewis and Prinn (1984).)
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exchange, 10%–40% for Jeans’ escape, and ~10%–15%
for the polar wind (Liu and Donahue, 1974; Maher and
Tinsley, 1977; Yung et al., 1989). In fact, hydrogen
escape occurs efficiently by a variety of mechanisms once
hydrogen reaches the exobase. As we shall see below,
upward diffusion through the static background thermo-
sphere below the exobase limits the rate of hydrogen
escape on Earth today.

It is worth noting that solar wind particles have a
more direct interaction with the atmospheres on planets
that do not have global dipole magnetic fields, such as
Mars or Venus (Fig. 5.7(b)). In such cases, the interaction
is primarily with an ionosphere rather than a magneto-
sphere. For small planets, such as Mars, this can lead to
substantial atmospheric loss over time (Sec. 12.2.4). Of
course, on bodies without atmospheres and little electrical
conductivity, e.g., the Moon, the solar wind impinges
directly on the surface (Fig. 5.7(c)).

5.8 Upwards Diffusion and the
“Diffusion-Limited Escape” Concept

Under a variety of circumstances (covering bodies as
diverse as Venus, Earth, Mars, and Titan), the flux of
hydrogen escaping to space is not constrained by the rate
of removal of hydrogen at the exobase but is limited by
the slower, upwards supply of hydrogen through the
atmosphere below the exobase. This so-called limiting
flux will be shown to be linearly proportional to the
hydrogen mixing ratio at the homopause. To derive this
result, we must consider upward diffusion of hydrogen
through an atmosphere. Such diffusion can take place
either by molecular diffusion or by eddy diffusion, which
we consider in turn.

5.8.1 Molecular Diffusion
To understand how hydrogen diffuses upward through
an atmosphere, we start by considering a binary mixture
of two gases, denoted 1 and 2. The relative diffusion
velocity of gas 1 with respect to gas 2 in its most general
3-D form is given by Banks and Kockarts (1973 Part B,
p. 33 ff.) as:

Terms on the right-hand side of this equation account
for diffusion because of gradients in concentration, mass
and temperature, respectively, as indicated. The last right-
hand side term is diffusion caused by differential forces.
Here,
n1, n2 = number densities of gases 1 and 2 (in m–3 or

cm–3)
n = n1 + n2
m1, m2 = molecular masses of gases 1 and 2
m = (n1m1 + n2m2)/(n1 + n2)
k = Boltzmann’s constant (1.38�10–23 J K–1)
T = temperature (K)
F
!

1, F
!
2 ¼ accelerations acting on particles of gas 1 and 2

from external forces, e.g. gravity or an electric field
D12 = binary diffusion coefficient
αT = thermal diffusivity (ffi �0.25 for H or H2 in terres-

trial air, ~0 for gases of comparable molecular mass)
r = the gradient operator, or i

!
∂
∂xþ j

!
∂
∂yþ k

!
∂
∂z in Car-

tesian coordinates.
The binary diffusion coefficient, D12, can be written as

D12 ¼ b12
n

(5.34)

where b12 is a binary diffusion parameter that is found
empirically to vary as b = ATs where A and s are constants
for particular binary gases mixtures. Diffusion parameters
for H and H2 in terrestrial air at 300 K are given in the
Table 5.2.

The vector equation (5.33) describes a 3-D distribu-
tion of particles. To apply this to a plane-parallel planet-
ary atmosphere, we simplify to just the vertical
component. For neutral gases in a gravitational field,
the external force term is zero because the gravitational
acceleration, g, is independent of a particle’s mass, i.e.,

v
!¼ v

!
1 � v

!
2

¼ �D12
n2

n1n2
r n1

n

	 

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
conc:gradient term

þ m2 � m1

m
r ln pð Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

mass gradient term

þ αTr ln Tð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
temp:gradient term

� m1m2

mkT
F
!

1 � F
!

2

	 

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

force gradient term

2
66664

3
77775 (5.33)

Table 5.2 Binary diffusion parameters for H and H2 in terrestrial
air. (Data from Banks and Kockarts (1973 Part B, pp.40–41).)

Gas 1 Gas 2 A s b12 (cm
–1s–1)

H2 Air 2.7�1017 0.75 1.95�1019

H Air 4.8�1017 0.70 2.60�1019
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F
!

1 ¼ F
!
2 ¼ g. This would not be true for an ionized gas in

the presence of an electric field where the opposite
forces acting on positively charged ions and on electrons
give rise to a phenomenon referred to as ambipolar
diffusion.

With the above simplifications, let the vertical com-
ponent of velocity be denoted by w. Then, eq. (5.33)
becomes

w1�w2 ¼�D12
n2

n1n2

d n1=nð Þ
dz

þm2�m1

m

1
p

dp

dz
þαT

T

dT

dz

� �
(5.35)

The differential in the first term in the square brackets can
be expanded as follows,

d

dz

n1
n

	 

¼ 1

n

dn1
dz

� n1
n2

dn

dz

so that the first term in the brackets becomes

n2

n1n2

d n1=nð Þ
dz

¼ n

n1n2

dn1
dz

� 1
n2

dn2
dz

(5.36)

We apply these relations to a light gas moving through a
stationary, heavier background gas, so species 1 = H or
H2, and species 2 = air. Then, by assumption, w2 = 0 for
the static air. Let us further assume that species 1, which
we will henceforth denote by the subscript ‘i’, is a minor
constituent. That is,

n1 � ni << n2
n � n1 þ n2 ffi n2
m ffi m2

(5.37)

Then, by using eq. (5.36) and relationships (5.37), we can
rewrite eq. (5.35) as

wi ¼ �Di
1
ni

dni
dz

� 1
n

dn

dz
þ 1� mi

m

	 
 1
p

dp

dz
þ αT

T

dT

dz

� �
(5.38)

The ideal gas law, p = nkT gives n = p/kT, so ln n =
ln p – ln T – ln k. Taking d/dz of this last expression, gives

1
n

dn

dz
¼ 1

p

dp

dz
� 1
T

dT

dz
(5.39)

Substituting (1/n)(dn/dz) from eq. (5.39) into eq. (5.38)
yields

wi ¼ �Di
1
ni

dni
dz

� mi

m

1
p

dp

dz
þ 1þ αT

T

� �
dT

dz

� �
(5.40)

where we have used the fact that two of the terms con-
taining dp/dz cancel. Finally, we use the barometric law
(eq. (1.10)) to write

1
p

dp

dz
¼ � 1

Ha
¼ �mg

kT
(5.41)

Consequently, the second term in the square brackets of
eq. (5.40) can be written,

mi

m

1
p

dp

dz
¼ mig

kT
� 1

Hi

where Hi represents the scale height of species “i”. Then,
eq. (5.40) becomes

wi ¼ �Di
1
ni

dni
dz

þ 1
Hi

þ 1þ αT
T

� �
dT

dz

� �
(5.42)

The flux associated with molecular diffusion (also called
“Fickian diffusion”), which we will denote by using a
superscript “mol”, is then

Φmol
i ¼ niwi ¼ �Dini

1
ni

dni
dz

þ 1
Hi

þ 1þ αT
T

� �
dT

dz

� �
(5.43)

Here the first term (Di dni /dz) on the right-hand side is the
familiar form of Fick’s First Law, which expresses how
the flux of molecules of species i across unit area in unit
time is proportional to the concentration gradient of that
species, dni /dz.

5.8.2 Eddy Diffusion
Thus far, we have described the individual motions of gas
molecules of trace species “i” with respect to molecules of
a static background atmosphere. In the lower atmosphere,
though, most of the mass transport occurs not by diffusion
of individual molecules but, rather, by turbulent, macro-
scopic eddies or by advection of air parcels, again of
macroscopic scale. For convenience, aeronomers lump
all such transport into the single process of eddy diffusion.
Its magnitude is parameterized by an eddy diffusion coef-
ficient, K. Eddy diffusion, by its very nature, acts so as
to reduce gradients in relative species concentrations.
Thus, if we define the volume mixing ratio of species i
as fi � ni/n, then we can write the flux due to eddy
diffusion as

Φeddy
i ¼ �Kn

df i
dz

(5.44)

The total flux due to both molecular and eddy diffusion is
their sum,

Φi ¼ Φmol
i þΦeddy

i (5.45)

The value of the eddy diffusion coefficient, K, is not pre-
cisely defined, unlike the molecular diffusion coefficient,
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Di. No theory yet gives us the exact magnitude of K;
rather, K is determined empirically using tracer studies
(Hunten, 1975; Massie and Hunten, 1981; Gutowsky,
1976; National Research Council, 1979). A typical
example is the eddy diffusion profile shown in Fig. 5.8(a).

Theory provides some guidance on how K should
vary in certain altitude regimes. For example, in the upper
stratosphere and mesosphere, most of the mass transport
is caused by turbulent eddies generated by the breaking of
upwards-propagating gravity waves (Garcia and Solo-
mon, 1985; Leovy, 1964). The amount of energy dissi-
pated by such waves is predicted to vary as the inverse
square root of density (see Sec. 4.3.4 and 4.4.1), and so in
this region it is assumed that K / n–1/2. Because the

spatial scale of the eddies is relatively small, parameteriz-
ing mass transport as “diffusion” is a good approximation
in this region. By contrast, in the lower stratosphere and
troposphere, much of the mass transport occurs as a result
of large-scale advection, so the eddy diffusion approxi-
mation is less well justified.

At some altitude (~100 km on Earth), Di becomes
greater than K. This altitude is the homopause (as defined
in Sec. 1.1.1). Although K increases as n–1/2 in the meso-
sphere, the molecular diffusion coefficient, Di, is propor-
tional to 1/n (eq. (5.35)) and, hence, increases more
rapidly with height than K. The region below the homo-
pause, where eddy diffusion dominates, is the homo-
sphere where air is mixed, or homogenized, by the
processes that we have just discussed. Species that lack
strong chemical sources or sinks, e.g., N2, have constant
mixing ratios in the homosphere. This can be easily
demonstrated by setting Φeddy

i ¼ 0 in eq. (5.44). Then,
dfi/dz = 0 as well, which implies that fi is constant with
altitude.

The region above the homopause, where molecular
diffusion dominates, is the heterosphere. Here, mixing
ratios of lighter species increase with altitude. This can
be easily demonstrated by considering a non-reactive
species such as N2 for which the vertical flux is essentially
zero. Then, eq. (5.43) says that

1
ni

dni
dz

¼ � 1
Hi

� 1þ αT
T

� �
dT

dz
(5.46)

If we neglect thermal diffusion (i.e., set αT = 0), this
implies that the partial pressure, pi = nikT, of each indi-
vidual species varies with its own scale height, i.e.

pi ¼ p0 exp � z� z0
Hi

� �
(5.47)

where p0 is the partial pressure at some reference height
z0. Partial pressure pi(z) is the analog of the barometric
law (eq. (1.12)) for the total atmospheric pressure, p(z).

5.8.3 Diffusion-Limited Escape of Hydrogen
We now derive a very useful expression for the maximum
upward flux of an escaping gas, such as hydrogen. As
shown below, the escape of hydrogen from Earth’s atmos-
phere is limited by the rate at which it can diffuse upwards
through the homopause. Physically, one may think of the
static background atmosphere, N2 and O2 in Earth’s case,
as providing a frictional resistance that retards the upward
flow of hydrogen. The significance of this phenomenon
was first pointed out by Donald Hunten (1973) in a paper
that was motivated by his work on the escape of hydrogen

Figure 5.8 (a) Vertical profiles of the eddy diffusion coefficient,
K, and the molecular diffusion coefficient for atomic hydrogen, DH.
(b) Vertical mixing ratio profiles of major hydrogen-bearing
species, weighted by the number of H atoms in each species,
e.g., methane at ground level is 1.8 ppmv � 4 = 7.2 ppmv
H. The curve labeled fT represents the total hydrogen mixing ratio
defined in the text. The value of fT begins to increase near the
homopause because of diffusive separation of species that favors
H and H2.
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from Saturn’s moon, Titan. It was also well described by
Walker (1977) and provided the basis for his pioneering
work on predicting Earth’s prebiotic O2 concentrations
(Walker, 1978). The limiting flux concept has proven
extremely valuable in understanding the behavior of
atmospheres on rocky planets because, to the degree that
data are available, diffusion-limited escape explains the
H escape rate from Earth, Venus, Mars, and Titan
(Sec. 5.9).

We begin by recasting the expression for the molecu-
lar diffusion flux (eq. (5.43)) in a form similar to that of
the eddy diffusion flux (eq. (5.44)). First we note that

df i
dz

¼ d

dz

ni
n

	 

¼ 1

n

dni
dz

� ni
n2

dn

dz

Hence,

n
df i
dz

¼ dni
dz

� ni
n

dn

dz
¼ ni

1
ni

dni
dz

þ 1
Ha

þ 1
T

dT

dz

� �
(5.48)

where we have used eq. (5.39) and hydrostatic eq. (5.41)
to eliminate dn/dz. By comparing eq. (5.48) with the
molecular diffusion flux (eq. (5.43)), we can write

Φmol
i ¼ �Din

df i
dz

þ Dini
1
Ha

� 1
Hi

� αT
T

dT

dz

� �
(5.49)

If we now combine eq. (5.49) with eddy diffusion (eq.
(5.44)) and total flux (eq. (5.45)) equations, we can write
the total flux of species “i” as

Φi ¼ � K þ Dið Þn df i
dz|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

counter-gradient flux term

þ Dini
1
Ha

� 1
Hi

� αT
T

dT

dz

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

limiting flux term

(5.50)

The first term on the right-hand side of eq. (5.50) is called
the counter-gradient flux and is denoted by Φc

Φc ¼ � K þ Dið Þn df i
dz

(5.51)

The magnitude of this term is proportional to the gradient
in species mixing ratio, dfi/dz. It turns out that this term is
unable to sustain any net upwards diffusion of hydrogen.
Physically, the reason is because fi must decrease with
altitude in order to drive upwards diffusion via this term.
But if fi decreases with height, then ni will decrease even
more rapidly. The upward flux is equal to niwi, where wi is
a velocity. Rapidly decreasing ni would require rapidly
increasing wi, which is not physically possible. (See
Walker, 1977, for a mathematical derivation of this
result.) Thus, a maximum must occur in Φi (eq. (5.50))
when dfi /dz = 0 and Φc = 0.

The second term on the right-hand side of eq. (5.50) is
the limiting flux or the diffusion-limited flux and is
denoted by Φl, as follows:

Φl ¼ Dini
1
Ha

� 1
Hi

� αT
T

dT

dz

� �

� Dini
ma �mið Þg

kT
� αT

T

dT

dz

� � (5.52)

As may be ascertained from the form of this equation, this
term is entirely due to the difference in molecular weight
between the escaping gas (presumed to be hydrogen) and
the background atmosphere and to the thermal diffusivity
of hydrogen. This expression is typically applied either at
the homopause or in the lower stratosphere.

We can simplify the limiting flux equation as indi-
cated by the strike-throughs in eq. (5.52). Temperature
gradients are small, so dT/dz ~0 and the thermal diffusion
term is generally neglected. Furthermore, for a light gas
(H or H2) diffusing through air (an N2–O2 mixture for
Earth, or CO2 for Mars and Venus), Hi >>Ha, so eq.
(5.52) simplifies to

diffusion limited flux,Φl ffi Dini
Ha

¼ bif i
Ha

/ f i (5.53)

where we have used eq. (5.34), which relates Di to the
binary diffusion parameter bi.

It should be remembered that eq. (5.53) was derived
for a minor constituent. It can, however, be applied to a
major constituent as well (c.f. Walker, 1977) if one
replaces the term fi with fi/(1+fi). This form should be
used in cases where fi exceeds a few percent.

5.8.4 Application of Diffusion-Limited
Hydrogen Escape to Earth’s Atmosphere

To apply the limiting flux equation to the Earth, we begin
by evaluating some of the parameters. At the Earth’s
homopause, the temperature is ~208 K, bH ffi 2.73�
1019 cm–1s–1 and bH2 ffi 1.46�1019 cm–1s–1. H2 is several
times more abundant that H at the homopause, 5.2�
107 cm–3 vs. 1.8�107 cm–3 (Liu and Donahue, 1974).
Rather than calculating the flux of each species separately,
let us combine their mixing ratios and use a weighted
average value for bi of 1.8�1019 cm–1s–1. At the homo-
pause, the scale height, Ha, is ~6.36 km, so bi/Ha ffi
1.8�1019 cm–1s–1/6.36�105 cm = 2.8�1013 cm–2 s–1.

We now define the total hydrogen mixing ratio, fT(H),
as the sum of the mixing ratios of hydrogen in all of its
chemical forms, weighted by the number of hydrogen
atoms each species contains. Thus,
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f T Hð Þ ¼ f H þ 2f H2
þ 2f H2O þ 4f CH4

þ ��� (5.54)

These terms, along with fT(H) itself, are shown in Fig. 5.8
(b). At the Earth’s homopause, almost all hydrogen exists
as either H or H2, so only the first two terms are import-
ant. We could evaluate fT(H) there by using rocket meas-
urements of the concentrations of these two species.
However, there is an easier way to evaluate fT(H) that is
also much more useful in studying atmospheres in gen-
eral, which we now examine.

To find a simple way to estimate the total hydrogen
mixing ratio, fT(H), we start with fundamentals by writing
the continuity equation for species i as

dΦi

dz
¼ Pi � Li (5.55)

Here, Pi and Li represent chemical production and loss
rates per unit volume. For a species with no chemistry,
dΦi/dz = 0, so Φi is constant with altitude. But we know
thatΦi =Φl at the homopause. Consequently, the total flux
at all altitudes below and down to the lower stratosphere
must be equal to the diffusion-limited flux. Equation (5.50)
therefore implies that dfi/dz = 0, that is, the total hydrogen
mixing ratio should be constant with altitude. This result is
not exact because the species scale height, Hi, and thermal

diffusivity, αT, change as one hydrogen-containing com-
pound is transformed into another. However, these changes
can be compensated by gradients in fi that are so small as to
be negligible. Thus, despite all the complexity of atmos-
pheric photochemistry, we arrive at the simple result:

The rate of escape of hydrogen is proportional to the
concentration of hydrogen compounds in the lower
stratosphere.

We can see how this works by looking at a schematic
diagram showing the abundance of hydrogen in all its
forms in the Earth’s atmosphere as a function of height
shown in Fig. 5.8(b) and schematically in Fig. 5.9(a). The
total hydrogen mixing ratio fT is essentially preserved
above the tropopause, as verified by satellite measure-
ments of hydrogen-bearing species (Harries et al., 1996).

We can write the diffusion limited escape flux as a
simple linear equation. Using eq. (5.53), we can represent
the escape flux as

Φl ffi constantð Þf T Hð Þ (5.56)

We deduced a constant of 2.8�1013 cm–2 s–1 from our
previous calculation. However, a more detailed calcula-
tion that takes account of other terms in eq. (5.52) sug-
gests that the constant is 2.5�1013 cm–2 s–1 (Hunten and
Strobel 1974), i.e.,

Figure 5.9 (a) A schematic diagram of hydrogen-bearing species in Earth’s atmosphere showing
processes responsible for the profiles shown in Fig. 5.8(b). Hydrogen is input from the ground in fluxes
(Φ) of water, hydrogen and methane. At the tropical tropopause, a cold trap limits the flux of hydrogen
from water vapor into the stratosphere. The total H mixing ratio fT, just below the homopause sets the
diffusion-limited escape flux of hydrogen to space (Φl), which is reflected by fT in the lower stratosphere
above the tropical tropopause cold trap. (b) A schematic diagram showing the two principal “bottle-
necks” for hydrogen escape: the tropical tropopause cold trap and diffusion above the homopause.
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Φl ffi 2:5� 1013
� �

f T Hð Þ atoms cm�2 s�1
� �

(5.57)

Thus, provided we know fT(H) we can easily calculate the
diffusion-limited escape flux. Here, fT(H) is simply the total
hydrogen mixing ratio, in all its forms, above the cold trap
at the tropopause, which can be readily measured from
balloon-borne instruments in Earth’s present atmosphere
or computed theoretically for other atmospheres.

Diffusion-limited escape is an upper limit. The hydro-
gen cannot escape any faster than the rate of upwards
diffusion through lower levels of the atmosphere by eddy
and molecular means. Thus, conceptually, the Earth has
two “bottlenecks” that limit the upward supply of hydro-
gen (Fig. 5.9(b)): the cold-trap of the tropical tropopause
where water freezes out and the region above the homo-
pause where diffusion is rate limiting.

In Earth’s present atmosphere, the concentrations
of hydrogen-bearing gases in the lower stratosphere are
1.8 ppmv CH4, ~3 ppmv H2O, and 0.55 ppmv H2. From
these measurements, we can calculate the diffusion-
limited escape rate for hydrogen from the Earth. First we
calculate fT (H), which is 14�10�6 (= [2(0.55) + 4(1.8) +
2(3)]�10–6).

Then the escape rate from eq. (4.51) is

Given that the area of the Earth is 5.1�1018 cm2, the area-
integrated escape rate is (3.5�108 atoms cm–2 s–1) �
(5.1�1018 cm2) = 1.8�1027 atoms s–1 = 5.6�1034 atoms
yr–1 = 9.3�1010 moles H atoms yr–1 = 93 000 tonnes
of H yr–1.

Measurements of exospheric temperatures and hydro-
gen densities prove that the limiting flux concept works
well (Bertaux, 1975). Essentially, the total flux consists of
the sum of suprathermal and Jeans’ escape fluxes. The
sum remains constant at about the limiting flux value at
the homopause. As the Jeans flux varies due to changing
exospheric temperature with the solar cycle, the
suprathermal flux component changes to make up the
balance.

The limiting flux concept does not work for terrestrial
helium. Helium escape is rate-limited by the removal
process at the top of the atmosphere to a flux ~100 times
lower than diffusion-limited escape. Instead helium
escapes efficiently as an ion along the open magnetic field
lines at high latitudes (Axford, 1968; Johnson and
Axford, 1969), with the result that the lifetime of helium
in Earth’s atmosphere is ~106 years.

5.9 Diffusion-Limited Hydrogen Escape
Applied to Mars, Titan, and Venus

Now that we have discussed the theory for hydrogen
escape and the limiting flux concept, it is interesting to
apply it to other planetary atmospheres.

5.9.1 Mars
On Mars, simulated homopause temperatures vary as a
function of season and range from ~150 K to ~200 K
(e.g., Bougher et al., 2000). Let us take T ~ 180 K,
corresponding to the dayside homopause at ~135 km
altitude. Here, the most abundant hydrogen species is H2

(Nair et al., 1994). The binary diffusion coefficient of H2

in CO2 is approximated a function of temperature
(Marrero and Mason, 1972),

b H2 inCO2ð Þ ¼ 3:1� 10�6

k
T0:75e�11:7=T cm�1 s�1

� �
(5.58)

A temperature of 180 K yields b = 1.0�1019 cm–1 s–1 (for
H2 in CO2), and a scale height Ha = 9.3 km. Conse-
quently, the limiting flux from eq. (5.53) is

Φl ffi 1:1� 1013
� �

f T Hð Þ (5.59)

Spectroscopy suggests that the H2 mixing ratio on Mars is
~15	5 ppmv in the lower atmosphere (Krasnopolsky and
Feldman, 2001). Insertion of fT(H)= (30	10)�10–6 in eq.
(5.59) gives a diffusion-limited escape rate of (3.3	1.1)�
108 H atoms cm–2 s–1 .

Note that the low gravity on Mars leads, counter-
intuitively, to a smaller diffusion-limited escape flux,
according to eq. (5.53). This is because the atmospheric
scale height, Ha ¼ kT=mg , appears in the denominator of
the expression, making Φℓ / g . Essentially, the rate of
diffusion of the light escaping gas relative to the heavier
background gas is enhanced when the planet’s gravita-
tional attraction is stronger. This scaling will break down
for very large planets when gravity-dependent removal
processes at the exobase become inefficient and the
limiting flux no longer applies to hydrogen.

Hydrogen escape fluxes cannot be observed directly
but are inferred from the vertical profile of hydrogen.
Mariner 6 and 7 Lyman-α observations imply an
escape flux of (1–2)�108 H atoms cm–2 s–1 if a

Φl ffi 2:5� 1013
� �

f T Hð Þ ¼ 2:5� 1013 cm�2s�1
� �

14� 10�6
� � ¼ 3:5� 108 atomscm�2s�1:
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Maxwellian velocity distribution is assumed (Anderson,
1974; Anderson and Hord, 1971). Mars Express data
have been interpreted to indicate that atomic hydrogen
in Mars’ exosphere has two populations: a suprathermal
one (~1000 K) with a low number density and a colder
one with a greater number density. The suprathermal
population may arise from ionic reactions or charge
exchange reactions with the solar wind (Galli et al.,
2006a; Galli et al., 2006b). Such data imply a Jeans
escape rate of 4:3þ5:6

�2:5�108 H atoms cm–2 s–1 (Zahnle
et al., 2008). Lyman-α and -β data from Rosetta
were acquired during a gravity assist swing-by of
Mars (while en route to comet 67P/Churyumov–
Gerasimenko) and used to infer a somewhat lower
escape rate (no error bar) of ~0.8�108 H atoms cm–2 s–1

(Feldman et al., 2011).
Overall, the limiting flux concept appears to work

within uncertainty in explaining the current hydrogen
escape rate for Mars. Since diffusion-limited escape
depletes the typical abundance of water vapor in the
atmosphere (~5�1019 cm–2 H atoms) in ~5 kyr, atmos-
pheric water vapor must be replenished. One nuance is
that Mars Express and Hubble Space Telescope data
suggest that the H escape rate, although consistent with
limiting flux, can decline when there is a decrease in the
source of water vapor during large dust storms (Chaffin
et al., 2014; Clarke et al., 2014).

5.9.2 Titan
On Titan, the homopause altitude is constrained by data
from the Cassini spacecraft to be ~800–900 km (Strobel
et al., 2009) while the exobase is around 1400–1500 km
altitude (see Sec. 12.4.3). Photochemical models suggest
that most hydrogen escapes as H2, with ~30% as H (Yung
et al., 1984).

The Huygens probe measured hydrogen-bearing
species in Titan’s atmosphere, with CH4 ~1.48	0.09%
in the stratosphere and H2 ~1010	160 ppmv (Niemann
et al., 2010). At the homopause, the temperature is
T~150 K, which gives a scale height Ha = RT/Mg =
[(8.314 J mol–1 K–1)(150 K)]/[0.0286 kg mol–1)
(0.733 m s–2)] = 59.5 km. The binary diffusion parameter
for H2 in N2 at 150 K is b = 1.1�1019 cm–1 s–1. Hence the
limiting flux obtained from eq. (5.53) is

Φl ffi bi
Ha

f T ¼ 1:1� 1019

5:95� 106
f T ¼ 1:8� 1012f T (5.60)

Since methane is the dominant hydrogen-bearing species
we must take into account the overall chemistry of
methane photolysis and the fate of its products. Methane

can be destroyed through different photolysis paths with
differing yields of hydrogen:

2CH4 ! C2H2 þ 3H2 ionosphericð Þ (5.61)

2CH4 ! C2H4 þ 2H2 directð Þ (5.62)

2CH4 ! C2H6 þ H2 catalyticð Þ (5.63)

Hydrogen atoms contained in the hydrocarbon products
are lost as rainout to the surface whereas the H2 is subject
to escape. If we assume that every two CH4 molecules
produce an H2 molecule (eq. (5.63)), then the total mixing
ratio of H atoms will be fT = (0.0148/2)2 + 2(0.001) =
0.0168, giving a limiting flux of 3�1010 atoms cm–2 s–1.
More detailed model calculations suggest an escape flux
of 2.0�1010 atoms cm–2 s–1 (Table 1 in Lebonnois et al.
(2003)), which is similar to the column-integrated
destruction rate of CH4 ~1.5�1010 cm–2 s–1 due to pho-
tolysis (Yung et al., 1984).

The limiting flux for H escape from Titan is sup-
ported by observations. Utilizing Cassini ion-neutral
mass spectrometer (INMS) data, Bell et al. (2010a;
2010b) find that hydrogen escapes at close to the Jeans
rate, while others have suggested that the rate is some-
times enhanced with energy input by Saturn’s magneto-
spheric particles (Cui et al., 2011). The inferred escape
rate is (2.0–2.1)�1010 H atoms cm–2 s–1 (Bell et al.,
2010a; Cui et al., 2008), which is essentially the
diffusion-limited rate evaluated at the homopause (Bell
et al., 2014; Strobel, 2012).

5.9.3 Venus
We can calculate a diffusion-limited H escape flux for
Venus of ~3�107 H atoms cm–2 s–1, based on spectro-
scopic evidence for a total atomic hydrogen abundance of
a few ppmv at the homopause. This total hydrogen
mixing ratio comes from summing HCl ~0.5 ppmv
(Bézard et al., 1990) and H2O ~ 1 ppmv (Fink et al.,
1972) above the cloud tops. This diffusion-limited escape
flux agrees reasonably well with estimates of the globally
averaged escape flux based on Pioneer Venus measure-
ments of upper atmospheric composition and temperature,
which in units of ~107 atoms cm–2 s–1 are 1.7 (Hodges
and Tinsley, 1981), 0.2 (McElroy et al., 1982) and 2.7
(Kumar et al., 1983).

On Venus, Jeans’ escape of hydrogen is negligible
because of the relatively high, Earth-like gravity and low
exospheric temperature. The upper atmosphere of Venus
is cold, with a ~300	25 K dayside exobase temperature,
because of strong radiative cooling via decay of vibra-
tionally excited CO2 (see Sec. 3.5). At 275 K, the thermal
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escape rate is only ~104 atoms cm–2 s–1. On Venus,
escape of suprathermal hydrogen completely dominates.

Mariner 5 and 10, Venera 9–12 and Venus Express
experiments all found evidence for a suprathermal popu-
lation of hydrogen in Venus’ exosphere with a tempera-
ture of ~1000	500 K and exobase density of ~103 cm–3,
compared to a cold, background hydrogen density of
~105 cm–3 at the exobase and temperature 300	25 K
(dayside) or 150 K (nightside) (Bertaux et al., 1978;
Bertaux et al., 1982; Chaufray et al., 2012; Kumar
et al., 1983). Suprathermal escape mechanisms that are
considered to be important for Venus include (Hodges,
1999; Lammer et al., 2006): (1) charge exchange between
neutral hydrogen atoms and hot H+ or O+ ions, (2) charge
exchange with hot oxygen atoms produced by CO2 pho-
tolysis or from electron impact dissociation of CO2, and
(3) dissociative recombination of H-containing ions.
Protons (H+), produced by photoionization or solar wind
interaction, can also escape, as measured at solar min-
imum at a rate of 3�106 cm–2 s–1 by an ion spectrometer
on Venus Express (Barabash et al., 2007).

Figure 5.10 is a summary plot of the various pro-
cesses responsible for H escape from Venus, including
on early Venus when hydrodynamic escape likely oper-
ated. The dashed line shows the diffusion-limited flux,

which represents the maximum escape rate from the sum
of these processes.

5.10 Hydrodynamic Escape

5.10.1 Conditions for Hydrodynamic Escape
In Sec. 5.3, we saw how the barometric law breaks down
at high altitude and how a gravitationally bound atmos-
phere at a finite temperature must lose mass to the vacuum
of space. We noted the two end-member cases of thermal
escape processes associated with this breakdown, namely,
Jeans’ escape and hydrodynamic escape. Jeans’ escape is
the more accurate description when dealing with escape
of a light gas, e.g., hydrogen, from a heavier and static
background atmosphere. Hydrodynamic escape is a better
approximation when the background atmosphere itself is
escaping and driven by a pressure gradient force between
the dense atmosphere below and vacuum above, or,
equivalently, when the upper atmosphere is hydrogen-
dominated and sufficiently heated. An important aspect
of hydrodynamic hydrogen escape for atmospheric evo-
lution is that heavy molecules can achieve escape velocity
through collisions with hydrogen, and be dragged
upward. Thus, rapid flow of hydrogen will carry away
heavy gases into space, even though such gases would be
too heavy to undergo Jeans’ escape.

The classical Jeans’ approximation treats the transi-
tion from collisional to collisionless as a discontinuity,
but this concept begins to break down once the height of
the exobase becomes defined by the escaping gas, typic-
ally hydrogen, rather than by some static background gas.
As we noted earlier (Sec. 5.6), in a multi-component
atmosphere, the classical Jeans’ formula can overestimate
the escape flux of hydrogen because it fails to account for
depletion of molecules in the high-energy tail of the
Maxwellian velocity distribution. Also, the Jeans approxi-
mation ignores the reduction in temperature caused by the
loss of fast, escaping particles. This error of 20%–30% for
Earth is not large because that tail is replenished through
collisions with non-escaping molecules. In the transitional
region from collisional to non-collisional gas, collisions
between the atoms or molecules of the minor escaping gas
are unimportant.

However, once the escaping gas becomes the domin-
ant constituent in the thermosphere, the situation is more
akin to a single-component atmosphere and the net result
can be an anisotropic velocity distribution rather than an
isotropic Maxwellian distribution. By integrating the non-
linear Boltzmann equation for an atmosphere of atomic
hydrogen, Merryfield and Shizgal (1994) found that, at
high altitudes, a population of escaping hydrogen atoms

Figure 5.10 Calculated hydrogen escape fluxes from Venus. From
left to right: increasing H concentrations to ~1% eventually permit
hydrodynamic escape. At lower concentrations of H, charge
exchange processes are the dominant source of hot H atoms.
However, in all cases, the rate of escape is limited by diffusion
through the atmosphere from lower layers (dashed line). (From
Kumar et al. (1983).)
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was enhanced by streaming of particles from warmer,
denser air below. There was also upward conduction of
heat due to the escape of the particles from the tail of the
distribution and some particles above the exobase gained
escape velocity due to occasional collisions. Conse-
quently, in such a single component model, Jean’s escape
was found to underestimate actual escape by a factor of
~1.3 for a Jeans’ parameter of ~6.5 (eq. (5.25)). Using a
direct simulation Monte Carlo model (DSMC), Volkov
et al. (2011a; 2011b) similarly found that Jeans escape in
a single-component atmosphere underestimates actual
escape at the exobase by a factor of ~1.4–1.7 for a Jeans’
parameter ranging from 6 to 15.

Sophisticated models, such as DSMC, are required for
precise estimates of strong “Jeans-like” escape to bridge
the collisionless and hydrodynamic regimes when the
Jeans parameter is small but escape is not strong enough
for a purely fluid description of hydrodynamic escape to
be justified. Apart from DSMC models, another method
that has been used extensively to simulate the polar wind
(Lemaire et al., 2007; Tam et al., 2007) is to make an
approximation to the Boltzmann equation with a number
of moments, e.g., Grad’s 13-moment approximation (Cui
et al., 2008; Grad, 1949; Schunk, 1977; Ch. 3 of Schunk
and Nagy, 2009).

The theory of hydrodynamic escape for a planetary
atmosphere is best put in context by referring back to the
old literature concerning the hydrodynamic nature of the
solar wind. In the 1960s, Joseph Chamberlain and Eugene
Parker debated the question of whether the solar wind was
subsonic or transonic. Parker thought that it was transonic
while Chamberlain thought that it was not. Ultimately,
Parker was proved correct.

The debate happened because both subsonic and tran-
sonic solutions exist for the equations of hydrodynamic
outflow of the solar wind. The wind, which is an expan-
sion of the Sun’s extremely hot corona, is fully ionized.
The particles moving within it are charged and are subject
to long-range electrostatic forces; hence, the wind is
always in the collisional hydrodynamic regime. More
precisely, the dynamics of the solar wind are described
by magneto-hydrodynamics, which includes the influence
of the magnetic field, but early treatments of the solar
wind ignored this complication. In general, the solutions
of the full equations of hydrodynamic outflow are difficult
to obtain. If, however, one ignores the energy equation
and assumes isothermal outflow, then the solution is
analytic (Box 5.2, eq. (B5.11)). These isothermal outflow
solutions are shown in Fig. 5.11.

The isothermal outflow solutions for the solar wind
fall into six categories, but only three are physically

plausible. Two solutions pass through the critical point
or sonic level, r0, which is the radius at which the
flow velocity is equal to the isothermal sound speed,

u0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
kT=m

p
. Variables are defined in Box 5.2. Solution

IV in Fig. 5.11, which starts from low velocity near
the Sun and becomes supersonic at large distances, is the
transonic escape solution. This solution was eventually
shown by spacecraft data to be correct for the solar wind.
Solution VI has low velocity at large distances and high
velocity near the Sun. It represents infall of material, called
Bondi accretion (Bondi, 1952; Shu, 1991 pp. 77–81). It
could apply, for example, to capture of gas from a sur-
rounding solar nebula, although the isothermal assumption
would need to be abandoned in this case. This solution is
thus more illustrative than practical.

The other categories of solutions (I, II, III, V) fall into
the four quadrants delineated on the graph by solutions IV
and VI. Double-valued solutions in quadrants I and II do
not connect the surface of the Sun (r << r0) to locations
far from the Sun (r >> r0) and are physically meaning-
less. Quadrant III solutions have supersonic speeds at the
Sun and are also unphysical. Apart from solutions IV and
VI, only solutions in the bottom center quadrant (V) are
potentially meaningful. These subsonic solutions have
low velocity near the Sun, a peak velocity at distance r0,
and return to low velocities at large distances.

For an escaping fluid like the solar wind, which is
collisional, the question of whether the flow is subsonic or
transonic depends on the boundary conditions at large
distances from the Sun. If the pressure of the interstellar
medium is low, which it is, then the escape will be

Figure 5.11 Solutions to the isothermal, time-independent, hydro-
dynamic escape equations (Box 5.2, eqs. (B5.11) or (B5.12)), but
for an ionized gas. Six different classes of solution are shown (I to
VI). Solution IV, which increases in speed and passes through the
sonic level (also called the critical point) and becomes supersonic,
is the solar wind solution. (Following Parker (1963).)
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Box 5.2 Equations of Hydrodynamic Escape and Isothermal Approximations Pertaining to Them

The equations describing hydrodynamic escape, and fluid dynamics in general, tend to be rather opaque to those who
do not deal with them on a regular basis. For many of us, there is much to be learned from a simplified description of
a problem because one can gain physical insight from analytic approximations. Hydrodynamic escape is amenable to
an analytic simplification with certain assumptions. In general, one needs to deal with three equations: conservation
of mass, momentum, and energy. In spherical geometry, these equations can be expressed as follows (using
equations of Chamberlain and Hunten (1987), p. 71–73, in spherical geometry).

Conservation of mass

∂ρ
∂t|{z}

density change

¼ � 1
r2

∂
∂r

ðr2ρuÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
radial mass inflow or outflow ðdivergenceÞ

(B5.1)

Conservation of momentum

∂ðρuÞ
∂t|fflffl{zfflffl}

momentum change

¼ �ρu
∂u
∂r|fflfflffl{zfflfflffl}

momentum inflow or outflow

� ∂p
∂r|ffl{zffl}

pressure gradient force

�ρ
GM

r2|fflfflffl{zfflfflffl}
gravitational force

(B5.2)

Conservation of energy

ρcp
∂T
∂t

¼ 1
r2

∂
∂r

r2κ
∂T
∂r

� �
� kTu

m

∂ρ
∂r

� ρcvu
∂T
∂r

þ q (B5.3)

Here, t is time, r is radial distance from the planet’s center, ρ is mass density, u is radial velocity, p is pressure, G is
the universal gravitational constant, M is the planet’s mass, cp and cv are the specific heats at constant pressure
and volume, κ is the thermal conductivity, k is Boltzmann’s constant, and q is the specific heating (less cooling) rate
per unit volume. Note that if there is no radial flow then u(r) = 0 and eq. (B5.2) reduces to the hydrostatic equation,
∂p/∂r = –gρ.

The last of the equations above can be expressed in a number of forms. If one neglects the term in eq. (B5.3)
involving ∂T/∂r, the three equations are often referred to as the Euler equations of fluid dynamics. Techniques for
solving these equations, e.g., Godunov’s method, are described in Toro (1999) and LeVeque (2002). In general,
numerical solution is complex, partly as a consequence of the existence of shock waves in the solutions and partly
because of possible transitions from subsonic to supersonic flow. Simpler numerical techniques, specifically the
Lax–Friedrichs method, have been used to find transonic solutions to these equations (Tian et al., 2005), but artificial
numerical diffusion in such techniques can violate mass and energy conservation and cause order of magnitude
underestimation of the escape rate compared to a more accurate “constrained interpolation profile” (CIP) scheme
(Kuramoto et al., 2013). More elementary methods can be used to find steady-state (time-independent) solutions
(Watson et al., 1981).

Simplification is possible if one ignores both time dependence and the energy equation (B5.3) and assumes
steady-state, isothermal expansion. Under these assumptions, eqns. (B5.1) and (B5.2) can be rewritten as

1
r2

d

dr
r2ρu
� � ¼ 0mass conservation (B5.4)

ρu
du

dr
¼ � dp

dr
� ρ

GM

r2
momentum conservation (B5.5)

Parker (1963) first presented a solution of these coupled equations, as follows. First, we eliminate dp/dr from
equation (B4.5) using the ideal gas

p ¼ ρkT=m (B5.6)
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Differentiation of eq. B5.6 with respect to r gives,

dp

dr
¼ kT

m

dρ
dr

(B5.7)

where m is molecular (or atomic) mass, and we have used an isothermal approximation by setting dT/dr = 0.
Substituting equation (B5.7) back into (B5.5) and dividing by ρ yields

u
du

dr
¼ � kT

m

1
ρ
dρ
dr

� GM

r2
(B5.8)

Now, we use mass conservation equation (B5.4). Integrating with respect to r yields

r2ρu ¼ constant � C (B5.9)

Here the constant C is related to the escape flux. The physical meaning of eq. (B5.9) is seen if we multiply by 4π, i.e.,

4πr2ρu ¼ F, where F is the mass flux [kg s–1] through the surface area of a sphere. Now take logarithms of eq.
(B5.9) (i.e., 2ln r +ln ρ + ln u = ln C) and differentiate with respect to r to get

2
r
þ 1

ρ
dρ
dr

þ 1
u

du

dr
¼ 0 ) 1

ρ
dρ
dr

¼ � 1
u

du

dr
� 2

r
(B5.10)

We will use eq. (B5.10) to eliminate (1/ρ)dρ/dr in equation (B5.8). For convenience, we also define

u20 ¼
kT

m
r0 ¼ GMm

2kT

Here, u0 is the isothermal sound speed, while r0 is related to the Jeans escape parameter (eq. (5.25)), r0 = r(λJ/2).
Dividing equation (B5.8) by kT/m, making the above substitutions, and using eq. B5.10, gives

u

u20

du

dr
¼ � 1

ρ
dρ
dr

� 2r0
r2

¼ 1
u

du

dr
þ 2

r

� �
� 2r0

r2

) 1
u

du

dr
1� u2

u20

� �
¼ 2r0

r2
� 2

r
(B5.11)

This is a differential form of Bernoulli’s equation, named after Daniel Bernoulli (1700–1782). In essence, the
meaning of Bernoulli’s equation is that absent any input or output of energy, when fluid is accelerated, the pressure
drops. We will see how this applies to hydrodynamic escape shortly.

Bernoulli’s equation has a wide range of mathematical solutions, some physical and some unphysical (see
Fig. 5.11). As discussed further in the main text, the particular solution that is of physical interest to the
hydrodynamic escape problem is the transonic solution that starts at low velocities near the planet and accelerates
to high velocities at great distance. The distance, r = r0, at which the flow goes supersonic, u = u0, is termed the
critical point. To avoid confusion with the critical level or exobase for Jeans’ escape, we prefer to call it the sonic
level. Note that both sides of equation (B5.11) vanish at the sonic level. This is what leads to the mathematical
complexity of Bernoulli’s equation.

Bernoulli’s equation also has an integral form. Equation (B5.11) can be integrated term by term. We do this taking
the limits from r to r0 and u to u0, which gives us the transonic solution:

1
u

du

dr
� 1

u20
u
du

dr
¼ � 2r0

r2
� 2

r
)

ðu
u0

1
u
du� 1

u20

ðu
u0

udu ¼
ðr
r0

2r0
r2

dr �
ðr
r0

2
r
dr

) ln
u

u0

� �
� 1
2

u2

u02
� 1

� �
¼ �2

r0
r
� 1

h i
� 2ln

r

r0

� �
) ln

u

u0

� �
� 1
2

u

u0

� �2

¼ � 2r0
r

� 2ln
r

r0
þ 3
2

(B5.12)

Consider the solution at large distances from the planet. Recall that the concept of hydrodynamic escape was
motivated by the fact that the mass of a static atmosphere is infinite if the barometric law remains valid (Sec. 5.8). For
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transonic, and a termination shock will be created near the
boundary with the interstellar medium where the solar
wind slows down. The heliosphere is the region around
the Sun dominated by the solar wind and its edge with the
interstellar medium is the heliopause, which is somewhat
more distant than the termination shock. Voyager 1
(launched in 1977) reached the heliopause at 122 AU
distance in 2012, by measuring a sudden decrease in
heliospheric ions by a factor >103 and increase in the
intensity of galactic cosmic ray nuclei (Krimigis et al.,
2013; Stone et al., 2013). Theoretically, higher back-
ground pressures could lead to subsonic outflow, or even
to inflow if the background pressure were high enough.

For planetary winds, the background pressure would
only be important for extremely strong stellar winds. As
mentioned in Sec. 5.3, the ram pressure of the current
solar wind on Earth is small. A planet has its host star and
the impinging stellar wind on one side as compared to
nearly empty interplanetary space on the other. Possibly,
hydrodynamic flow far from a planet might be bent
around in the anti-stellar direction by strong stellar wind
pressure. Meanwhile, escape from the opposite side of the
planet, like a comet’s tail, would still be possible.

To assess whether an assumption of spherically sym-
metric hydrodynamic flow is reasonable, we can compare
the planetary wind pressure at the sonic level with the
stellar wind pressure. The planetary wind pressure is the

static pressure plus the dynamic pressure, pþ ρu2, where
p is static pressure, ρ is density, and u is the flow speed.
Calculations show that generally the planetary wind pres-
sure exceeds the present solar wind pressure by orders of
magnitude (Fig. 5.12), although we must bear in mind
that stronger winds are possible from young stars.

Another complication is that planetary winds are
expected to be largely neutral, and hence become colli-
sionless at some great height. But if the exobase is beyond
the sonic level, then the flow should become transonic
and fluid equations are a good approximation. It can be
demonstrated mathematically that the flow at the sonic
level is independent of anything that occurs beyond that
distance, so that the sonic level is a boundary condition.

If the exobase is below the sonic level, then the
pressure force will be weak, the flow will remain sub-
sonic, and flow velocity should eventually decrease at
very high altitudes. We can quantity the speed as the
Mach number M, the ratio of the flow speed, u, to the
speed of sound. As shown by Walker (1977 p. 149), a
subsonic flow with M << 1 causes expansion of an
atmosphere and an outward velocity, but the inertial term,
ρu du=drð Þ, in the equation of motion (eq. (B5.5)) is
negligible. Consequently, the density profile is unaffected
by the expansion and has an exponential, barometric
form, as one can deduce from eq. (B5.5) with a negligible
inertial term. Such flow should not be treated with purely

the case of transonic escape, though, the solution at large distances is quite different. As r! ∞, the two largest terms
in equation (B5.12) give

1
2

u

u0

� �2

� 2 ln
r

r0

or

u � 2u0 ln
r

r0

� �1
2

(B5.14)

Inserting this back into equation (B5.9) shows that the mass density decreases at large distances as

ρ � C

r2u
/ 1

r2 ln r
(B5.15)

The total atmospheric mass Matm is given by

Matm ¼ 4π
ð∞
r0

ρr2dr (B5.16)

Thus,Matm is bounded because, in the integral, ρ decreases faster than 1/r2 for this transonic solution, i.e., as 1/(r2 ln r)
according to eq. (B5.15). Thus, the transonic hydrodynamic escape solution is the one of physical interest for a planet
like Earth that is embedded in a tenuous interplanetary medium.
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hydrodynamic fluid equations but kinetic models, as dis-
cussed above. Such models show that a subsonic regime
in a single-component fluid produces an escape rate that is
enhanced up to a factor of ~1.3–2 compared to the Jeans’
escape rate (Merryfield and Shizgal, 1994; Volkov et al.,
2011a), which can reasonably be called Jeans-like
because of the small factor (Johnson et al., 2013d).

The question of subsonic flow arose in the context of
old suggestions that escape of N2 might be hydrodynamic
on Pluto (Hunten and Watson, 1982; McNutt, 1989;
Trafton, 1980; Trafton et al., 1997), and rather than
transonic, that escape was in a so-called “slow hydro-
dynamic escape” regime where fluid equations might be
appropriate (Krasnopolsky, 1999; Strobel, 2008a; Tian
and Toon, 2005). Pluto is a low-gravity body so that even
for N2 at once presumed temperatures ~80–90 K, the
Jeans parameter (eq. (5.25)) at the exobase is fairly small,

ranging ~4 to 6 depending on model type and solar UV
variability (Erwin et al., 2013).

If a sonic level does not lie in the collisional regime,
we would not expect fluid equations to be accurate and,
indeed, purely fluid equations applied to Pluto produce
erroneous profiles compared to DSMC calculations
(Erwin et al., 2013; Johnson et al., 2013d). While the
purely fluid assumption underestimates the escape rate
only slightly, it produces a very inaccurate temperature–
density structure compared to more complete calculations
(Fig. 5.13), which is important because temperature and
density profiles are observable with remote sensing,
whereas escape fluxes have to be inferred. In particular,
the exobase in the purely fluid model is calculated to be at
a much lower altitude and far colder than in more realistic
models. When Jeans escape is evaluated at such an exo-
base of such a model, it leads to the erroneous conclusion
that the escape rate greatly exceeds Jeans’ escape. In fact,
Pluto’s escape is in a Jeans regime from a ~70 K exobase
due to cooling from HCN and C2H2; and escape rates
are only ~1023N2 molecules s�1 (Gladstone et al., 2016).
Thus, Fig. 5.13 is merely illustrative.

Subsonic hydrodynamic escape models have also
been discussed for Titan (Strobel, 2008b) but, again,
given that no sonic level lies below Titan’s exobase, such
an approach is physically problematic, as demonstrated
by comparison to more sophisticated kinetic models (Bell
et al., 2014; Cui et al., 2008) and DSMC models (Tucker
and Johnson, 2009), including three-component ones
(Tucker et al., 2013). DSMC models show that hydrogen
escapes from Titan at about the diffusion-limited rate, as
mentioned previously (Sec. 5.9.2), while methane escapes
at a negligible Jeans rate. Consequently, Titan’s escape of
hydrogen is ultimately limited by condensation of
methane at the tropopause cold-trap.

5.10.2 Energy-Limited Escape
Particles in the solar wind obtain the energy needed to
escape from heating in the solar corona at the base of the
flow. That energy is transported outwards by thermal con-
duction, which is efficient in a fully ionized wind. This
process does not work for planetary winds, because thermal
conduction is inefficient for neutral particles. Instead, plan-
etary winds are powered by absorption of extreme ultravio-
let (EUV) radiation from a host star. EUV nominally spans
wavelengths from 10 nm to 100 nm although the lower
bound is indistinct and extends into soft x-rays. All EUV
wavelengths below 91.2 nm can be directly absorbed by
atomic hydrogen because this Lyman limit wavelength is
where a photon has enough energy to ionize the H atom,

Figure 5.12 Transonic hydrodynamic escape model results from
Sekiya, M. et al. (1980a, b) for a primordial H2-rich atmosphere
showing the pressure (p þ ρu2) of the planetary wind as a function
of distance. The four cases A–D have a net absorbed solar EUV flux
of 1, 0.1, 0.01, and 0.001 Wm–2, respectively. This flux is absorbed
in the outer atmosphere through ionization of H2 where it heats
the gas and drives hydrodynamic escape. The photosphere is a
much lower altitude level where solar visible light is assumed to be
absorbed and mostly reemitted in thermal infrared, so that it is not
available to drive escape. Expansion of the atmosphere with increas-
ing flow velocity typically causes a minimum temperature point,
marked by triangle (▲). The sonic level (●) typically has a higher
pressure than today’s solar wind pressure, which is marked with a
dashed horizontal line. (From Sekiya, M. et al. (1980). Reproduced
with permission. Copyright 1980, The Physical Society of Japan.)
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temporarily creating a free proton and free electron. Indeed,
most elements strongly absorb EUV because the outer
electron binding energy (or, equivalently, the ionization
potential) is typically smaller than EUV photon energy.

The maximum rate at which a gas can escape from an
atmosphere in the Solar System can be calculated by
equating the globally averaged flux of incoming solar
EUV radiation SEUV, with the energy carried out by the
escaping particles. Assume for now that the escaping gas
is atomic hydrogen. Each hydrogen atom has gravita-
tional energy GMm/r, where G is the universal gravita-
tional constant, m is the hydrogen atom mass, and r is the
radius of the relevant escape level. Consequently, the
energy-limited flux of hydrogen, Φel, can be approxi-
mated by the following expression (Watson et al., 1981)

Φel ¼ SEUV
GMm=rð Þ (5.64)

To evaluate expression (5.64), we need an estimate for
the solar EUV flux in the past. Despite being fainter in

the visible (see Sec. 11.1), data from other stars suggest
that the young Sun was significantly brighter at UV and
EUV wavelengths (Claire et al., 2012; Ribas et al.,
2005; Zahnle and Walker, 1982). The reason is that the
Sun, like other stars, should have rotated more rapidly in
its youth, before being slowed by torques exerted by its
magnetic field as it interacted with the escaping solar
wind. Faster rotation increases the strength of the solar
magnetic dynamo. This increase causes increased flare
activity and heats up the layers of the Sun’s atmosphere,
the chromosphere and corona. The Sun’s photosphere is
where most light comes from, but short-wavelength
radiation is emitted from the hot chromosphere and
corona.

Ribas et al. (2005) report short wavelength fluxes
from 0.1 nm to 118 nm for the Sun and other young,
solar-type stars based on data from the Far UV
Spectroscopic Explorer (FUSE) satellite. Modifying
their eq. (1) to include only wavelengths below 92 nm
gives

Figure 5.13 Comparison of simulations of atmospheric escape from Pluto with models using a single
component, N2, for solar-medium conditions at 32 AU. Curves on the left map to the upper axis of
number density. Curves on the right map to the left vertical axis, which shows radial distance in number
of Pluto radii. The radius of Pluto is 1153 km. Solid lines show a fluid-“direct simulation Monte Carlo”
model, where fluid and DSMCmethods are coupled at radius rt, at a Knudsen number of 0.1. This model
has an escape rate of 2.6�1027 N2 molecules s–1. Dashed lines show a hydrodynamic escape model,
where fluid equations have been applied despite a sonic level above the exobase (Strobel, 2008a). This
model has an escape rate of 2.5�1027 N2 molecules s–1 but produces inaccurate number density and
temperature profiles. Dotted lines show a model with an upper boundary of classical Jeans escape,
which has an escape rate of 2.6�1027 N2 molecules s–1. (Modified with permission from Johnson et al.
(2013d).)

S < 92 nmð Þ ¼ 23:3τage
�1:23 erg cm�2s�1 ¼ 23:3� 10�3τage

�1:23 W m�2 (5.65)

156
Escape of Atmospheres to Space

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781139020558.006
Downloaded from https://www.cambridge.org/core. University of Chicago, on 19 Apr 2018 at 03:28:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139020558.006
https://www.cambridge.org/core


This yields S = 3.6 erg cm–2 s–1 (=3.6 mW m–2) at a
current solar age, τage, of 4.56 billion years. Estimating
the EUV flux that is available to drive escape requires
division of this number by 4 to account for the ratio of
the planet’s surface area to its cross section. The flux
should also be scaled upward to account for the
larger effective cross-section of the atmosphere com-
pared with the planet and downward to account for
inefficiency of EUV heating. Not all EUV can drive
escape because some absorbed energy is lost by radi-
ation to space. Following Watson et al. (1981), we’ll
assume a heating efficiency of 0.15 and a geometric
enhancement factor of 2; thus, SEUV= (3.6 � 0.15 � 2)/
4 = 0.3 erg cm–2 s–1.

Now, let’s use these numbers to calculate the energy-
limited escape rate of hydrogen from the modern Earth.
Plugging in values, and setting r equal to the radius of the
Earth, yields Φel ffi 3� 1011 H atoms cm�2s�1. This is a
very large number, nearly 1000 times greater than the
diffusion-limited escape rate for hydrogen calculated in
Sec. 5.8.4 (3.5�108 cm–2 s–1). It says nothing about how
fast hydrogen escapes today, as the modern Earth, with its
hydrogen-poor atmosphere, is not in the energy-limited
escape regime. It shows instead that hydrogen escape
could conceivably have been a very important process
early in Earth’s history if the atmosphere was more hydro-
gen-rich.

For illustrative purposes, let’s calculate the amount
of time that it would take for the hydrogen in Earth’s
oceans to escape at this rate. The oceans would be ~3 km
deep if they were spread evenly over the globe, which is
equivalent to a column mass of 3�105 g cm–2. Only 2/18
of this is hydrogen, so the hydrogen column mass is
3.3�104 g cm–2, and its column density is ~2�1028 H
atoms cm–2. The lifetime of this hydrogen is thus 2�1028

H atoms cm–2/3�1011 H atoms cm–2 s–1 � 6.7�1016 s or
~2 billion years. Equivalently, over two oceans’ worth of
hydrogen could have been lost over the Earth’s history if
hydrogen escaped at the energy-limited rate. Indeed, the
actual number is more than five times higher than this
if one accounts for the high early EUV flux predicted by
eq. (5.65) by integrating that equation. Clearly, hydrogen
escape has the potential to alter the water inventory of
the Earth or other Earth-like planets, given the right
conditions.

One caveat is that escape of hot hydrogen can reach a
limit less than the energy limit called radiation-recombin-
ation-limited escape. With a high EUV flux, a hydrogen-
rich upper atmosphere, e.g., on a hot Jupiter, can thermo-
stat to a temperature ~104 K because the energy input is
balanced by radiative recombination and Lyman-α

cooling rather than adiabatic cooling of the expanding
gas through “pdV ” work (Murray-Clay et al., 2009).
Consequently, a radiation-recombination-limited escape
rate is less than the energy-limited escape limit, and is
found to vary as

ffiffiffiffiffiffiffiffiffiffi
SEUV

p
rather than linearly as in

eq. (5.64) (Murray-Clay et al., 2009; Owen and Jackson,
2012).

5.10.3 Density-Limited Hydrodynamic Escape
The energy-limited escape flux predicted by eq. (5.64) is
also not likely to be achieved when availability of hydro-
gen is limiting, particularly in a multi-component atmos-
phere on a rocky world. If more hydrogen is available at
the base of the expansion, then a greater percentage of the
absorbed EUV energy can be utilized to drive escape.
When hydrogen is scarce, much of this EUV energy is
either absorbed and radiated to space or conducted down-
wards through the expanding thermosphere. Higher
hydrogen densities also increase the spatial extent of the
atmosphere, thereby increasing the total absorbed energy
that powers escape.

The importance of hydrogen density is illustrated by
the calculations of Watson et al. (1981), shown in
Fig. 5.14. Transonic solutions to the hydrodynamic
escape equations are labeled A to E in Fig. 5.14 and
correspond to a progressive increase of the number
density at the lower boundary. The solutions were found
using the shooting method, whereby one integrates both
outward and inward from the sonic level, attempting
to match the boundary conditions on each side.
Figure 5.14(b) shows how the number density increases
from case A to case E. Case E has an enormous number
density at the bottom of the model, 120 km, and is not
physically plausible. The case E escape flux equals, or
even slightly exceeds, the energy-limited flux because
energy limit is not absolute given that the effective
cross-section of the atmosphere increases with increasing
number density. The large escape flux in case E causes
strong adiabatic cooling within the flow, resulting in a
deep temperature minimum near 2000 km altitude
(Fig. 5.14(a)). This also is physically unreasonable, but
it demonstrates that this solution is indeed near the
energy-limited escape rate. The low-hydrogen cases,
A and B, are more physically realistic and have escape
rates that are 20%–50% of the energy-limited escape rate.

A similar dependence of the escape rate on hydrogen
density has been demonstrated for the process of water
loss from Venus during a runaway greenhouse (Kasting
and Pollack, 1983). Their calculations are like those
shown by the transonic curve IV in Fig. 5.11. In Kasting
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and Pollack, the factor that was varied was the
H2O mixing ratio at the lower boundary. Chemistry
included within the model converted this to atomic

H within the expanding upper atmosphere. The solutions
generated in this model were subsonic, but the authors
argued that the escape rates were close to the transonic
escape rate because the peak Mach number in the flow
(the velocity divided by the sound velocity) exceeded
~0.7.

5.10.4 Maximum Molecular Mass Carried Away
in Hydrodynamic Escape

Jeans’ escape is an exponential function of molecular
mass (Sec. 5.6), and consequently is important only for
hydrogen on Earth, but this is not necessarily true in
hydrodynamic escape because heavier species can be
dragged along.

Consider an atmosphere composed largely of H2 that
flows out into space. (This may be more realistic for the
early Earth than the pure atomic H atmosphere modeled
by Watson et al. (1981).) The escaping hydrogen will
drag along well-mixed minor gases. If there were no
diffusion, there would be no separation by mass and the
mixing ratios of the minor constituents would remain
constant. Diffusion, however, allows the heavier gases
to flow downwards under the action of gravity and this,
in principle, means that heavier species will be retained
on the planet to a degree depending on their mass.
Whether the discrimination in mass is important or not
depends on the relative magnitudes of the hydrogen out-
flow and the diffusion velocity of the minor constituent
(Hunten, 1979a; Hunten et al., 1987; Sekiya et al.,
1980a, b).

In a full treatment of outflow in a hydrodynamically
escaping atmosphere, an equation of motion is used that
includes acceleration terms (Zahnle and Kasting, 1986).
These terms have an important influence on the escape
flux of the light, major gas constituent. However, their
effect is small for the escape of heavy, minor gases. This
is because diffusion processes occurring between the
homopause and the sonic level where the outflow velocity
is subsonic determine the flux of a heavy gas molecule. At
these relatively low altitudes, the ambient density closely
follows the barometric equation and acceleration terms in
the momentum equation are negligible. Once the fluxes of
heavy constituents are established they must obey the
continuity equation at higher altitudes.

Consider the diffusion of a heavy, minor constituent
relative to the ambient light gas. Our treatment follows
Walker (1982) and Hunten et al. (1987). See also Cham-
berlain and Hunten (1987), Ch. 7. We denote the masses,
fluxes, vertical velocities relative to the planet, and
number densities of the light gas 1 and heavy gas 2 by

Figure 5.14 Temperature (a), number density (b), and upward
velocity (c) versus altitude for a transonically escaping pure atomic
H terrestrial atmosphere. (After Watson et al. (1981).). The sonic
level is shown by the arrow in panel (a) at 2�105 km or ~30 planet
radii. An EUV heating efficiency of 0.15 was assumed in the
calculations. The escape fluxes (H atoms cm–2 s–1) for the five
cases, normalized to the Earth’s surface, are: (A) 5.7�1010, (B)
2.2�1011, (C) 2.9�1011, (D) 3.1�1011, and (E) 3.5�1011. The
escape flux for case E is close to the energy-limited escape flux.
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m1 and m2, F1 and F2, w1 and w2, and n1 and n2, respect-
ively. In an isothermal atmosphere, the relative velocities
are determined by diffusion. Following eq. (5.35) and its
manipulation in Sec. 5.8.1, and neglecting the minor
terms containing thermal diffusivity, the relative veloci-
ties can be written as

w1�w2 ¼ n1w1

n1
�n2w2

n2
¼F1

n1
�F2

n2
¼� b

n2

1
n1

dn1
dr

þm1g

kT

� �
(5.66)

w2�w1 ¼F2

n2
�F1

n1
¼� b

n1

1
n2

dn2
dr

þm2g

kT

� �
(5.67)

In these equations, r indicates the distance from the
center of the planet. Also we have used the relationship
F = nw between vertical flux F, number density n, and
vertical velocity w, and we express the diffusion coeffi-
cient as D = b/n. Each of these equations can be
rearranged to put the number density gradient on the
left-hand side:

dn1
dr

¼ �m1g

kT
n1 þ 1

b
n1F2 � n2F1ð Þ (5.68)

dn2
dr

¼ �m2g

kT
n2 þ 1

b
n2F1 � n1F2ð Þ (5.69)

If we add eqs. (5.68) and (5.69), the last terms on the
right-hand side cancel, and we get

d

dr
n1 þ n2ð Þ ¼ � n1m1 þ n2m2ð Þ g

kT
(5.70)

This equation gives the variation of the total number
density (n = n1 + n2) with altitude, and is a differential
form of the barometric law. We define the mole fraction,
or mixing ratio, of heavy gas 2 as

X2 ¼ n2
n1 þ n2

¼ n2
n

(5.71)

The logarithm of eq. (5.71) is lnX2 ¼ ln n2 � ln n,
which we can differentiate with respect to radial distance
r, to give

1
X2

dX2

dr
¼ 1

n2

dn2
dr

� 1
n

dn

dr
(5.72)

If we now substitute from eq. (5.69) for the first term on
the right-hand side of eq. (5.72) and from eq. (5.70) for
the second term, we get

We note that 1–X2 = X1, or � m2 � X2m2ð Þ = –X1m2,
which we can apply to collected terms in m2g/kT. Thus,
eq. (5.73) rearranges to

1
X2

dX2

dr
¼ 1

b
F1 � X1

X2
F2

� �
� m2 � m1ð ÞX1g

kT
(5.74)

If heavy gas 2 is carried along efficiently by light gas 1, then
we can assume that the mole fraction X2 will be constant
with height, so the left-hand side will be zero, giving

m2 � m1ð Þg ¼ kT

b

F1

X1
� F2

X2

� �
) m2 � m1ð Þg ¼ nkT

b
w1 � w2ð Þ

(5.75)

This equation expresses a balance of forces. A molecule
of gas 2 will be subject to a downward gravitational force
of m2g and an upward buoyancy force of m1g, resulting in
a net downward force of (m2 – m1)g, given by the left-
hand side of eq. (5.75). This net downward force will be
balanced by an upward viscous drag, proportional to the
difference in velocities of the molecules, w1 –w2, given by
the right-hand side of eq. (5.75). This is illustrated in
Fig. 5.15.

Equation (5.75) can be interpreted in terms of fluxes
of the two gases. Consider a mass of gas 2 sufficiently
heavy that it is not dragged along out into space by the
lighter gas 1. Putting F2 = 0 in eq. (5.75), we obtain the
required mass:

mcrossover ¼ m1 þ kTF1

bgX1
(5.76)

This mass is called the crossover mass and is the smallest
mass for which the flux of constituent 2 is zero. It can be
interpreted thus.


 If m2 > mcrossover then the buoyancy force is not
enough to compensate for the gravitational force and
viscous drag acting on molecules of gas 2, and gas 2 will
not be lifted out of the atmosphere. The mole fraction X2

will decrease with altitude with a scale height that is the
diffusive equilibrium value augmented by an amount
depending on the flux of gas 1. Meanwhile, the mole
fraction X1 will approach a value of 1 at high altitude.


 If m2 = mcrossover then the drag force is just sufficient
to balance the net downward force on molecules of gas 2,
but gas 2 will not be lifted out of the atmosphere.

1
X2

dX2

dr
¼ 1

n2
�m2g

kT
n2 þ 1

b
ðn2F1 � n1F2Þ

� �
� 1
n

�ðn1m1 þ n2m2Þ g

kT

	 

¼ �m2g

kT
þ 1
b
ðF1 � X1

X2
F2Þ þ ðX1m1 þ X2m2Þ g

kT

(5.73)
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 If m2 < mcrossover then constituent 2 will be carried
along by the flux of light gas and swept out to space. Mole
fractions X1 and X2 will be independent of altitude.
We can derive an expression for the flux of heavy gas 2.
Rearranging eq. (5.75), we get

F2 ¼ X2

X1
F1 1� m2 � m1ð Þ bgX1

kTF1

� �
(5.77)

If we then note that bgX1/kTF1 = 1/(mcrossover � m1) from
eq. (5.76), we can substitute in eq. (5.77) to give

F2 ¼ X2

X1
F1 1� m2 � m1

mcrossover � m1

� �

¼ X2

X1
F1

mcrossover � m2

mcrossover � m1

� � (5.78)

The important point from eq. (5.78) is that if heavy
constituent 2 is swept out of the atmosphere into space,
then its flux, F2, will vary linearly with its mole frac-
tion X2 and molecular mass m2. Note that the crossover
mass is different for different gases, however, because
the binary diffusion coefficient, b, in eq. (5.76) varies
with species. The linear dependence on molecular
mass contrasts with the exponential dependence on
molecular mass in Jeans’ escape described earlier in
Sec. 5.6.2.

In the concept of crossover mass, there is a maximum
molecular mass than can be carried away. Gases with
masses exceeding mcrossover are not affected. Actually,
numerical results that incorporate nonlinear terms show
a very slow loss of gases with molecular masses
exceeding mcrossover (Zahnle and Kasting, 1986) but
the same results also show that eq. (5.78) is a good
approximation for the escape of a trace constituent pro-
vided that

mcrossover � m2

mcrossover � m1

� �
>

m1

m2
(5.79)

For noble gases escaping in hydrogen, eq. (5.77) is a good
approximation for Ne, Ar, Kr, and Xe, but is not so good
for He.

The crossover mass can be calculated as a function of
the hydrodynamic escape flux. Consider the energy-
limited escape flux that was calculated for atomic hydro-
gen on Earth in Sec. 5.10.2. Let’s divide that flux by 2 to
convert it to an H2 flux, yielding F1 = 1.5�1011 H2

molecule cm–2 s–1. Substituting this value of F1 into the
equation for the crossover mass, eq. (5.76), and dividing
by the mass of an H atom, mH, to convert to atomic mass
units yields

Mcrossover �M1 ¼ kTF1

bgmHX1
(5.80)

Here,Mcrossover is the molecular mass of the heavy species
in a.m.u. andM1 (= 2 a.m.u.) is the molecular mass of H2.
Assume T = 400 K (from Fig. 5.14) and binary diffusion
parameter b = 2�1019 cm–1 s–1 from Table 5.2. Taking
g = 980 cm s–2 and X1 = 1 yields Mcrossover – M1 = 0.25.
In other words, escape of H2 at the energy-limited rate
from the modern Earth would be incapable of dragging
along any heavier gas, including He.

Now consider gases that might have been dragged
away earlier in Earth’s history when the solar EUV flux
was higher. Assume that the escape flux was energy-
limited, i.e., eq. (5.65). H2 escape fluxes and correspond-
ing crossover masses are listed in Table 5.3. Evidently,
gases as heavy as neon (molecular mass 20 or 22), N2 or
CO, might have escaped during the first 100–200 million
years of Earth’s history.

This same analysis, based on eq. (5.80) can be applied
to other planets if one scales the EUV flux by orbital
distance and adjusts for the planet’s gravity. For Mars,
interestingly, these two factors almost cancel: the solar
flux is lower by a factor of 2.3, whereas gravity is lower
by a factor of 2.6. Hence, the predicted crossover masses
for Mars are nearly the same as for Earth.

Figure 5.15 The forces acting on a heavy gas molecule of mass
m2 moving at an upward velocity w2 immersed in a light gas
flowing upwards in the diffusively separated upper atmosphere.
The light gas has molecules of mass m1 that move at an upward
velocity of w1. Absolute temperature is T and b = Dn where D is the
diffusion coefficient and n is total number density. If the initial total
upward force on molecule 2 is greater than the downward force of
its weight minus buoyancy, molecule 2 will be accelerated until the
upward and downward forces come into balance.
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5.11 Mass Fractionation by
Hydrodynamic Escape

5.11.1 Fractionation Theory
We now consider how the quantity of heavy gases will be
fractionated by mass when hydrodynamic escape is inte-
grated over time because then we can see if predictions
are consistent with data, such as those of noble gas
isotopes. In the previous section, we saw how the flux
of a heavy constituent varies linearly with its mass in eq.
(5.78). Let us assume that the inventory of light gas is
denoted by N1 and that the inventory of heavy gas is
denoted by N2. If we substitute N2/N1 for X2/X1 in eq.
(5.78), we get

F1

F2
¼ mcrossover � m1

mcrossover � m2

� �
N1

N2
(5.81)

Because escape fluxes are proportional to their reservoirs,
the evolution of the reservoirs can be treated as a Rayleigh
fractionation process, which can be thought of as analo-
gous to a distillation process where the heavy isotope
concentration depends increasingly on the depletion of
the light component.

The fundamental equation for Rayleigh fractionation
is as follows, where dN is an infinitesimal number of
particles removed per unit time,

dN1

dN2
¼ fractionation factorð Þ � N1

N2
¼ 1þ yð ÞN1

N2
(5.82)

Here, we write the fractionation factor as 1+ y, which is
usually slightly larger than unity, so that y is a very small
value. Defining the fractionation factor this way gives
the degree to which one gas escapes relative to another.
Other symbols are sometimes employed for this “1+ y”
factor in the literature, such as R (Yung et al., 1988) or x
(Zahnle and Kasting, 1986). The present notation is

convenient for dealing with cases where the mass differ-
ence between species 1 and species 2 is small compared
to their total mass, as is the case for most noble gas
isotopes. Bearing in mind that fluxes are F1 = dN1/dt and
F2 = dN2/dt, comparison of eq. (5.82) with eq. (5.81)
shows that

1þ yð Þ ¼ mcrossover � m1

mcrossover � m2

� �
(5.83)

We proceed from the basic Rayleigh fractionation equa-
tion, eq. (5.82), by integrating. We assume initial inven-
tories indicated by a superscript of 0, as follows:

ðN1

N0
1

dN1

N1
¼ ð1þ yÞ

ðN2

N0
2

dN2

N2
) ln

N1

N0
1

� �
¼ ln

N2

N0
2

� �ð1þyÞ

) N2

N0
2

� �
¼ N1

N0
1

	 
1=ð1þyÞ
) N2

N0
2

� �
¼ N1

N0
1

	 
ðmcrossover�m2 Þ
ðmcrossover�m1 Þ

(5.84)

Figure 5.16 shows a plot of eq. (5.84) for an example
crossover mass, of 100 a.m.u. The graph shows how the
depletion of the heavier gas (N=N0) increases with the
depletion of the lighter gas, where the lines of increasing
slope indicate the latter. The depletion of the heavy gas
also depends on its particular mass, m2, shown on the
horizontal axis. However, eq. (5.84) is a simplification
because we are assuming that y, and by implication the
crossover mass, is constant in time. In reality, as the solar
EUV flux decreases over time, the crossover mass
decreases and also the hydrogen escape flux (Table 5.3).
This would cause the slope of lines in Fig. 5.16 to
decrease with time because heavier gases would cease to
evolve while lighter gases would continue to change. This
would cause curved lines in Fig. 5.16, concave
downwards.

Table 5.3 Energy-limited escape fluxes of H2 and the corresponding maximum mass of a molecule (the crossover mass) that can escape
by being dragged along by the hydrogen to space at different times in Earth’s history.

Time after Earth’s formation
(billions of years)

EUV enhancement
compared to today

Energy-limited escape
rate of H2 (cm

–2 s–1)
Crossover mass,
Mcrossover (a.m.u.)

0.1 110 1.7�1013 30
0.2 47 7.0�1012 14
0.5 15 2.3�1012 5.8
1.0 6.5 9.8�1011 3.6
2.0 2.8 4.2�1011 2.7
4.56 1 1.5�1011 2.25
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5.11.2 Applications of Mass Fractionation in
Hydrodynamic Escape: Noble Gas
Isotopes

In Ch. 6, we discuss how elemental and isotopic abun-
dances of gases provide constraints on the origin and
evolution of the atmospheres of the rocky planets. In
particular, the noble gases provide good tracers of
atmospheric evolution for three reasons. First, noble
gases tend to reside in the atmosphere because of their
(near) chemical inertness. Second, the fractionation of
different isotopes of non-radiogenic noble gases tells us
about atmospheric evolution because lighter isotopes
are lost preferentially to a degree that depends on
ancient atmospheric conditions. Third, radiogenic noble
gases – those derived from radioactive decay of other
elements – act as chronometers of planetary evolution.
Of course, all of these inferential principles are
tempered by the fact that the patterns of abundance
and fractionation in noble gases are complex and pres-
ently not fully understood.

Nonetheless, hydrodynamic escape could account for
the isotopic fractionation of some of the noble gases
found in planetary atmospheres. On the Earth, hydro-
dynamic escape could explain the isotopic differences
between the 20Ne/22Ne ratio of ~9.8 in the atmosphere
versus that in the Earth’s upper mantle, ~10–13 (Pepin,
1991; Sasaki and Nakazawa, 1988; Zahnle et al., 1990).
Hydrodynamic escape allows the lighter neon isotope to

escape preferentially. Hydrodynamic escape has also been
invoked to explain the Martian 36Ar/38Ar ratio (Bogard,
1997), which is isotopically heavy (4.2	0.1 (Atreya
et al., 2013)) compared with a terrestrial ratio of 5.32
and the average carbonaceous chondrite value of ~5.3
(Pepin, 1989). The fractionation of xenon on Earth (Hun-
ten et al., 1987; Pepin, 1991, 2000; Pepin and Porcelli,
2006; Sasaki and Nakazawa, 1988) and Mars (Pepin,
1991) has also been attributed to hydrodynamic escape.
These applications of hydrodynamic escape are
discussed below.

Terrestrial neon. The Earth’s mantle is enriched in
light neon isotopes relative to the atmosphere, and escape
could have made the atmosphere isotopically heavy. Both
20Ne/22Ne and 21Ne/22Ne ratios are higher in the mantle.
20Ne/22Ne in mid-ocean ridge basalts ranges from near the
atmospheric value (9.8) up to 13, while 21Ne/22Ne ranges
from near air (0.029) to 0.07 (Farley and Neroda, 1998).
The 20Ne/22Ne ratio of the material from which Earth
accreted was probably ~12.5–13.6 (Farley and Poreda,
1993).

Why is atmospheric 20Ne/22Ne smaller than in the
mantle? Either the atmosphere was partially derived
from an external isotopically light neon source during
late bombardment or the atmosphere has been modified
by escape. In the latter case, models show that hydro-
dynamic escape can drag off 20Ne in preference to 22Ne,
and reduce the solar 20Ne/22Ne ratio to the observed
atmospheric value (Hunten et al., 1987; Zahnle et al.,
1990). A hydrogen-rich upper atmosphere is required for
this to have occurred. Also the escape must have
happened early in Earth's history when the solar EUV
flux was much higher than it is today (Claire et al., 2012;
Ribas et al., 2005; Walter and Barry, 1991; Zahnle and
Walker, 1982). Both conditions would have been met in
an impact-produced steam atmosphere that occurred
continuously during the main accretion period, and inter-
mittently thereafter (Matsui and Abe, 1986a, b; Zahnle
et al., 1988).

Zahnle et al. (1990) showed that fractionation of neon
would have occurred in a steam atmosphere as a bypro-
duct of hydrodynamic hydrogen escape regulated at the
diffusion-limit through an atmosphere of a major back-
ground constituent, such as CO2, N2, or CO. Unlike the
20Ne/22Ne ratio, there is no clear distinction between
mantle and atmospheric 36Ar/38Ar, which suggests that
Earth’s argon was unaffected by the hydrodynamic
escape. The reason neon can escape while argon cannot
is that neon is less massive than the likely background
gases in the atmosphere (CO2, N2, or CO). Figure 5.17
shows that it would have taken only ~10 m.y. to produce

Figure 5.16 The evolution of the inventory of heavy gas 2 relative
to its initial inventory as a function of molecular mass, m2. For this
graph, a constant crossover mass of 100 is assumed and a con-
stant hydrogen escape flux. The numbers on the diagonal lines
indicate indicate values of N1

0=N1, which shows the depletion of
the lighter gas inventory. Thus the lines at the bottom of the plot
correspond to later times in an evolutionary history. (Adapted from
Hunten et al. (1987).)

162
Escape of Atmospheres to Space

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781139020558.006
Downloaded from https://www.cambridge.org/core. University of Chicago, on 19 Apr 2018 at 03:28:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781139020558.006
https://www.cambridge.org/core


the observed neon fractionation with a 30 bar steam
atmosphere and 10 bars of CO. Atmospheres with less
CO take shorter times, while thicker atmospheres take
longer.

Martian argon. From analysis of trapped pockets of
Martian air in the impact glass of the EET79001, Wiens
et al. (1986) deduced a 36Ar/38Ar value of 4.1	0.2 within
the uncertainty of 3.6 	 0.44 obtained by Swindle et al.
(1986). The ratio in the Martian atmosphere has been
measured by the Curiosity Rover as 4.2	0.1 (Atreya
et al., 2013). This ratio is considerably less than
5.305	0.008 in the Earth’s atmosphere (Lee et al.,
2006) or 5.50	0.01 in the solar wind derived from
samples collected by the Genesis mission (Pepin et al.,
2012; Vogel et al., 2011). Thus, light argon isotopes have
been preferentially lost from Martian air relative to
heavy argon.

Atreya et al. (2013) argue that solar wind sputtering
since the end of heavy bombardment accounts for the
36Ar/38Ar ratio, but in our opinion it is possible that
ancient hydrodynamic escape was the main fractionation

mechanism. In sputtering, the solar wind picks up and
accelerates ions, and a fraction of the energetic ions or
neutrals impacts the exobase, causing Ar escape (Hutch-
ins and Jakosky, 1996; Hutchins et al., 1997; Jakosky
et al., 1994; Jakosky and Phillips, 2001). Sputtering is
fractionating because argon isotopes are diffusively sep-
arated above the homopause. Models estimate that 75%–

99% of 36Ar is lost (Hutchins et al., 1997). But if this
much Ar is lost, then it needs to be replenished from
volcanism to be consistent with the Ar/Kr ratio on Mars
because Kr is not subject to sputtering. Moreover, neon,
which is even more prone to sputtering than Ar, needs
even more replenishment. However, the estimated vol-
canic outgassing on Mars is too small by one or two
orders of magnitude to do the job (Hutchins and Jakosky,
1996).

Early hydrodynamic escape provides an alternative
for the fractionation of Martian argon (Pepin, 1991;
Zahnle, 1993a; Zahnle et al., 1990). Of course, if argon
escapes and fractionates, neon must also. Martian atmos-
pheric 20Ne/22Ne appears to be ~10, somewhat similar to
the terrestrial atmospheric ratio, though some data are
consistent with lower values for Mars (Bogard et al.,
2001; Bogard and Garrison, 1998). If the original Martian
ratios of 36Ar/38Ar and 20Ne/22Ne were 5.35 and 13.7,
respectively, then diffusion-limited hydrodynamic escape
results in a 20Ne/22Ne ratio no greater than 9.5 	 1.3,
consistent with observation (Fig. 5.18). The presence of
abundant CO2 or a hydrogen escape flux sufficient to drag
away neon but not argon would result in a yet lower
20Ne/22Ne ratio.

Terrestrial xenon. Interpretation of xenon is compli-
cated because xenon has nine stable isotopes, several of
which have been affected by the decay of extinct radio-
nuclides. Also, xenon, with atomic weight 131.3, should
be less depleted and less fractionated than krypton with
atomic weight 83.8. But the opposite is observed. Kryp-
ton is depleted in the terrestrial atmosphere by a factor of
3.3�104 relative to solar composition while xenon is
depleted by a factor of 4.8 �104. Nonradiogenic xenon
isotopes are also much more strongly fractionated com-
pared to krypton isotopes. The unexpected paucity of
xenon is known as the missing xenon paradox (Ojima
and Podosek, 2002; Pepin, 1991; Tolstikhin and O'Nions,
1994).

Vigorous hydrodynamic escape could produce the
observed fractionation pattern in xenon (Hunten et al.,
1987; Pepin, 1991, 2006; Sasaki and Nakazawa, 1988)
but additional circumstances must have led to no corres-
pondingly large fractionation in krypton isotopes, which
are less massive. There are three possible solutions. First,

Figure 5.17 Neon isotope fractionation produced by hydro-
dynamic escape of hydrogen in various steam atmospheres during
accretion of the Earth. Three cases are shown. The calculated
timescale for neon fractionation is consistent with the expected
lifetime of impact-induced steam atmospheres on early Earth.
(From Fig. 15 of Zahnle et al. (1990).)
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Pepin (1991) suggested that xenon fractionation is a sig-
nificant remnant of an early escaped atmosphere, whereas
neon, argon and krypton were later outgassed from the
mantle while xenon was not because it was incorporated
into the core. Pepin (1991) assumed that xenon behaves
as a siderophile at high pressure to justify why it partitions
into the core. Second, xenon’s low solubility in silicate
melts could be used to argue that it was the most strongly
partitioned into the earliest atmosphere. Third, xenon may
have escaped as an ion during hydrodynamic escape of
hydrogen ions along the open magnetic field lines at high
latitudes (Zahnle, 2000). Ions interact strongly with each
other and consequently cross-sections for ion–ion inter-
actions are large. In contrast to xenon, krypton is
extremely difficult to ionize and would not be subject to
such ionic escape.

A very intriguing report is that the pattern of xenon’s
nine stable isotopes was lighter in the Archean than
today, based on analysis of fluid inclusions in Archean
barites and quartz (Hebrard and Marty, 2014; Pujol
et al., 2011). This relationship would require xenon to
escape to space during the Archean and mass fractionate,
long after the early period of very high solar EUV. If
xenon escaped as an ion, a plausible explanation is that it
was dragged by rapid hydrogen escape in a polar wind
(Sec. 5.7). Such hydrogen escape would be expected
from an anoxic Archean atmosphere relatively rich in
H2 and CH4 (e.g., Catling et al., 2001). However,
whether the xenon data provide evidence for such theor-
ies is uncertain because the ancient xenon might be a

mixture of modern air with an unfractionated mantle
component (Pepin, 2013).

Martian xenon. Like Earth, Mars also has missing
xenon, except more severely. The nonradiogenic isotopes
are ~80 times less abundant and have a fractionation
pattern generally similar to the Earth’s. On the other hand,
the 129Xe derived from the decay of 129I (half-life 17 m.y.)
is about one third that of Earth. The high ratio of
radiogenic to nonradiogenic xenon implies that escape
took place very early before 129I had undergone several
half lives. Fractionation of the nonradiogenic isotopes on
Mars can also plausibly be explained by mass fraction-
ation during hydrodynamic escape of hydrogen (Pepin,
1991). However, explaining why krypton is not also
strongly fractionated must be considered, as for the Earth.
The same kind of explanations for the Earth can be prof-
fered for Mars.

We have not discussed Venus above because Venus is
anomalous in its noble gas abundances. On a gram per
gram of planet basis, Venus is remarkably well endowed
with nonradiogenic argon (36,38Ar) and neon. It has ~60
times more 36Ar than Earth, for example. It is plausible
that Venus stochastically accreted a large (>600 km)
comet from the outer Solar System, where temperatures
would have been cold enough for argon to condense
(Owen and Bar-Nun, 1995). The chance of such a single
event happening is about 25% (Zahnle, 1998). This prob-
ability is large enough for plausibility and on the other
hand small enough that Earth need not have suffered a
similar fate.

Figure 5.18 The 20Ne/22Ne ratio pro-
duced in fractionating argon by hydro-
dynamic escape from Mars, assuming
an initial 20Ne/22Ne of 13.7. (From Fig. 7
of Zahnle (1993).)
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5.12 Impact Erosion of Planetary
Atmospheres

A large impact on a planet is very unlike an impact in
everyday experience, such as throwing a stone into mud,
because extraterrestrial impactors possess enormous kin-
etic energy and they vaporize in a process akin to a
thermonuclear explosion. Consequently, a sufficiently
large and energetic impactor can heat atmospheric gases
to escape velocity while very high-speed ejecta can accel-
erate atmospheric gases to escape speed.

Early in a planet’s history, there are many large
impacts, as witnessed by the craters on Mars, the Moon,
Mercury, and other bodies, so impact erosion could have
been an important process for early loss of atmospheres
on vulnerable bodies. Whether a body is subject to atmos-
pheric impact erosion depends primarily on an object’s
escape velocity and whether it experiences a high impact
velocity regime by virtue of its orbital position in a
planetary system.

The velocity of an impactor depends on the escape
velocity, ve, which sets a minimum impact velocity by
energy conservation for an object falling in from infinity,
and a median encounter velocity, venc, which depends on
the type and origin of the impactor:

v2impact ¼ v2e þ v2enc (5.85)

As a rough guideline, if the Keplerian orbital velocity of a
planet around the Sun is vorb, asteroids and Kuiper Belt
comets tend to hit planets with moderate median encoun-
ter velocity, venc � 0.5vorb, because these intruders are
prograde and in the ecliptic plane (Bottke et al., 1995;
Zahnle et al., 1992). In contrast, Oort Cloud comets have
typical venc � 1.7vorb. Thus, in general, planets close to

their host stars that move at higher orbital velocities
compared to those farther away tend to suffer energetic
impacts (Lissauer, 2007). Of course, such planets also
receive higher stellar irradiation and are more prone to
thermal escape too, so their atmospheres are doubly vul-
nerable to escape.

Four concepts have been used to estimate the atmos-
pheric erosion effect of impact. Walker (1986) suggested
that an atmosphere between an impactor and its target is
heated by multiple shocks with the net effect that an
atmospheric cross-section comparable to the impactor is
lost: a fraction ~rimp

2 /Rp
2, where rimp is the radius of the

impactor and Rp is the planet’s radius (Fig. 5.19(a)). This
is a so-called cookie-cutter approximation to impact ero-
sion. Second, others have suggested that impacts behave
like massless point explosions (Ahrens, 1993). The shock
wave from the explosion accelerates through the escape
velocity as it propagates up into exponentially thinner gas
(Fig. 5.19(b)). The fraction of atmosphere to escape in
this approximation scales as ~10Ha

2=R2
p, where Ha is the

atmospheric scale height.
A third and popular model for estimating cumulative

impact erosion is that of Melosh and Vickery (1989) who
deduced that escape driven by high-speed impact ejecta
makes erosion more efficient and that a sufficiently large
and energetic impact can erode all of the atmosphere
above a plane tangent to the planet (Fig. 5.19(c)). This
model is called the tangent plane approximation. A much
larger amount of atmosphere escapes when the momen-
tum of the ejecta is not much impeded by the inertia of the
intervening atmosphere, and the ejecta move faster than
the escape speed. Tangent plane erosion requires impact
velocities that Melosh and Vickery (1989) estimated as
>2ve, cautioning that this threshold was uncertain. The

Figure 5.19 Various semi-analytical approximations to atmospheric impact erosion. (a) In the cookie-
cutter approximation, the mass of gas that escapes is similar to that intercepted by the impactor
multiplied by a factor close to unity (Walker, 1986). (b) In the massless point explosion approximation,
an accelerating shock wave drives off the atmosphere of scale height (Ahrens, 1993). (c) In the tangent
plane model of atmospheric impact erosion, a sufficiently massive impactor removes the entire
atmosphere above a plane tangent to the planet. The impactor is required to have an impact velocity
above a threshold of twice the escape velocity of the target (Melosh and Vickery, 1989).
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mass of gas to escape relative to the total atmospheric
mass in a qualifying impact is � Ha=2Rp. Many models
of impact erosion for Mars and icy satellites have used
tangent-plane erosion. They assume that loss of atmos-
pheric mass, mtangent, above a plane tangent to the planet
occurs if vimpact/ve > 2 and the mass of the impactor,
mimpactor, exceeds a critical mass that was originally pro-
posed to be mtangent (Melosh and Vickery, 1989) but later
revised to a multiple of mtangent (Pham et al., 2011;
Vickery and Melosh, 1990).

A fourth form of impact erosion could occur when an
impactor is so big and fast that a shock wave propagates
through a planet and erupts at the surface, particularly the
antipode (Chen and Ahrens, 1997; Genda and Abe, 2003,
2005). The expelled solid surface can carry along much
atmosphere. For example, on a planet with a deep, thick
gas envelope, air above a critical isobar might be acceler-
ated to the escape velocity, given that shock waves accel-
erate as they move into thinner gas. Currently, research on
this mechanism is limited. However, simulations of late
stage terrestrial planet accretion suggest that roughly half
of the collisions between planets strip off the outer mantle
of the larger planet while obliterating the smaller planet
(Agnor and Asphaug, 2004), so the effect on atmospheres
ought to be important.

The rate of net change of volatiles _Matm for a planet
will be the difference between the mass rate delivered
( _Mdeliv) and eroded ( _Merode), i.e.,

_Matm ¼ _Mdeliv � _Merode (5.86)

The delivery rate of volatiles _Mdeliv, depends on the
volatile mass fraction in impactors, which is typically
~0.01–0.1, and how much impactor mass escapes relative
to the mass of the impactor. The erosion rate _Merode

depends on the fraction of mass that escapes that is
atmospheric gas or volatiles from impactor or target. Both
_Mdeliv and _Merode have to be estimated from a double
integral of the impactor velocity distribution over all
velocities and the mass density of the flux of impactors
over all masses. In turn, _Matm must be integrated over
time. The literature gives details for such models using
the tangent plane approximation (Manning et al., 2006b;
Pham et al., 2011; Schlichting et al., 2015; Zahnle et al.,
1992; Zahnle, 1993b).

In the Solar System, the mass density of the flux of
impactors can be derived from the derivative with respect
to mass of the time-dependent cumulative number flux of
impactors, which varies as ~m–b. Parameter b is the spec-
tral slope of the cumulative mass distribution, often esti-
mated as ~0.5–0.8. It is likely that b is a natural outcome

of collisional cascades (Dohnanyi, 1972), and so such
distributions may also apply to atmospheric impact ero-
sion for exoplanets.

The most sophisticated impact erosion models are
3-D numerical models. Hydrocodes are numerical models
that deal with shock physics and solve the mass, momen-
tum and energy conservation equations as a function of
time a grid (e.g., Barr and Canup, 2010; Barr and Citron,
2011; Kraus et al., 2011; Pierazzo et al., 2008; Senft and
Stewart, 2007, 2008, 2011). Another numerical approach,
smoothed particle hydrodynamics (SPH), models bodies
as a large number of discrete of discrete, often spherically
symmetric particles that are sometimes fuzzy (i.e., with
spatial kernels), whose individual dynamics and compos-
itional identities are followed in time.

Such numerical models have been applied to impact
erosion for terrestrial planets (Maindl et al., 2015; Shu-
valov, 2009; Shuvalov et al., 2014) and Titan (Artemieva
and Lunine, 2005; Korycansky and Zahnle, 2011).

5.13 Summary of the Fundamental
Nature of Atmospheric Escape

In this chapter, we have discussed various mechanisms
for the escape of gases from planetary atmospheres,
noting how thermal escape, suprathermal (nonthermal)
escape, and impact erosion are three basic categories.

Today in the Solar System, no gases attain escape
velocity from the gas giants, but the rocky planets cannot
hold on to light gases such as hydrogen. On Venus, Earth,
Mars, and Titan, the escape of hydrogen from current
atmospheres is described well by the diffusion-limited
flux. In this limit, the escape rate is set by two factors:
the amount of hydrogen in all its chemical forms at the
homopause, and the diffusion of hydrogen above that
level to the exobase, the bottom of the exosphere. For
Earth, the total mixing ratio of hydrogen in all its forms in
the lower stratosphere above the “cold trap” at the tropo-
pause can be used to calculate the diffusion-limited flux
because this mixing ratio is similar to that at the homo-
pause. Jeans’ escape is often a minor component of the
time-average escape flux from Earth’s exobase.
Suprathermal escape mechanisms dominate on Earth in
the time-average and contribute essentially the entire
hydrogen flux from the cold upper atmosphere of Venus.

The early terrestrial planets may have had more
hydrogen-rich atmospheres after they formed for ~107–
108 years. Also on Earth, hydrogen-rich steam atmos-
pheres would have formed intermittently because of large,
ocean-vaporizing impacts during heavy bombardment.
Under such circumstances, the absorption of higher
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ultraviolet radiation flux from the youthful Sun likely
drove a bulk hydrodynamic outflow of hydrogen-rich
upper atmospheres.

In hydrodynamic escape, heavy atoms can be dragged
along when collisions with hydrogen push the heavy
atoms upward faster than gravity pulls them downward.
This can lead to loss of heavy gases and mass fraction-
ation of different isotopes of noble gases. The isotopic
patterns of noble gases on Earth and Mars are consistent
with fractionation by early hydrodynamic hydrogen
escape. It is possible that major gases, such as carbon
dioxide and nitrogen, were also lost from Mars during
hydrodynamic escape.

Looking ahead to later chapters, we will see that
hydrogen escape has had an important influence on the

chemical evolution of the atmospheres and surfaces of
Venus and Mars. In Ch. 10, we will see that hydrogen
escape may also have affected the evolution of the oxida-
tion state of the Earth’s atmosphere and, as a conse-
quence, biological evolution.

Finally, impact erosion can be effective early in a
planetary system’s history, particularly for small bodies.
In our own Solar System, apart from Mercury, Mars was
the planet most prone to impact erosion. Moons around
Jupiter were also vulnerable. For exoplanets, small
bodies close to parent stars will be vulnerable because
their large orbital velocities imply bigger impact speeds.
In conclusion, escape processes are fundamental for
understanding the existence and evolution of planetary
atmospheres.

5.13 Summary of the Fundamental Nature of Atmospheric Escape
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