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Suprathermal (or nonthermal)
escape (different mechanisms)

Photochemical escape
Charge exchange

lon pickup

Sputtering

The polar wind

Bulk removal

atmospheres and whether they vanish, persist, or change
composition (Koskinen et al, 2014;
2003b; Luger and Barnes, 2015:
Owen

Lammer et al.,
Luger et al., 2015:

and Jackson, 2012).

5.2 Overview of Atmospheric Escape
Mechanisms

Table 5.1 summarizes the three principal

escape of atmospheric gases. Below,

overyiew of each type of escape. Then

chapter examines the physics describing
that atmospheric gases escape, with partic

on the two forms of thermal escape.

5.2.1 Thermal Escape Overview

Thermal escape is when heating of an atmosphere allows
molecules to escape. In basic models, the theory assumes
neutral species with a Maxwellian velocity distribution,
which occurs when collisions between molecules are fre-
quent. The “Jeans’ escape” and “hydrodynamic escape™
end-member approximations to thermal escape apply
under different circumstances of atmospheric heating that
we summarize below and discuss in further detail in
Sec. 5.10.1.

Jeans’ escape is when a relatively small number of
high-energy molecules in the tail of the thermal distribu-
tion of velocities of molecules have sufficient Kinetic
energy to escape into a nearly collisionless exosphere
from the collisional atmosphere below (see Sec. 5.6 for
the physics). This process is important for the loss of
hydrogen, a low-mass species that more easily attains
escape speed at a given temperature. As such, Jeans’
escape was likely influential in the atmospheric evolution
of all the early terrestrial planets. Jeans’ escape currently
accounts for a non-negligible fraction of hydrogen escap-
ing from Earth, Mars, and Titan, but it is negligible for
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