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During the 1918 influenza pandemic, the U.S., unlike Europe, put
considerable effort into public health interventions. There was also
more geographic variation in the autumn wave of the pandemic in
the U.S. compared with Europe, with some cities seeing only a
single large peak in mortality and others seeing double-peaked
epidemics. Here we examine whether differences in the public
health measures adopted by different cities can explain the vari-
ation in epidemic patterns and overall mortality observed. We
show that city-specific per-capita excess mortality in 1918 was
significantly correlated with 1917 per-capita mortality, indicating
some intrinsic variation in overall mortality, perhaps related to
sociodemographic factors. In the subset of 23 cities for which we
had partial data on the timing of interventions, an even stronger
correlation was found between excess mortality and how early in
the epidemic interventions were introduced. We then fitted an
epidemic model to weekly mortality in 16 cities with nearly
complete intervention-timing data and estimated the impact of
interventions. The model reproduced the observed epidemic pat-
terns well. In line with theoretical arguments, we found the
time-limited interventions used reduced total mortality only mod-
erately (perhaps 10–30%), and that the impact was often very
limited because of interventions being introduced too late and
lifted too early. San Francisco, St. Louis, Milwaukee, and Kansas
City had the most effective interventions, reducing transmission
rates by up to 30–50%. Our analysis also suggests that individuals
reactively reduced their contact rates in response to high levels of
mortality during the pandemic.

epidemic model � public health interventions

The Spanish influenza pandemic in 1918–1919 was excep-
tional in its lethality and the multiple distinct waves of the

epidemic seen in many areas. Conservative estimates indicate
that 50 million people died worldwide (1), with significant
consequent social and economic disruption. However, observa-
tions in Europe and the U.S. differ considerably. In Europe, only
one autumn wave was seen, whereas many U.S. cities saw two
peaks in mortality incidence spaced by only a few weeks. Also,
far greater variation in mortality was seen among U.S. cities than
was seen, for instance, in the United Kingdom [see supporting
information (SI) Appendix]. The origin of these differences is
unclear. Here we examine the hypothesis that they result largely
from the much wider use of public health measures in the U.S.

A range of interventions was tried in the U.S. in 1918,
including closure of schools and churches, banning of mass
gatherings, mandated mask wearing, case isolation, and disin-
fection/hygiene measures. However, a challenge in undertaking
this analysis is finding data on public health measures used in
different U.S. cities and their precise timing. Here we examine
the dynamics of the autumn 1918 waves in 16 cities for which we
were able to collate reasonable data on the timing of public
health interventions (see SI Appendix): Atlanta, Baltimore,
Chicago, Fall River, Indianapolis, Kansas City, Milwaukee,
Minneapolis, New York, Newark, Philadelphia, Pittsburgh, San
Francisco, Spokane, St. Louis, and Washington. For an addi-

tional seven cities (Boston, Buffalo, Detroit, Rochester, St. Paul,
Seattle, and Toledo), we had data on the start dates of inter-
ventions only. Based on the weekly mortality data (2), we
estimate the effect of the interventions by correlating the timing
of interventions with the incidence patterns seen.

The interest of this study is far from just historical; policy
makers around the world are considering how nonpharmaceu-
tical public health measures (3) can be used to contain or
mitigate a future pandemic. Key to the decisions to be made in
the coming months and years will be the evidence base for the
effectiveness of such interventions (4). Much data will come
from ongoing prospective studies, but historical analysis (5) is a
powerful secondary source of information on the feasibility and
effectiveness of public health measures in a crisis situation of the
type represented by an acute lethal pandemic.

Results
Correlation Analysis. We initially undertook an exploratory anal-
ysis of which city-specific demographic or geographic variables
were predictive of pandemic mortality in 1918–1919. In the 45
cities for which we had nearly complete weekly mortality data,
there was an �4-fold variation in excess mortality because of
influenza in 1918–1919 (Fig. 1a). Influenza-related excess mor-
tality was positively correlated with prepandemic mortality (e.g.,
mortality in 1917) and negatively correlated with the day of the
start of the epidemic (Fig. 1 a and b). Excess mortality was also
positively correlated with the proportion of excess deaths that
occurred in the peak week (see SI Appendix). However, the most
striking correlations found (for the subset of 23 cities for which
we had start dates for interventions) were between excess
mortality (either total or peak), and how early interventions
were introduced into the epidemic in a city (Fig. 1 c and d and
SI Appendix). We optimally wanted to know the number of
influenza infections that had occurred by the time controls were
introduced, but because infections were not observed, we use a
proxy statistic: the number of deaths occurring up to 12 days
after controls were started, given that the average delay between
infection and death in 1918 was 12 days (see SI Appendix). This
proxy variable explained 69% of the variance in total mortality
among cities. It can be argued that the absolute numbers of
deaths up to 12 days after controls start is confounded with other
intrinsic city-specific factors determining mortality. The propor-
tion of deaths that occur up to 12 days after controls start does
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not suffer the same problem and is still significantly correlated
with total excess mortality explaining 44% of between-city
variance (see SI Appendix). Many other factors, such as popu-
lation size or density, were not significantly correlated with
excess deaths in 1918–1919 (see SI Appendix).

Limits to the Impact of Imperfect Transient Interventions. Given this
correlation, to what extent might we expect time-limited public
health interventions to affect cumulative mortality? Epidemics
are characterized by the reproduction number, R, the number of
secondary cases each case causes at a particular stage of the
epidemic. R is highest at the start of an epidemic, when the
population is fully susceptible [and when R � R0 (6)], but
declines thereafter as population immunity builds up. For trans-
mission to be self-sustaining, R needs to be above unity. Inter-
ventions act to reduce R. However, an uncontrolled epidemic
‘‘overshoots’’; more people are infected than the minimum
proportion of 1 � 1/R (assuming random mixing) needed to
achieve R � 1. The difference can be striking; the 1918 pandemic
had R0 � 2 in the U.S. (7, 8), which would lead to 80% of the
population being infected in an uncontrolled epidemic, com-
pared with a minimum of 50% needed to stop transmission.
Thus, if control measures are temporary and imperfect, the best
they can do is to reduce the total proportion infected to that
minimal level of 1 � 1/R (50% for R � 2). Fig. 2a illustrates how
this effect becomes more substantial as R decreases.

Paradoxically, there is therefore an optimal maximal effec-

tiveness of imperfect transient control measures; R needs to be
reduced to a value that gives an outbreak of exactly the size
needed to give sufficient population immunity to make trans-
mission unsustainable once controls are lifted (see SI Appendix).
Controls can also be effective, in that they control spread, but
then when lifted, there are enough susceptible individuals left for
the epidemic to resume; a second peak can result (Fig. 2b), akin
to what was seen in some U.S. cities in 1918. In such cases,
reintroduction of controls can still achieve the optimal outcome
of an overall epidemic size across both peaks, which is just
sufficient to provide herd immunity. However, if controls are
introduced too late into the first epidemic peak, their overall
impact is inevitably minor, irrespective of their efficacy (Fig. 2b).

Estimating the Impact of Controls on Transmission. Drawing on this
theoretical framework, if we want to really examine the extent to
which differences in control measures can explain the variability
in levels of mortality and epidemic patterns seen between
different cities, it is clear we need to go beyond simple correlative
analysis and examine more mechanistically how controls could
have affected transmission. We use the simple well proven
susceptible–exposed–infected–recovered (SEIR) epidemic
model (6) and allow for a city-specific reduction in transmission
rates for periods when control measures are in force. In addition,
we further allow for reactive changes in population contact rates
in response to recent mortality in the community.

The model is fitted to excess pneumonia and influenza mortality
data from the 16 cities for which we had data on the timing of
interventions. The model has the following fitted parameters (see
Methods): R0 (the reproduction number), � (per-capita mortality),
� (the mortality threshold for reactive social distancing), T (the
period over which mortality is averaged in determining the degree
of reactive distancing), and pc (the degree to which transmission is
reduced by controls in a specific period). Given the obvious possible
confounding among some of these parameters, we explore the
effects of making parameters the same for all cities or making them
city-specific (Table 1). A priori, we might expect more biological
parameters, such as R0 (although R0 has strong demographic/social/
behavioral determinants), to vary less among cities than more
obviously behavioral parameters (e.g., pc or �).

Treating all parameters as city-specific gives an excellent quali-
tative fit to the data (see SI Appendix). This could be viewed as
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Fig. 1. Predictors of excess influenza-related mortality in 1918–1919. Cor-
relation of peak mortality (per 100,000) with all-cause mortality in 1917 (a),
total mortality with the week (counting from the week of September 7–13,
weekly mortality first exceeds 20/100,000) (b), total mortality with mortality
up to 12 days after start date of interventions (c), and peak mortality with
mortality up to 12 days after start date of interventions (d). a and b show data
for the 45 U.S. cities for which mortality data were relatively complete. c and
d show data for the 23 cities for which the start date of public health
interventions was known. Peak and total 1918 mortality refers to excess
pneumonia- and influenza-related mortality in the period September 7, 1918,
to May 10, 1919. Regression shows all slopes to be significantly different from
zero (P � 0.01).
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Fig. 2. Effects of transient imperfect health interventions on epidemic
dynamics. (a) Total proportion of the population infected in an epidemic in the
absence of controls or reactive contact reduction compared with the minimal
proportion needing to be infected to achieve herd immunity and therefore
stop transmission, shown as a function of R0. Results derived from a simple
deterministic susceptible–infected–recovered (SIR) epidemic model (6). (b)
Weekly infection incidence over 6 months from a SIR model with 3.5-day
infectious period, R0 � 2, 100,000 population, two seed infections at time 0,
and controls imposed from day 25. Green curve, no controls; red curve,
overeffective controls that reduce R by 40% and stop on day 75 (leading to a
second wave); blue curve, controls that reduce R by 32.5% and stop on day 110
(giving the minimal possible epidemic size).

Bootsma and Ferguson PNAS � May 1, 2007 � vol. 104 � no. 18 � 7589

M
ED

IC
A

L
SC

IE
N

CE
S

SE
E

CO
M

M
EN

TA
RY

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

M
ar

ch
 3

0,
 2

02
0 

http://www.pnas.org/cgi/content/full/0611071104/DC1
http://www.pnas.org/cgi/content/full/0611071104/DC1
http://www.pnas.org/cgi/content/full/0611071104/DC1
http://www.pnas.org/cgi/content/full/0611071104/DC1


unsurprising, given that five or more parameters are being fitted per
city. At the other extreme, fitting R0, �, and T as common to all
cities, while giving a much worse fit statistically (Table 1), still
qualitatively gives a reasonable match to the temporal patterns in
the data (see SI Appendix). Model variant 4 shows an intermediate
case, where R0 and T are assumed to have common values in all
cities, and the resulting fit to the data is still very good (see Fig. 3).

The results in Table 1 represent strong evidence that both
organized public health interventions and reactive social distancing
are needed to fit the data well. Assuming an effect of interventions
alone can give a reasonably qualitative match to the data and
requires three city-specific parameters to be fitted (variant 2).
Reactive social distancing can give a similar fit quality without
assuming an effect of organized interventions (variant 3), but only
at the cost of fitting four city-specific parameters, 17 parameters
more than variant 2. However, fitting both an effect of interventions
and reactive social distancing gives a much better fit than either
alone (variant 4) and requires fitting only two more parameters than
variant 2.

All of the best-fitting variants (1, 4, and 6 in Table 1) fit either R0
or � (the threshold for reactive social distancing) as city-specific
parameters. For variants with reactive social distancing, making �
common to all cities gives a substantially poorer fit (compare
variants 4 and 7), although variant 7 still fits much better than the
other model variants (variants 5 and 8) with the same number of
parameters.

Variation in control measures explains some, but not all, of the
variation in total excess mortality among cities. It is still necessary
to fit � on a city-specific basis, because not doing so gives a poor fit
(variant 8), with the model then being able to explain only 46% of
the variance in total mortality among cities.

There is considerable variation in the estimated impact of control
measures, as a function of which parameters are assumed to be
city-specific (see SI Appendix), but overall a fairly consistent rank-
ordering of cities emerges. San Francisco, St. Louis, Milwaukee,

and Kansas City comprise the subset of cities with policy effective-
ness estimates (i.e., reduction in R) exceeding 30% for every model
variant. Conversely, Chicago, Fall River, and Minneapolis are the
cities most frequently in the bottom six in a ranking of estimated
effectiveness (comparing across model variants).

The duration of interventions is equally important in determin-
ing their overall impact; in only two cities, St. Louis and San
Francisco, are controls estimated to have achieved at least a 10%
reduction in mortality for all model variants. Indeed, in San
Francisco, we estimate that controls reduced mortality by at least
25%. The impact of controls on overall mortality is largest for the
model variants where we do not assume reactive reductions in
contact rates. These limited effects are as expected by the simple
theory of imperfect interventions outlined above. The impact of
controls on the shape of the epidemics seen was much more major
than the effect on overall mortality. For most cities, a single large
epidemic peak would have been expected had controls not been
imposed (Fig. 3).

Given these estimates, we can ask how much better might cities
have done had controls been enforced throughout the pandemic.
We examined the impact of maintaining controls at the maximum
level of effectiveness estimated for each city throughout the mod-
eled period. Table 1 (last column) indicates that, if this had been
feasible, it might have reduced mortality by an average of �40%.
For the four top-ranked cities for intervention effectiveness listed
above, mortality could have been reduced by at least 50% for all
model variants, whereas for San Francisco, we estimate that trans-
mission might have been stopped (R � 1), and thus mortality might
have been reduced by �95%. These figures, however, do not allow
for the mortality that may then have resulted when controls were
finally lifted.

Discussion
The most important conclusion from this work is that the timing of
public health interventions had a profound influence on the pattern

Table 1. Results of fitting eight model variants to weekly mortality data for 16 cities for which data on the timing of interventions
were available

Model
variant

Mean
posterior

log
likelihood

�, per-capita
death rate, % R0

�, threshold for
contact reduction

(per 100,000)

T, memory period
for contact
reduction

pc, effectiveness
of control

measures, %

Reduction in
mortality due
to controls, %

Reduction in
mortality for

optimal
controls, %

1 �2,318 Per city, 1.1
(0.7–1.8)

Per city, 2.0
(1.4–2.8)

Per city, 99
(10–538)

Per city, 12.2
(0.1–58.1)

Per city, 26
(0–49)

13
(0–36)

47
(0—100)

2 �4,764 Per city, 1.2
(0.7–2.6)

Per city, 1.9
(1.4–2.8)

No reactive
contact reduction

No reactive
contact reduction

Per city, 37
(0–83)

33
(21–57)

88
(36–100)

3 �4,652 Per city, 1.2
(0.7–2.5)

Per city, 2.1
(1.3–3.2)

Per city, 55
(3.8–185)

Per city, 1.4
(0.1–8.6)

No effect of
controls

No effect of
controls

No effect of
controls

4 �3,168 Per city, 1.1
(0.6–1.8)

Common, 1.96
(1.95, 1.97)

Per city, 186
(7.5–828)

Common, 20.4
(20.1, 20.6)

Per city, 36
(0–55)

28
(7–64)

68
(28–100)

5 �7,627 Per city, 1.2
(0.7–1.8)

Common, 1.79
(1.78, 1.80)

No reactive
contact reduction

No reactive
contact reduction

Per city, 40
(0–86)

43
(30–72)

92
(35–100)

6 �3,824 Per city, 1.2
(0.7–2.1)

Per city, 1.9
(1.5–2.6)

Common, 22.0
(21.5, 22.5)

Common, 7.25
(7.08–7.40)

Per city, 23
(0.1–68)

6
(2–25)

44
(1–100)

7 �4,609 Per city, 1.1
(0.6–1.6)

Common, 1.99
(1.98, 2.0)

Common, 21.4
(20.8, 21.9)

Common, 13.7
(13.1, 14.1)

Per city, 30
(0–72)

14
(2–30)

51%
(24–100)

8 �6,362 Common, 1.21
(1.20, 1.21)

Common, 1.94
(1.93, 1.95)

Per city, 78
(2.7–530)

Common, 7.18
(7.00, 7.36),

Per city, 20
(0–54)

12
(2–51)

38
(0–100)

Markov-Chain Monte-Carlo methods were used for fitting. Model fit is characterized by the mean log-likelihood from the posterior distribution (Fig. 3 gives
a qualitative indication of the quality of fit for model variant 4; see SI Appendix also). Where a parameter was estimated on a per-city basis, the average and
range across all cities of the mean posterior estimates of that parameter are shown. For parameter estimates assumed to be common to all cities, the mean and
95% credibility estimates of the parameter from the posterior distribution are shown. In addition, the time of introduction of the first infection into each city
is fitted as a city-specific parameter for all models (estimates not shown). The last two columns show the average and range (across cities) of the estimated
reduction in total mortality achieved by the implemented controls (represented as a percentage of the observed total mortality), and the average and range
of reduction in mortality that would have been achieved had the period for which controls were most effective in each city been extended to cover September
1918 to May 1919, respectively.
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of the autumn wave of the 1918 pandemic in different cities. Cities
that introduced measures early in their epidemics achieved mod-
erate but significant reductions in overall mortality. Larger reduc-
tions in peak mortality were achieved by extending the epidemic for
longer.

We have not demonstrated this correlation only statistically, but
we have also presented a plausible quantitative model that explains
how such correlations arose. Our theoretical analysis demonstrates
that, in the cities that saw double-peaked autumn epidemics, control
measures may have been, if anything, too effective, stopping
transmission so effectively that substantial numbers of susceptible
individuals remained in the population when controls were lifted.
This remaining susceptible pool allowed transmission to restart,
leading to another epidemic peak and (in some cases) to the
resumption of interventions. Conversely, cities in which transmis-
sion had been continuing for longer before interventions were

introduced saw much smaller or no second epidemic peaks, because
insufficient susceptible people remained to restart transmission.
The theory of imperfect interventions tells us there is an optimal
middle ground, i.e., interventions tuned to give a single peak of
minimal size. It appears no U.S. cities found that optimal point,
however; indeed, the cities that got closest to the theoretical
maximum possible reduction in mortality were those that imple-
mented both early and effective interventions throughout the first
peak and then were able to reintroduce these when transmission
again increased.

Our conclusion that transmission in 1918 showed strong fre-
quency dependence, namely contact rates spontaneously reduced
when recent mortality was high, warrants further comment. Similar
reactive social distancing was arguably observed during the severe
acute respiratory syndrome epidemic in Hong Kong and Singapore
(3, 9). Whether the effect in 1918 was caused by people deliberately
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Fig. 3. Weekly excess mortality (per 100,000) resulting from the 1918 pandemic in 16 U.S. cities (blue points), compared with the fit of model variant 4, Table
1 (red curves). This variant fits R0 and T, the duration of the population ‘‘memory’’ of past mortality, as parameters common to all cities and other parameters
as city-specific. Estimated weekly mortality, had controls not been implemented, is also plotted (dark-green curves). The effectiveness and period of
implementation of control measures are also shown as light-green horizontal lines; horizontal position and length, indicate start date and duration of
interventions, and vertical position indicates estimated effectiveness. The top of the vertical axis is 100% effectiveness, and the bottom of this axis is 0%.
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reducing contacts or by indirect effects (e.g., caring for the sick,
absenteeism, or reactive closure of workplaces) cannot be deter-
mined. However, the effect of such reactive distancing is to intro-
duce a form of time-delayed negative frequency dependence (be-
cause people respond to deaths, not infections) into the model,
which substantially enhances the tendency for oscillatory epidemics.
As such, alternative explanations, such as heterogeneous social
mixing as a function of age, explain the observed trends much less
well (see SI Appendix); whereas social structure can partly repro-
duce the observed rapid reduction in real-time epidemic growth
rates seen in the data, it does so by assuming exhaustion of the
subset of the population with the highest levels of susceptibility.

Our assumption that control measures had an effect on trans-
mission that was constant throughout the period during which they
were imposed is an obvious simplification. In reality, it is highly
likely that some measures (e.g., mandated mask wearing) showed
reductions in compliance over time. We also assume the virus did
not change in virulence through time; in reality, there is some
evidence (5) that the lethality of the 1918 virus had declined by
January 1919. However, if anything, a temporal trend of declining
virulence would imply an even greater impact of interventions,
because the secondary or tertiary peaks in mortality would, in fact,
correspond to higher levels of infection than revealed by mortality
data. Conversely, it is also possible that the virus evolved antigeni-
cally through time, in which case the rise in incidence in spring 1919
can perhaps be explained by partial immune escape of the virus.
However, it is difficult to explain between-city variation in epidemic
shape by antigenic variation. If a new variant was circulating in
November 1918, which was sufficiently novel to cause major
epidemics in some cities, we might have expected it to spread
successfully to all cities.

Furthermore, we did not attempt to model exogenous secular
variation in transmission rates, such as that resulting from increases
in mixing during Liberty Loan or Armistice Day parades or from
seasonality. Given that annual seasonal influenza incidence in the
U.S. often peaks in January, seasonality might play some role in
explaining the small peaks in mortality rates seen in January 1919.
Generalizing further, we cannot exclude the possibility that there
may have been some other factor that varied among cities, and that
might have been partly responsible for the observed variation in
overall mortality and epidemic pattern. However, it is highly
unlikely that such a factor would make nonsignificant the very
strong correlation we have uncovered between mortality and the
timing of interventions.

Last, we have assumed the whole population was susceptible to
infection at the start of September 1918. It is likely there was some
degree of population immunity because of transmission in the
spring of that year (10), and perhaps because of prior circulation of
an H1 virus in the 19th century (11). However, such prior immunity
would be significant in explaining intercity variation in mortality
only if preexisting immunity levels varied substantially among cities.

Our analysis agrees with earlier work (7, 8, 12) in giving central
estimates of the R0 for 1918 pandemic influenza of �2, with a range
of 1.4–2.8 (Table 1, excluding model variant 3, which did not fit an
effect of controls). However, here we have gone beyond previous
analyses of the initial growth rate of the 1918 epidemic and modeled
the whole epidemic. We have shown that a combination of reactive
behavioral changes in contact rates and the impact of organized
public health measures can explain the very different influenza
epidemic patterns seen in different U.S. cities in 1918–1919.

Causality will never be proven, because, unsurprisingly, control
measures were nearly always introduced as case incidence was
increasing and removed after it had peaked. Thus, the broad
correlation observed between the incidence and timing of control
measures was predefined. However, in a multivariate analysis, only
the correlation between mortality and the timing of the start of
controls remains significant. What is more persuasive still is that
allowing those controls to have an effect on transmission allows

epidemic models to fit the observed mortality curves much better
than they otherwise might. Indeed, the estimated effectiveness of
interventions was sometimes high even for cities where controls
were in place only for a short time (e.g., Baltimore). Reactive
behavior change and control measures are also confounded in their
timing; however, both factors independently contributed substan-
tially to the model fit.

More work is needed to attempt to disentangle the impact of
different control measures, although this will be challenging with-
out independent data on efficacy. Furthermore, such a nuanced
analysis will arguably require a more sophisticated model frame-
work than we have adopted here. By assuming random mixing of
the population and not explicitly representing schools or house-
holds, we are easily able to capture only overall reductions in
transmission caused by the whole range of control measures used.
The availability of more comprehensive data on the interventions
implemented in a larger set of U.S. cities may enable some
intervention-specific analysis and at the very least will increase the
rigor and power of the initial analysis presented in this paper. Our
analysis indicates that, whereas control measures can explain much
of the variation in the shape of epidemics seen in different cities,
they can explain only about half of the variance in overall mortality.
Understanding the causes of the remaining variation, whether
social or biological, is an important topic for future work.

Extrapolating from 1918 to the present day requires great
caution; the U.S. of 1918 was a very different place from today.
Household sizes were much larger, and many workers lived in large
crowded boarding houses within which transmission can be ex-
pected to have been intense. More generally, far more people
interacted with large extended families, children spent many fewer
years in full-time education, and travel patterns were also very
different. Overall infectious-disease-related mortality was much
higher than today, and cofactors that might have affected trans-
mission and mortality (such as malnutrition) were much more
prevalent. More demographic and socioeconomic data need to be
collated for different U.S. cities in 1918 to understand the effect of
these differences. More challenging still, collecting data on behav-
ioral responses to the pandemic might enable our hypothesis of
reactive social distancing to be tested.

That said, our conclusions, to a degree, are encouraging for
ongoing pandemic planning efforts in the U.S. that emphasize the
potentially key role that might be played in a future pandemic by
exactly the sort of public health measures used in 1918. Our
theoretical analysis of the impact of transitory imperfect controls on
the total number infected in an epidemic is more sobering, however.
Although attack rates (and thus mortality) can be reduced by
30–40% through transitory controls, to achieve reductions beyond
this with public health measures alone requires those measures be
sustained for as long as it takes for vaccination of the population to
be completed, perhaps as long as 6 months. The experience of many
U.S. cities in 1918 shows us that the social, political, and behavioral
challenges in delivering such long-term intensive policies will be
considerable.

Methods
Transmission Model. The requirements of solving the transmission
model many millions of times during the model-fitting procedure
impose major restrictions on the sophistication of the model we
can use. We therefore model the epidemic in each city using a
deterministic susceptible–exposed–infected–recovered model
(6) defined by: dS/dt � ��(t)S; dE/dt � �(t) S � �E; dI/dt � �E
� �I, where S, E, and I are the number of individuals who are
susceptible, latently infected, and infectious, respectively. Ini-
tially, we assume one infectious individual and N � 1 suscep-
tibles, where N is the population size of the city. The mean
latency period, 1/�, is assumed to be 1.5 days, and the mean
infectious period, 1/�, is assumed to be 1.8 days. For values of R0
between 1.5 and 2, this choice results in real-time epidemic
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growth rates compatible with those obtained by using more
complex models with time varying infectiousness (8). The death
rate at time t is defined as D(t) � � �0

� f(�)�(t � �)S(t � �)d�
where � is the proportion of infected individuals who die, and
f(�) is the distribution of the delay between infection and death
with 1918 pandemic influenza (12). The force of infection, �(t),
is defined by �(t) � �(t) I(t) N�/(� � M(t)), where �(t) � (1 �
pc)�R0 when control measures are in force (overlapping sets of
controls were assumed to combine multiplicatively), and �(t) �
�R0 at other times, with pc being the effectiveness of controls.
The Hill function in the parameter � represents frequency
dependence in the contact rate, whereby individuals reduce their
contacts as a function of the number of deaths occurring in the
population in the previous time period T (so M(t) � �0

T D(t � �)d�).
When �3 � , the model reverts to standard homogenous mixing
(mass action). The cumulative number of people infected in an
epidemic in the absence of controls and with �3 �, Itotal, satisfies
the equation N ln(1 � Itotal/N) � R0Itotal � 0. It should be noted that,
if the duration of infectiousness differed for lethal and nonlethal
cases, then the above model is an approximation, although because
case mortality was always �2% in the U.S., the effect of any
correction would be very minor.

Model Fitting. From the mortality data in Collins et al. (2), we use
the model to estimate the absolute number of excess pneumonia
and influenza deaths per week from September 1918 to May
1919 for the 16 cities being fitted. Where excess deaths are

negative, we assume that they are zero in the fitting procedure.
We further assume that the weekly data are Poisson-distributed
and construct the corresponding log-likelihood (subtracting the
saturated log-likelihood). This is almost certainly conservative in
judging goodness of fit, in the sense that the variation in the data
might be expected to be extra-Poisson, having been derived by
using an ad hoc algorithm from raw mortality data (see SI
Appendix). Markov-Chain Monte-Carlo (MCMC) methods (13)
are used for model fitting, with uniform priors used for all model
parameters. All parameters are assumed to be positive definite.
MCMC chains were run until convergence was achieved (by
visual inspection), and an additional 107 parameter update steps
(proposals) were then generated to estimate posterior distribu-
tion. We cannot be sure that mixing is perfect, especially in
relation to dominant parameters (e.g., R0 fitted as common to all
cities), which, together with being overconservative in our
assumption of Poisson variation in the data, may explain the
rather tight credibility intervals on some parameters. However,
we did run multiple chains from different starting points for each
model variant, giving greater confidence in at least the mean
posterior estimates of parameters.
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