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Abstract. The longitudinal profiles of bedrock channels are a major component of the relief struc- 
ture of mountainous drainage basins and therefore limit the elevation of peaks and ridges. Further, 
bedrock channels communicate tectonic and climatic signals across the landscape, thus dictating, 
to first order, the dynamic response of mountainous landscapes to external forcings. We review 
and explore the stream-power erosion model in an effort to (1) elucidate its consequences in terms 
of large-scale topographic (fluvial) relief and its sensitivity to tectonic and climatic forcing, (2) 
derive a relationship for system response time to tectonic perturbations, (3) determine the sensi- 
tivity of model behavior to various model parameters, and (4) integrate the above to suggest use- 
ful guidelines for further study of bedrock channel systems and for future refinement of the stream- 
power erosion law. Dimensional analysis reveals that the dynamic behavior of the stream-power 
erosion model is governed by a single nondimensional group that we term the uplift-erosion 
number, greatly reducing the number of variables that need to be considered in the sensitivity 
analysis. The degree of nonlinearity in the relationship between stream incision rate and channel 
gradient (slope exponent n) emerges as a fundamental unknown. The physics of the active ero- 
sion processes directly influence this nonlinearity, which is shown to dictate the relationship 
between the uplift-erosion number, the equilibrium stream channel gradient, and the total fluvial 
relief of mountain ranges. Similar[y, the predicted response time to changes in rock uplift rate is 
shown to depend on climate, rock strength, and the magnitude of tectonic perturbation, with the 
slope exponent n controlling the degree of dependence on these various factors. For typical drain- 
age basin geometries the response time is relatively insensitive to the size of the system. Work 
on the physics of bedrock erosion processes, their sensitivity to extreme floods, their transient 
responses to sudden changes in climate or uplift rate, and the scaling of local rock erosion studies 
to reach-scale modeling studies are most sorely needed. 

1. Introduction 

1.1. Motivation 

Recent recognition of potential global-scale interactions 
between climate, surface processes, and tectonics [e.g., 
Adams, 1985; Molnar and England, 1990; Isacks, 1992; 
Raytoo and Ruddiman, 1992] has sparked the field of tec- 
tonic geomorphology and brought the problem of the dynam- 
ics of bedrock channel fluvial systems to the forefront of theo- 
retical geomorphology [e.g., Seidl and Dietrich, 1992; Wohl, 
1993; Howard et al., 1994; Seidl et al., 1994; Wohl et al., 
1994; Zen and Prestegaard, 1994; Montgomery et al., 1996; 
Tucker and Slingerland, 1996]. Knowledge of the dynamics 
of bedrock channels is of profound importance for under- 
standing the interaction of tectonics and surficial processes 
because (1) the channel network defines the texture (plan- 
view) of the landscape, (2)channel longitudinal profiles 
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determine much of the relief structure of the landscape, (3) 
rivers transmit tectonic and/or climatic signals throughout 
the landscape, and (4) bedrock channels set the boundary 
conditions for hillslope processes (e.g., soil creep and land- 
slides) responsible for denudation of the land surface. Thus 
bedrock channels significantly influence both the rates and 
patterns of erosional unloading in fluvial landscapes and, 
consequently, long-term sediment fluxes to basins. 

Significant progress has been made in developing physi- 
cally based formalisms for modeling the dynamics of bedrock 
channel systems [Howard and Kerby, 1983; Seidl and 
Dietrich, 1992; Anderson, 1994; Howard, 1994; Howard et 
al., 1994; Kooi and Beaumont, 1994; Rosenbloom and 
Anderson, 1994; Seidl et al., 1994; Goldrick and Bishop, 
1996; Stock, 1996; Tucker and Slingerland, 1996; Stock and 
Montgomery, 1999]. Of the models that have been proposed, 
the stream-power (or shear-stress) model is most satisfying as 
it is cast directly in terms of the physics of erosion [Howard 
and Kerby, 1983]. The stream-power model is quite general 
and has been profitably used in a diversity of modeling stud- 
ies [Anderson, 1994; Howard, 1994; Rosenbloom and 
Anderson, 1994; Humphrey and Heller, 1995; Moglen and 
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Bras, 1995a, b; Goldrick and Bishop, 1996; Tucker, 1996' 
Tucker and Slingerland, 1996]. This generality, however, 
brings with it a number of poorly understood parameters 
whose effective values represent, in the worst cases, a diver- 
sity of complex interactions among a suite of physical proc- 
esses. Given the sweeping generality of the model, its wide- 
spread use, and the complex nature of the physics of river in- 
cision into bedrock, an exploration and sensitivity analysis 
of the stream-power model seems useful to further develop- 
ment of landscape evolution modeling and as a guide for 
future field investigations of river incision processes. 
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1.2. Approach and Scope 

In this paper we review and explore the general stream- 
power model for bedrock channel profile evolution. Our first 
aim is to reveal the strengths, weaknesses, and limitations of 
the current model [e.g., Howard et al., 1994] in a thorough 
review of its formulation. Further, we aim to illuminate the 
aspects of the model most critical to modeling the dynamic 
response of rivers to tectonic or climatic forcing. That is, we 
explore the role of model parameters in dictating (1) equilib- 
rium channel form, (2) sensitivity of equilibrium channel gra- 
dient to rock uplift rate, (3) equilibrium fluvial relief in active 
orogens, and (4)the timescale of landscape response to tec- 
tonic forcing. In this analysis we attempt to develop a rela- 
tively complete picture of the dynamic behavior of the stream- 
power erosion model and, in doing so, develop new insights 
into the relative importance of the various parameters in the 
model equations. A dimensional analysis of the bedrock 
channel evolution equation is used to guide the sensitivity 
analysis. Limiting assumptions that restrict the "complete- 
ness" of our analysis are clearly stated wherever appropriate 
in the text and are outlined briefly in the paragraph below. 
Finally we discuss the need for coupled field and modeling 
studies of bedrock channel systems to place quantitative 
constraints on those parameters most critical to model behav- 
ior, and we discuss some of the physical processes and proc- 
ess feedbacks that set the value of "effective" model 

parameters. 
Howard et al. [1994], Montgomery et al. [1996], and 

$klar and Dietrich [1998] have discussed at length the 
occurrence of bedrock channels in the landscape, the poten- 
tial controls on bedrock-alluvial transitions, and approaches 
to modeling these transitions at regional to continental 
scales. In general, bedrock and mixed bedrock-alluvial chan- 
nels dominate in headwater regions and in the uplands of tec- 
tonically active orogenic belts. We restrict the focus of this 
paper to the exploration and discussion of fluvially domi- 
nated bedrock channel erosion exclusively. Figure 1 is 
drawn on the basis of stream profile data from the Central 
Range of Taiwan and serves to define the range and limits of 
applicability of the stream-power erosion law and hence our 
analysis. In the Central Range of Taiwan and in the King 
Range of northern California [Merritts and Vincent, 1989; 
Snyder and Whipple, 1998; N. Snyder et al., Landscape 
response to tectonic forcing: DEM analysis of stream profiles 
in the Mendocino triple junction region, northern California, 
submitted to Geological Society of America Bulletin, 1999, 
hereinafter referred to as Snyder et al., submitted manuscript, 
1999], the two best examples of active, fluvially sculpted 
mountain ranges for which we have data, relief is dominated 
by the elevation drop on fluvially dominated bedrock chan- 
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Figure 1. Relief structure of active nonglacial orogens based 
on data from four drainages in the northern Central Range of 
Taiwan (see Table 1)..(a) Fluvial bedrock channel relief Rf 
and hillslope/colluvial channel relief Rhc shown along a 
characteristic divide-to-outlet channel longitudinal profile. 
The boundary between fluvially dominated bedrock channels 
and debris flow-dominated colluvial channels, demarcated by 
Xc is inferred from a break in scaling of the relationship 
between channel gradient $ and drainage area A (see Figure 
lb). Here and elsewhere (Table 1) fluvial relief represents 80- 
90% of the total relief. (b) Lines schematically represent 
slope-area data along longitudinal profiles of four Taiwanese 
rivers. Data for one river are shown for comparison (shaded 
dots; data are smoothed by log-bin averaging after Tarboton 
et al. [1991]). Note that concavity estimates reported in 
Table 1 were derived from regression of raw (unsmoothed) 
data. The transition from fluvially dominated to colluvial 
channels is inferred to occur at the break in scaling observed 
to occur between 105 and 106 m 2 in the drainage area [after 
Montgomery and Foufoula-Georgiou, 1993]. Minimum and 
maximum ((Sc)max and (Sc)min) colluvial channel gradients 
and critical drainage areas ((Ac)max and (Ac)min) represent the 
range of variability among the four drainages examined and 
define the range of Rhc indicated in Figure la. Note the log- 
log scale. 

nels (typically 80-90% of total relief; Table 1). Here we 
make the interpretation, following Montgomery and 
Foufoula-Georgiou [1993], that the break in scaling ob- 
served at a drainage area of 105 - 106 m 2 represents the transi- 
tion from debris flow-dominated "colluvial" channels to flu- 

vially dominated bedrock channels, herein described by a 
critical downstream distance (Xc; see Figure la). Field obser- 
vations confirm that the bedrock-alluvial transition is near 

the range front in both Taiwan [Hovius et al., 1999] and the 
King Range [Snyder and Whipple, 1998; Snyder et al., sub- 
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Table 1. Fluvial Relief Statistics in Active Orogens 

Field Area Critical Drainage Area Average Colluvial Slope % Fluvial Relief Concavity Sample Size 
A a 10•m 2 ½, & Ri/Rt N 

King Range, California 0.59 + .20 0.54 + .11 79 + 7 0.40 + .10 14 
(high uplift rate) 
King Range, California 0.72 + .24 0.36 + .05 80 + 5 0.49 + .10 7 
(low uplift rate) 
Central Range, Taiwan 1.40 + .48 0.63 + .26 89 + 6 0.41 + .10 4 

All uncertainties indicate 1-sigma error bars. 
aAc deftned by break in slope-area scaling in longitudinal profile data (only). 
bThe condition 0 = m/n holds if and only if channels are in equilibrium and both U and K are constants. Reported values 

were fit to long profile data between Ac and the bedrock-alluvial transition only. 

mitted manuscript, 1999]. In other landscapes, fluvially 
dominated bedrock channels constitute a considerably 
smaller fraction of the total relief [e.g., Montgomery and 
Foufoula-Georgiou, 1993; Sklar and Dietrich, 1998], but 
we believe the two examples in Table 1 are typical of non- 
glacial tectonically active mountain ranges. 

Sklar and Dietrich [1998] give a cautionary note on range 
of applicability of the stream-power erosion law that high- 
lights some aspects of the dynamics of bedrock channels that 
are beyond the scope of our analysis. We restrict our analysis 
to the fluvially dominated part of the bedrock channel system, 
specifically avoiding debris flow-dominated channel tips. In 
addition, we do not address the retreat of large-scale knick- 
points that Seidl et el. [1996] argued may be limited by rock 
mechanics and weathering rather than fluvial erosion. Fur- 
ther, we intentionally restrict our discussion to fluvial land- 
scapes, making no mention of the role of glacial erosion. 

2. The Shear-Stress/Stream-Power 
Erosion Model 

The detachment-limited rate of bedrock channel erosion e 

is often modeled as a power law function of drainage area A 
and stream gradient S: 

E =KAmS n (1) 
where m and n are positive constants and K is a dimensional 
coefficient of erosion (dimensions of all variables are listed in 
the notation section). The drainage area term appears as a 
proxy for discharge. Howard and Kerby [1983] showed that 
local erosion rates derived by differencing channel profiles 
resurveyed over a 7-year interval in rapidly eroding badlands 
were well explained by a formulation of (1) assuming incision 
rates linearly proportional to bed shear stress (m -- 1/3 and n 
-- 2/3). 

Since that time, various formulations of (1) have been used 
extensively in modeling studies of bedrock profile evolution 
[ Seidl and Dietrich, 1992; Anderson, 1994; Howard, 1994; 
Rosenbloom and Anderson, 1994; Seidl et al., 1994; 
Humphrey and Heller, 1995; Moglen and Bras, 1995a, b; 
Tucker and Slingerland, 1996, 1997; Sklar and Dietrich, 
1998]. Other bedrock channel erosion laws have been formu- 
lated [e.g., Beaumont et al., 1992; Kooi and Beaumont, 
1994] but are less readily cast in terms of the physics of ob- 
served erosion processes. Therefore, although these other 

erosion laws have been incorporated into modeling studies 
that have yielded useful insights about landscape evolution, 
we do not pursue their dynamics here. In the paragraphs 
below we review the derivation of (1) in order to highlight 
the underlying assumptions and to emphasize relations be- 
tween effective parameters k, n, and m and physical variables 
such as process (e.g., plucking versus abrasion), lithology, 
climate, sediment loading, and drainage basin shape. Under- 
standing these process-parameter linkages and how they 
influence model predictions is essential to critical evaluation 
and further refinement of landscape evolution simulations as 
well as to the formulation of effective field and laboratory 
research efforts in the area of bedrock channel erosion 
processes. 

Derivation of (1) starts with the reasonable postulate that 
erosion rate is a power law function of shear stress xb or, 
alternatively, stream power per unit area of channel bed (the 
product of shear stress and mean velocity V, henceforth "unit 
stream power"). These basic postulates are written: 

Shear stress œ = kbxb a (2a) 
Unit stream power •; = kb('lJbV) a (2b) 

Where kb and a are positive constants. Note that ko is a 
dimensional constant with dimensions that depend on both 
the exponent a and whether the shear-stress or unit stream- 
power formulation is used (see notation section). Both forms 
of (2) implicitly assume that the threshold (e.g., critical shear 
stress) is negligible for the flows of interest. An erosion 
threshold term can easily be incorporated into numerical 
solutions and has some interesting effects [Howard, 1997; 
Tucker and Slingerland, 1997] but is omitted here in keep- 
ing with standard formulation of the stream-power law and in 
the interest of obtaining analytical solutions. Coefficient ko 
depends on rock mass quality (lithology, jointing, and 
weathering), sediment loading, and process. Similarly, the 
exponent a likely depends on the dominant process and has 
been argued to range from 1 to as much as 7/2 [Hancock et al., 
1998; K. Whipple, et el., River incision into bedrock: 
Mechanics and relative efficacy of plucking, abrasion, and 
cavitation, submitted to Geological Society of America 
Bulletin, 1999, hereinafter referred to as Whipple et el., sub- 
mitted manuscript, 1999]. Thus, for the range of erosion proc- 
esses adequately described by (2) the exponent a, in particu- 
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lar, carries information about the physics of the erosion 
process. 

Several researchers have recently argued that erosion rate 
is a function of the ratio of sediment flux qs to sediment trans- 
port capacity qc [Sklar and Dietrich, 1997; Slingerland et 
al., 1997; Sklar and Dietrich, 1998], which likely varies 
with uplift rate, climate, and position in a catchment. A sim- 
ple way to denote this dependence within the framework of 
the stream-power erosion law is to write 

kb = kef(qs,qc) (3) 
where ke depends on rock mass quality and erosion process 
and j(qs,qc) is an unspecified function. As argued by Sklar 
and Dietrich [1998], the role of sediment flux (here denoted 
as j(qs,qc)) encapsulates at least two competing effects: (1) ac- 
celerated erosion due to an increased number of tools in the 

flow and (2) reduced erosion as a result of partial shielding of 
the bed from particle impact and other processes. For the sake 
of simplicity and in keeping with the standard formulation of 
the stream-power law we restrict our analysis to the condi- 
tion of constant kb (for a given lithology), an assumption 
incorporated into most landscape evolution models. 

Coupling either (2a) or (2b) and (3) with relations 
describing flow hydraulics, channel geometry, and basin 
hydrology results in a simple expression for channel erosion 
rate in terms of stream gradient and drainage area, in the form 
of(1). In this analysis, hydrologic and hydraulic variables 
(discharge Q, flow depth D, flow width W, flow velocity V, 
shear stress '•b, and erosion rate œ) are taken as time-averaged 
quantities, such that discharge can be taken as a simple func- 
tion of drainage area A. Thus it is implicitly assumed that an 
effective discharge can be defined that adequately represents 
the integrated effects of the full-time history of flood dis- 
charges [Wolman and Miller, 1960; Willgoose, 1989; 
Tucker and Bras, 1997]. Given this assumption, the internal 
relations are conservation of mass (water) 

Q = VDW (4) 
conservation of momentum (steady and uniform flow) in wide 
channels 

hydraulic geometry 
'c!• = pgDS - pC fV 2 (5) 

W = Ic•Q • 
and a relation for basin hydrology 

(6) 

Q = kqA c (7) 

In the above, p is density of water, g is gravitational accelera- 
tion, CS is a dimensionless friction factor, k• and kq are dimen- 
sional constants, and b and c are positive dimensionless con- 
stants. For convenience, the small-angle approximation (sintz 
-- tantz) has been exploited to write shear stress in terms of the 
streamwise gradient S. Constants kw and b depend on rock 
mass quality, erosion process, sediment loading, and hydrau- 
lic resistance C s. Constants kq and c are a function of climate, 
runoff processes, the return period of the effective discharge, 
and basin topology. 

Equation (6) is well known empirically for alluvial chan- 
nels fi'om the hydraulic geometry literature [Leopold and 
Maddock, 1953] (b-- 1/2). Similar values of the exponent b 
appear to apply to partially alluviated bedrock channels 

[Hack, 1973], a value consistent with approximately loga- 
rithmic channel profiles observed in nature [Hack, 1957]. 
However, besides the pioneering work of Suzuki [1982], no 
comprehensive study of the controls on bedrock channel 
width has been done. 

Combining (2) -(7), the bedrock erosion rate for shear- 
stress dependent erosion can be written as 

œ = rA2aC(1-b)/3S2a/3 (8a) 
K k•k• 243 2•(1-o)/3f(q,)C?p•g2•/3 (8b) = kq 

Comparing (8) with (1), it can be seen that exponents rn and n 
are related to erosion process, hydraulic geometry, and basin 
hydrology according to 

m= 2ac(1- b)/3 
n= 2a/3 

•C -- 

(9a) 

(9b) 

(9c) 

Similar results are readily found for the unit stream-power 
case 

K - kek•ak•(1-t•)f(qs)paga 
m=ac(1-b) 

Thus the shear-stress and unit stream-power versions of the 
erosion law differ in detail but are not fundamentally different. 
Moreover, given that the exponent a in (2) is unknown, it 
would be difficult at present to discriminate between the unit 
stream-power and shear-stress models on the basis of field 
data. 

Equations (8b) and (lea) emphasize the multivariate con- 
trols on the effective coefficient of erosion K in (1) and 
convey the relative sensitivity of K to lithology, climate, and 
sediment load. Within the broad subset of fluvial erosion 

processes adequately described by (2) -(7), the m/n ratio dis- 
cussed by Seidl and Dietrich [1992], Moglen and Bras 
[1995b], Dietrich et al. [1996], Tucker [1996], and others is 
shown by (9) and (le) to be independent of the dominant 
erosion process (e.g., plucking versus abrasion), depending 
only on the relative rates of increase of discharge with drain- 
age area and of channel width with discharge regardless of 
whether one accepts a shear-stress or unit stream-power for- 
mulation. For typical values of the exponents in (6) and (7) 
(0.7 _< c _< 1 and b -- 0.4 - 0.6) the m/n ratio is predicted to fall 
into a narrow range near 0.5 (0.35 < m/n < e.6), consistent 
with empirical values derived fi'om field data [Howard and 
Kerby, 1983] and many derived fi'om map data relating chan- 
nel gradient and drainage area (see Table 1) [Flint, 1974; 
Tarboton et al., 1989; Willgoose et al., 1990; Tarboton et 
al., 1991; Willgoose, 1994; Moglen and Bras, 1995b; 
Slingerland et al., 1998]. Although the m/n ratio is known 
to strongly influence the concavity of equilibrium channels 
[e.g., Moglen and Bras, 1995a], many additional factors can 
affect profile concavity. Thus the restriction that the m/n 
ratio should fall in a narrow range does not necessarily imply 
that channel concavities are likewise restricted. Indeed, em- 

(lea) 

(10b) 

(10c) 

(led) 
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pirical estimates of channel concavity (often equated to the 
m/n ratio) outside the expected range have been reported in 
some landscapes [e.g., Sklar and Dietrich, 1998] and proba- 
bly reflect some combination of disequilibrium conditions, 
systematic downstream variations in either rock uplift rate or 
erodibility K, or regression of data that cross the bedrock- 
alluvial transition. 

3. Nondimensionalization 

It is useful to express the governing equation for the evo- 
lution of bedrock channel profiles in terms of dimensionless 
variables. This allows a preliminary scaling analysis of the 
evolution equation and simplifies analysis of the dynamics of 
river profile response to external forcings (e.g., tectonics or 
climate). Willgoose et al. [1991] give a nondimensionaliza- 
tion scheme for their transport-limited equation set, which is 
similar in spirit to the one presented here. In addition, 
Fernandes and Dietrich [1997] present a similar dimen- 
sional analysis of equations describing hillslope evolution 
by diffusive processes. 

For a detachment-limited system (i.e., bedrock channels), 
conservation of mass (rock) dictates the form of the channel 
profile evolution equation: 

dt 

where z is the elevation of the river bed, x is the distance 
downstream, and U is the rock uplift rate defined relative to 
the erosional base level. Combining (11) with (1) and em- 
ploying Hack's law [Hack, 1957], 

A = k•x • (12) 
where k, is a dimensional constant and h is the reciprocal of 
the Hack exponent, shows that river profiles are governed by 
a nonlinear kinematic wave equation [Whitham, 1974]: 

- (x,O -amxhmn-'l- I Xc -< X -< r dt 

with wave speed -Kk, mXhmS •4, where S = I(az/ax)l, L is the 
bedrock channel stream length measured from the divide, and 
the area-length exponent h is seen to vary over a narrow 
range fi'om 1.67 to 1.92 [Hack, 1957; Marltan et al., 1996; 
Rigon et al., 1996]. 

Nondimensionalization of the bedrock river profile evolu- 
tion equation first requires that we write (13) in general 
terms: 

z F(U,K,k a dx ) = • t (14) ,x, dz' 

The right-hand side of (14) has six independent variables in 
two dimensions (length and time), which therefore can be 
written as four independent nondimensional groups. Note 
that the exponents h, m, and n do not appear as variables on 
the right-hand side as these are part of the unspecified func- 
tion F. Similarly, the variable Xc introduced earlier (see Fig- 
ure 1) does not appear as this enters only as a boundary con- 
dition to the unspecified function F. In order to proceed with 
the nondimensionalization we introduce three representative 
scales (H, L, and Uo) to define the following dimensionless 
variables: 

z x U tU o 
z,=-- x,--- U,= t,=• (15) H L U o H 

U o = U'(x,t) (16) 
where H and L are the representative vertical and horizontal 
length scales, respectively, and an asterisk is used to denote 
all dimensionless variables. The choice of H/Uo as a charac- 
teristic timescale is convenient and assures that the dimen- 

sionless rate of bed elevation change (dz,/dt,) is of order 
unity: 

dz, 1 dz 

dt, = U'•'•' (17) 
The length scale H need not be equal to the bedrock fluvial 
relief Rf, though this makes a convenient choice if known. 

The fourth and final dimensionless group on the right- 
hand side must involve the variables U, K, and k,, and can be 
determined readily by rewriting (13) in terms of the dimen- 
sionless variables defined above: 

dz, = S, _ NE-lx, hml dz, ) n 
where the dimensionless uplift-erosion number N• is given 
by 

Uo k•-mLn-hmH-n N/r =-•- (19) 

Note that by definition, if the rock uplift rate U is steady and 
uniform, the dimensionless uplift rate U, is unity (equations 
(15) and (16)). 

The uplift-erosion number can be immediately identified as 
the critical dimensionless group governing the dynamics of 
the bedrock channel profile evolution equation (18). More- 
over, as with the familiar Reynolds and Froude numbers in 
fluid mechanics, dynamic responses associated with perturba- 
tions of the suite of variables Uo, K, ka, L, m, and H can be 
fully captured by simply considering responses to perturba- 
tions in the uplift-erosion number NE. For instance, changes 
in the rock uplift relative to base level U are dynamically 
equivalent to changes in the coefficient of erosion K. In addi- 
tion, covariance of empirically determined K values and the 
exponent m (the dimensions of K depend on m) [Sklar and 
Dietrich, 1998; Stock and Montgomery, 1999] does not 
complicate the dynamic behavior of the profile evolution 
equation as this effect is encapsulated within the uplift- 
erosion number. Consideration of steady state conditions 
will reveal the roles of the exponents h, m, and n in the form 
and dynamics of modeled river profiles. 

4. Steady State River Profiles 

In this section we explore the behavior of bedrock chan- 
nels as predicted by the shear-stress/stream-power model in 
order to draw out the significance of the issues outlined ear- 
lier in regard to channel profile form, the relationship be- 
tween equilibrium channel gradient and environmental 
controls (climate, lithology, and uplift rate), and the equilib- 
rium height of mountain ranges. In the analysis these envi- 
ronmental controls are all represented by the uplift-erosion 
number NE introduced in section 3, which can be quantita- 
tively interpreted as either reflecting tectonic forcing 
(through Uo) or climatic and lithologic forcing (through K). 
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4.1. Equilibrium Channel Gradient 

At steady state the river profile is by definition invariant 
in time (dz/dt = 0 and dz,/dt, = 0). Local erosion rate œ must 
everywhere balance the rock uplift rate. Setting dz,/dt, equal 
to zero and solving for dimensionless stream gradient S,, the 
steady state solution of (18) is readily obtained: 

(dZ*)NEl/ns,l/nx,-hm/n s,= = (20) 
Equation (20) shows that the slope exponent n largely 
dictates the sensitivity of stream gradient to changes in rock 
uplift rate, lithology, and climate (Figure 2). Equilibrium flu- 
vial relief will be shown later (equation (22)) to scale pre- 
cisely with the stream gradient and therefore is included in 
Figure 2 for convenience. Because only the sensitivity of the 
equilibrium gradient to differences in climate or uplift rate is 
of interest here, channel gradients are reported relative to a 
reference condition NEr calculated using the parameters listed 
in Table 2, reported here for completeness, although the 
actual values used are inconsequential. This convenient arti- 
fice is used throughout the paper to normalize illustrative 
plots with no loss of generality. For the restricted case of 
uniform block uplift (U is constant), uniform coefficient of 
erosion (K is constant), and no downstream changes in ero- 
sion process (n and m are constant), the dimensionless uplift 
rate U, is unity, and the uplift-erosion number captures all 
the dependencies of channel gradient on the rock uplift rate, 
lithology, and climate. 

As exemplified by (19) and (20), the equilibrium gradient 
of a bedrock channel reflects a balance between the rate of 
rock uplift U and the rate of channel incision per unit slope 
and area K. Importantly, the steepness of a river profile 
depends on the uplift-erosion number raised to a power given 
by the reciprocal of the slope exponent (l/n) (Figure 2). The 
significance of this fundamental prediction of (1) has not yet 
been widely appreciated [Tucker and Bras, 1998]. For a lin- 
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Figure 2. Sensitivity of dimensionless equilibrium channel 
gradient and dimensionless equilibrium fluvial relief to the 
uplift-erosion number NE as a function of the slope exponent 
n. In order to emphasize the sensitivity to changes in the 
uplift-erosion number both dimensionless channel gradient 
and dimensionless fluvial relief are shown relative to a refer- 
ence value noted with the subscript r. Reference values in all 
figures are computed with the parameters listed in Table 2. 
Note the log-log scale. 

Table 2. Parameter Values Used in Examples 

Parametera Value Dimensions Notesb 

œ 2],500 ILl --- 
H 2,900 [L] --- 
xc 320 [L] 105 m 2 source area 
k, 6.69 [L 2'h] Hack [1957] 
h 1.67 [ ] Hack [1957] 
m/n 0.50 [] --- 
K (n = 1) 2.00 x 10 -s [m]'2m yr '•] SS 
K (n = 2/3) 9.28 x 10 's [m•'2m yr '•] SS 
K (n = 2) 2.00 x 10 -s [m•'2• yr '•] SS 

aAll in mks units, except K as noted. 
bSS denotes Ks chosen to yield equivalent steady state profiles 

for U = 2 mm yr-1 for all n (for convenience only). 

ear erosion process (a = 1, equation (2) and n = 2/3, equation 
(9)), equilibrium channel gradient is very sensitive to 
changes in the uplift-erosion number. For a slightly nonlin- 
ear erosion process (n = 1, equation (9)), equilibrium channel 
gradient is linearly related to the uplift-erosion number. 
Finally, for a highly nonlinear process (n > 1, equation (9)), 
equilibrium channel gradient is only weakly dependent on 
the uplift-erosion number (Figure 2). 

Thus landscape response to tectonic regime is critically 
dependent on the slope exponent n. The direct dependence of 
the slope exponent n on the physics of fluvial bedrock ero- 
sion (equations (2), (9), and (10)) is powerful testimony to 
the need for field studies of these processes. Moreover, the 
m/n ratio plays no direct role in the sensitivity of channel 
gradient and relief to the uplift-erosion number NE. 

4.2. Equilibrium Longitudinal River Profiles 

4.2.1. River profile concavity. Assuming simple block 
uplift (dU/dx = 0) and uniform lithology, precipitation, and 
erosion process (dK/dx = 0; m and n are constants), (18) can 
readily be integrated to derive an expression for dimension- 
less streambed elevation z, as a function of dimensionless 

distance downstream x,: 

--½ 1 (21a) 

z,(x,)-z,(1)-NE1/nu,1/nln(x,) hm-1 (2lb) 
where L is total bedrock stream length and z,(1) is the dimen- 
sionless elevation at the basin outlet (or at the bedrock- 
alluvial transition). Equations (21a) and (2lb) are valid for 
X,c _< x, _< 1 only, where X,c is the dimensionless distance 
downstream fi'om the divide at which fluvial processes 
become dominant [Montgomery and Foufoula-Georgiou, 
1993] (See Figure 1). 

Although calculations using the restrictive assumptions 
incorporated into (2 la) and (2 lb) are illustrative (Figure 3), 
we stress that nonuniform uplift rates [i.e., Adams, 1985; 
Koons, 1989], orographic precipitation [Beaumont et al., 
1992; Masek et al., 1994b], and systematic downstream 
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Figure 3. Equilibrium channel profiles and fluvial relief 
(assuming spatially constant U, K, m, and n). (a) Longitudi- 
nal profile concavity is controlled by the hm/n ratio (concav- 
ity index). Exponent h is held constant at the observed value 
of 1.67 [Hack, 1957]. Natural channels are approximately 
logarithmic in form: consistent with h = 1.67- 1.92 and m/n = 
1/2. (b) At steady state the topographic envelope of moun- 
tain ranges is set by the longitudinal profiles of the stream 
network plus the relief on hillslopes and colluvial channels 
(Rhc). A theoretical profile, in dimensional form (trunk chan- 
nel' solid black line; tributary channels (projected into 
plane)' dashed black lines), computed with U = 5xl 0 -3 ma -], K 
= 1.2x10 -s, and n = 1 (other parameters as listed in Table 2) is 
shown (for Xc _( x _(L) for direct comparison against data for a 
divide-to-outlet longitudinal profile (trunk channel only) for 
an intermediate-sized basin in northern Taiwan (Table 1). 
Stair steps in the profile from Taiwan probably reflect noise in 
the digital elevation data. (c)Dimensionless fluvial relief 
increases slowly with range half width L for all values of n 
and uplift-erosion number NE (shown for n = 1). 

variations in sediment loading in streams [Sklar and 
Dietrich, 1997; Slingerland et al., 1997; Sklar and Dietrich, 
1998] all play potentially important roles in even the sim- 
plest realistic scenario. For steady, uniform uplift, constant 
coefficient of erosion, and constant area and slope exponents 
(m and n) the ratio hm/n dictates the equilibrium form of river 
profiles (Figure 3a). For typical values of h (1.67 < h < 1.92) 
and the rn/n ratio (0.35 < rn/n < 0.6) the ratio hrn/n ranges 
fi'om 0.58 to 1,15, and predicted river profiles are approxi- 
mately logarithmic, as documented by Hack [1957] and illus- 
trated in Figure 3b. 

Although the steady state form (concavity) of river profiles 
subjected to the constraints outlined above is predicted to be 
relatively insensitive to the multivariate controls on bedrock 
erosion processes, any deviations fi'om steady state, or any 
systematic downstream changes in uplift rate (e.g., tilting) or 
erodibility (e.g., change in dominant process, sediment 
supply, and cover)will complicate the interpretation of river 
profile data in terms of the m/n ratio. For instance, where 
uplift rate increases monotonically downstream (dU/dx > 0; 
back-tilting), profile concavity will be diminished and vice 
versa where uplift rate decreases downstream (dU/dx < 0). In 
addition, spatially variable controls on erodibility (K)may 
play an important role in channel profile form [Sklar and 
Dietrich, 1998]. Because of such difficulties, Seidl and 
Dietrich [1992] proposed a method for extracting rn/n ratios 
from differences of channel and tributary gradients at tributary 
junctions. Although their analysis did not account for pos- 
sible differences in alluvial cover or channel width between 

tributary channels, their method requires no assumptions 
regarding steady state or equilibrium conditions. However, 
their finding of m/n = 1 for streams in the Oregon Coast 
Range is at odds with other data (i.e., reasonable values for 
exponents in (6) and (7) and logarithmic channel profiles) 
and has not yet been explained. 

4.2.2. Equilibrium fluvial relief and the height of 
mountain ranges. Over long timescales the height of moun- 
tain ranges is limited by either crustal strength [e.g., Molnar 
and Lyon-Caen, 1988; Bird, 1991; Masek et al., 1994a] or by 
a balance between rock uplift and erosion [e.g., Adams, 1985; 
Koons, 1989], whichever is more restrictive. In the case 
where crustal strength is not limiting, the equilibrium height 
of a fluvially sculpted mountain range is dictated by four fun- 
dmental geomorphic controls: (1) range width, (2) longitu- 
dinal profiles of transverse bedrock streams, (3) the length 
and gradient of colluvial channels above the fluvial network, 
and (4)the length (= drainage density) and gradient of hill- 
slopes (see Figure 1). 

Equilibrium fluvial bedrock channel relief Rf is given by 
the difference between the elevation at the headwater of the 

fluvial channel (i.e., at x = Xc) and the elevation of the basin 
outlet or the bedrock-alluvial channel transition (i.e., at x = 
L). In terms of dimensionless variables, from (21), fluvial bed- 
rock channel relief is given by 

g,f : NE1/ns,1/nll-•!-l(1 - X,c 1-hm/n) 
hrn 

½1 
n 

(22a) 

R,f =-NE1/nu, 1In lnx, c hm = 1 (22b) 
n 
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Unsurprisingly, equilibrium fluvial relief varies in exactly 
the same way with the uplift-erosion number NE as does the 
equilibrium channel gradient (see Figure 2). Thus the slope 
exponent n in (1) emerges once again as a critical unknown. 
Recall that in the case of uniform rock uplift the dimension- 
less uplift rate U, is unity, and the uplift-erosion number 
fully captures the dependence of fluvial relief on environ- 
mental controls (lithology, climate, tectonics, and basin size). 
Thus fluvial relief depends on rock uplift rate to the 1/n 
power, the coefficient of erosion to the -1/n power, and stream 
length to a small power (-0.15 - 0.42 for typical values of 
hm/n), as illustrated in Figures 2 and 3c. In plotting Figure 
3c it is assumed that the largest transverse drainages (length 
L) scale with range half width. 

Equation (22) makes the direct prediction that all else 
being equal, greater relief is expected for lower values of the 
coefficient of erosion K. That is, greater relief is expected for 
more resistant lithologies and lower precipitation rates. 
Although this result is not surprising, it runs counter to fre- 
quent arguments in the literature that greater precipitation 
leads to greater relief [e.g., Fielding et at., 1994; Masek et at., 
1994b]. 

Theoretical mainstream and tributary profiles calculated 
with (21a) are plotted in Figure 3b in dimensional form for 
direct comparison with data from a channel typical of those 
draining the northern Central Range of Taiwan. In this and 
other tectonically active, fluvially sculpted landscapes (see 
Table 1 and Figure 1)the total relief is dominated by the ele- 
vation drop of bedrock channels, and equilibrium range crest 
elevation can be expected to vary strongly with the fluvial 
relief. Moreover, Schmidt and Montgomery [1995] have 
argued that hillslope relief rapidly attains a maximum in 
actively incising landscapes. Where this condition holds, 
the relationship between uplift rate, climate, and range crest 
elevation above base level can be described to first order by 
(22). However, drainage density may decrease with rock 
uplift rate [e.g., Howard, 1997; Tucker and Bras, 1998], 
resulting in longer hillslopes and possibly greater hillslope 
relief (and proportionately reduced fluvial relief). In addi- 
tion, little is at present known about the controls on either 
the length (represented by Xc)or gradient of debris flow- 
dominated channels [Howard, 1998]. Thus, although equi- 
librium range crest elevation in fluvially dominated land- 
scapes can be described to first order by (22), this relation- 
ship strictly relates only to the fluvial relief. 

5. Transient Response to Tectonic Forcing 

Thus far we have considered only equilibrium (steady 
state) channel profiles. Here we address the questions: (1) 
under what conditions can we expect river profiles to be in 
equilibrium with the imposed tectonic, lithologic, and 
climatic setting?, and (2) over what timescales will a river 
system return to equilibrium following a change in tectonic 
or climatic conditions? We focus our discussion on tectonic 

perturbations, but the analysis is not significantly different 
for sudden changes in climate. 

We consider two types of tectonic perturbation away from 
a base steady state: (1)a single, sudden fall in base level and 
(2) a step function increase in uplift rate. In all cases we 
assume that K, U, m, and n do not vary along the river profile. 
We do not consider any time lags associated with an 
isostatic response to denudational unloading, any time lags 

in the response of hillslopes to channel incision [e.g., 
Fernandes and Dietrich, 1997], nor any feedbacks due to 
either interaction between channels and hillslopes [Schumm 
and Parker, 1973; Schumm, 1979] or coupling with down- 
stream depositional systems [e.g., Humphrey and Heller, 
1995]. 

Before deriving results for a dimensionless response 
timescale T, it is necessary to return to the dimensional 
analysis presented earlier. We argued that the representative 
rock uplift rate Uo was the appropriate scaling term for the 
rate of change of channel bed elevation (dz/dt). However, we 
could equally well have introduced a characteristic timescale 
T such that 

'•7 = -•( dt, • = Uø dt, (23a) 
where 

r • 
H 

Uo (23b) 
Thus a consistent dimensionless response timescale can be 
defined as 

T*=UøT (24) H 

5.1. Sudden Base Level Fall 

The dimensionless response timescale for a sudden, finite 
base level fall T,b can be readily derived from the profile evo- 
lution equation (18), which, as first recognized by 
Rosenbloom and Anderson [1994], has the form of a non- 
linear kinematic wave equation. The kinematic wave speed is 
the upstream rate of knickpoint migration and governs the 
rate at which changes in boundary conditions can be commu- 
nicated across a landscape. From (13) the kinematic wave 
speed, in general, varies with both drainage area and stream 
gradient: 

re -- -gka mXhmSn-1 (25) 
Equation (25) can be written in the equivalent dimensionless 
form (see equation (18)): 
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Figure 4. Schematic illustration of knickpoint migration in 
response to a sudden base level fall (coseismic, eustatic, 
stream capture, etc.) on a channel otherwise in a steady state 
condition. Knickpoint migration speed C, is given by (26). 
Total knickpoint propagation time from L to x½ defines the 
system response time. 
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Ce, =_NE-lx, hm( dg* l n-1 •,•,-, ) (26) 
Thus (18) dictates that to first order a sudden drop in base 
level will produce a knickpoint that propagates upstream at 
an ever decreasing rate from the point of disturbance, without 
attenuation (Figure 4). However, the dependence of the wave 
speed on channel gradient for n ½ 1 may cause changes to the 
shape of the kinematic wave, possibly producing shock 
waves that alter the rate of translation [Whitham, 1974]. For 
this reason the derivation presented here should be consid- 
ered preliminary in nature and only valid for infinitesimal, 
step function perturbations. However, the derivation pre- 
sented in the next section for the response to a sudden 
increase in uplift rate is not subject to this limitation and 
yields a similar expression for the response time, suggesting 
that the kinematic wave solution is, indeed, robust. 

Both drainage area and stream gradient vary with position 
along the stream, so in the most general case it is difficult to 
compute the response time, which equates to the integrated 
time required to carry a signal from the basin outlet (x, - 1) to 
the upper limit of fluvial channels (x - X,c). However, for the 
restricted case of a small perturbation away fioom steady state 
the form of dz,/dx, is known. Substituting (20) for the equi- 
librium dimensionless channel gradient, the dimensionless 
kinematic wave speed (26) can be written as a function of 
dimensionless distance downstream: 

(Ce* )s s = -NE -1/nU*l-1/nx*hm/n (27) 
To a first approximation, dimensionless response time T,b 

is found by integrating the transit time of the kinematic wave 
along the length of the stream (1 > x, > X,c): 

ß X* c 

1 

hm 
½1 

n 

_N E1/nU,1/n-1 hm T, b = lnx, c • = 1 
n 

(28) 

(28c) 
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Figure 5. Sensitivity of response time to a sudden base level 
fall (T,•,; assuming spatially constant U, K, m, and n). Model 
parameters used to determine reference uplift-erosion number 
NL- and T,b are reported in Table 2. (a) Dimensionless 
response time increases monotonically with uplift-erosion 
number NE, with greater sensitivity for lower slope exponent 
n. Note the log-log scale. (b) Response time Tb variably 
increases, remains constant, or decreases with uplift rate U 
depending on whether the slope exponent n is less than, 
equal to, or greater than unity. Note the log-log scale. 

Equation (28) shows that dimensionless response time 
increases monotonically with the uplift-erosion number NE 
for all n (Figure 5a). However, it is important to recognize 
that although dimensionless rock uplift rate U, is unity for 
the uniform uplift scenario considered here, response time 
does in fact vary differently with rock uplift rate U and the 
coefficient of erosion K, as indicated by the different expo- 
nents in the uplift-erosion number Ne and the dimensionless 
rock uplift U, terms: 

Tb = H T*b • mNœ1/nWo -1w*l/n-1 • mK-1/nwl/n-1 (29) 
Uo 

Response time is plotted in dimensional form as a function 
of rock uplift rate in Figure 5b to emphasize this difference in 
scaling. Because only the sensitivity of predicted response 
time to differences in uplift rate is of interest here, response 
times are reported relative to a reference condition Ur calcu- 
lated using the parameters listed in Table 2. Interestingly, 

response time increases rapidly with uplift rate for n < 1, is 
independent of uplift rate for n = 1, and decreases rapidly 
with uplift rate for n > 1 (Figure 5b). The reason for the sensi- 
tivity of the relationship between response time and uplift 
rate is clear fi'om (26): for n < 1 the kinematic wave speed is 
inversely related to channel gradient; for n = 1 the wave 
speed is independent of gradient; and for n > 1 the wave 
speed increases with gradient. Finally, response time is 
shown to be only weakly a function of basin size (the expo- 
nent on stream length (1 - hrn/n) typically ranges from -0.15 
to 0.42). This latter finding follows because downstream 
channel segments with large drainage areas respond quickly; 
the time required for upstream headwater channel segments to 
adjust effectively limits the response time of the entire basin. 
Thus tectonic disequilibrium in the landscape is most likely 
recorded in small headwater catchments and on hillslopes 
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that have not yet responded to rapid adjustments of the chan- 
nel system. Further, a field-testable prediction of this model 
is the location of knickpoints correlated with known (co- 
seismic or eustatic) base level drops [e.g., see Rosenbloom 
and Anderson, 1994]. 

5.2. Sudden Increase in Uplift Rate 

Response time for a step function increase in uplift rate Tt• 
is derived in a different manner. Application of the kinematic 
wave solution is not straightforward in this case because this 
problem entails a significant deviation from the base steady 
state and because the channel is subjected to a sustained rate 
of base level fall, rather than a discrete perturbation. In fact, 
the derivation presented here is more robust than the kine- 
matic wave solution above as it is not subject to any uncer- 
tainties related to knickpoint shape evolution during 
upstream migration. 

An increase in uplift rate initiates a wave of erosion that 
propagates upstream (Figure 6). Equilibrium within the flu- 
vial system is reached when the wave of erosion reaches the 
fluvial channel tips (x = Xc), as argued above. We reason that 
arrival of this migrating knickzone at the fluvial channel tips 
coincides with the time that they attain their final elevation 
(ZAXc)). In other words, the migrating knickzone defines the 
boundary between a downstream segment of the profile that 
has achieved its final equilibrium gradient and an upstream 
segment that has not yet steepened in response to the change 
in rock uplift rate. Barring the effects of numerical diffusion, 
this is precisely the behavior observed in numerical solu- 
tions of the profile evolution equation (18). Thus response 
time is set by the time required to elevate the fluvial channel 
tips from an initial equilibrium position (zi(xc)) to a final 
equilibrium position (Figure 6): 

(xc)- + (30) 

4 

z t (x c ) '•• final steady state profile E 

• dz/dt =Uf '•i =Uf -Ui 
o 

• of erosion 

z,(xc) •,.j .•..•..œ, • 
0 5 10 15 20 25 

Distance from Divide (kin) 

Figure 6. Schematic illustration of the transient response 
(solid line) of an equilibrium channel (shaded line) to a sud- 
den increase in rock uplift rate used in the derivation of 
response timescale Ts. Rock uplffi rates •e indicated by 
solid arrows; headwater erosion rates •e indicated by 
shaded arrows. An increase in uplffi rate instigates a wave of 
erosion that propagates upstream. Channel headwater 
reaches •e uplffied but do not respond until the wave of ero- 
sion reaches them. Accordingly, z(xO increases at a constant 
rate (dz/dt = U•- UO until a new equilibrium is reached 
(dashed shaded line). 

Since the upper reach of the fluvial channel does not 
respond to the change in uplift rate until the wave of erosion 
reaches this point, from (11) the time rate of change of the ele- 
vation of the fluvial channel tips Z(Xc) is given by the differ- 
ence between the newly imposed uplift rate Uf and the previ- 
ously established erosion rate (ci(Xc)): 

Rearranging and noting that for perturbation away from an 
initial steady state the erosion rate at the fluvial channel tips 
is equal to the initial uplift rate (c•(Xc)= UO, we obtain the 
simple result: 

Tu = U f - U i (32) 
Using (32), the system response timescale can be directly 

estimated from field observations, provided certain restrictive 
conditions are met: (1) adjacent terranes of similar climate and 
lithology are experiencing different, known rock uplift rates, 
and (2) channel profiles appear to have adjusted to imposed 
uplift rates; profiles have smooth logarithmic forms with no 
indication of an active, propagating knickzone [Snyder and 
Whipple, 1998; Snyder et al., submitted manuscript, 1999]. 
These conditions will rarely be met, however, and it is useful 
to write (32) in terms of nondimensional rock uplift rate, 
system length, and rock erosion parameters, using (24) for 
dimensionless timescale: 

U,f(]_$) (33a) 
Si 

•f=f (33b) 
where Uo/is chosen as the reference rock uplift rate. 

Using (21) to determine z,i(X,c) and z,•(X,c), substituting 
into (33), and rearranging gives an algebraic relationship for 
dimensionless response timescale T,t•: 

E ta,f 
1- hrn/ n 

• 1 (34a) n 

ß r 1/nrr l/n-1 (1 -" E •'*f lnx, c _ fl/n) hm 
= --= 1 (34b) T*u (l-f) n 

Note that for the case of uniform rock uplift rate treated here 
the dimensionless uplift rate term U,/is unity. As in the 
derivation of Tb, we have assumed block uplift (dU/dx = O) 
and spatially uniform coefficient of erosion and erosion proc- 
ess (dK/dx = 0; n and m are constants). For Ui = 0 the initial 
condition is a horizontal plane, and the erosion rate at the 
fluvial channel headwater is zero until the wave of erosion 

has swept through the entire fluvial system. In this case the 
response time is simply the quotient of the equilibrium eleva- 
tion above the base level of the channel at x = Xc and the 

uplift rate Uo/. Interestingly, (34) reduces to the kinematic 
wave solution (equation (28)) in this case (Ui = 0; f= 0). In 
other words, it takes as long for a discrete base level fall to be 
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Figure 7. Timescale of response to a step function increase in 
uplift rate (Tu; assuming spatially constant U, K, m, and n). 
Reference values of rock uplift rate Ur and the response time- 
scale Tur used to normalize the plots are given by or derived 
from parameter values reported in Table 2. Note that if the 
initial uplift rate is zero (Ui = 0), the response time is given 
by the base level fall solution (Figure 5). (a) Sensitivity of 
response time to the magnitude of the increase in uplift rate 
(UdUf) for the case where the final uplift rate Uf is held con- 
stant. Response time increases with U• (increasing UdUf) for 
n < 1, is independent of Ui for n = 1, and decreases with U• for 
n > 1. (b) Sensitivity of response time to the magnitude of the 
increase in uplift rate (UdUf) for the case where the initial 
uplift rate U• is held ccnstant. Response time increases with 
Uf (decreasing UdUf) for n < 1, is independent of Uf for n =1, 
and decreases with Uf for n > 1. 

than with the coefficient of erosion K. For this reason, 
response time is plotted in dimensional form as a function of 
the rock uplift rate relative to a reference condition (Figure 7). 
Additionally, the appearance of both initial and final rock 
uplift rates in both the numerator and the denominator 
(through fand NE) indicates that there is an additional level 
of complexity in the dependence of response time on rock 
uplift rates. Accordingly, Figure 7a is plotted to illustrate 
the relationship between response time and final uplift rate Uf 
and Figure 7b illustrates the relationship between response 
time and initial uplift rate Ui. 

Some nonintuitive effects are revealed in the relationship 
between the magnitude of the change in uplift rate and 
response time (Figure 7). As seen in the case of a sudden base 
level fall, for n = 1, response time is independent of both the 
final uplift rate Uf and the magnitude of the change in uplift 
rate (Figures 7a and 7b). Interestingly, for the case n > 1, sys- 
tem response time decreases for smaller changes in uplift rate 
(i.e., as UdUf approaches 1) where Uf is held constant (Figure 
7a) but actually increases for smaller changes in uplift rate 
where U• is held constant (Figure 7b). Conversely, for the 
case of n < 1, response time increases for smaller changes in 
uplift rate where Uf is held constant (equation (34); Figure 
7a) and decreases for smaller changes in uplift rate where U• is 
held constant (equation (34); Figure 7b). This yields the 
seemingly odd result that for n < 1 it takes significantly 
longer to adjust to a minor change in uplift rate than it does 
to raise the entire range starting from a horizontal plane. The 
reason for this is twofold: (1) the relationship between uplift 
rate and equilibrium channel headwater elevation is non- 
linear in the slope exponent n (equation (21)), and (2) the rate 
at which the channel headwater is elevated depends on the 
initial slope at x = Xc. 

Simplifying (34) and writing it in dimensional form, we 
see that the change in channel headwater elevation required 
with an increase in uplift rate scales as 

while the rate of change of channel headwater elevation 
scales with the difference between final and initial rock uplift 
rates' 

dt oc U f - U i (36) 
This finding has important implications for the differing 
dynamic response of landscapes (both real and simulated) 
etched by different sets of erosional processes (e.g., abrasion 
by suspended load, abrasion by saltation load, and pluck- 
ing), through their control of the slope exponent n. 

translated the length of a channel system at equilibrium with 
the prevailing uplift rate as it would to uplift the entire range 
from base level, a somewhat surprising result with poten- 
tially interesting field applications. 

Equation (34) reveals a rather complex relationship 
between the system response timescale, the initial condi- 
tions, and the dominant erosion processes that govern the 
slope exponent n. As with the response time to sudden base 
level fall, because T,s is normalized by average uplift rate Uof, 
the actual response time scales differently with uplift rate U 

6. Conclusions: Research Needs 
and Approaches 

Review of the underlying assumptions and approxima- 
tions of the shear-stress/stream-power erosion model, consid- 
eration of steady state river profiles, and exploration of the 
controls on bedrock channel response times establish in no 
uncertain terms that resolving questions regarding the non- 
linearity of the dominant bedrock erosion process(es) are 
paramount to further fundamental progress in understanding 
landscape response to tectonic and climatic change. Dimen- 
sional analysis demonstrates that a single nondimensional 
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group, here termed the uplift-erosion number, encapsulates 
the dependence of predicted erosion rates on tectonic, 
lithologic, and climatic variables. Our sensitivity analysis of 
the dimensionless river profile evolution equation (18) 
reveals that both the magnitude and timescale of the bedrock 
channel response to an imposed tectonic or climatic forcing 
are largely governed by the uplift-erosion number raised to a 
power determined by the slope exponent n in the stream- 
power erosion law (equation (1)). Also, the much discussed 
m/n ratio is shown to influence significantly the shape (and 
thereby response timescale)of river profiles. However, the 
m/n ratio neither influences the sensitivity of channel gradi- 
ent, relief, or response timescale to changes in the uplift- 
erosion number nor the dependence of this sensitivity on the 
slope exponent n. Furthermore, for the broad subset of fluvial 
erosion processes adequately described by (2)- (7)the m/n 
ratio is shown to be restricted to a narrow range (0.35 - 0.6). 

The slope exponent n, which emerges from the analysis as a 
critical unknown, has been shown above to be directly 
related to the degree of nonlinearity in the relationship 
between erosion rate and shear stress (or stream power). Thus 
the dominant fluvial erosion processes directly and pro- 
foundly influence the dynamic behavior of fluvial bedrock 
stream channels. Clearly, it is not satisfactory simply to 
assume that erosion is linearly related to shear stress (or 
stream power); the relationship between channel gradient 
and erosion rate and its potential variation between field set- 
tings are first-order problems in tectonic geomorphology. 

As the slope exponent n is directly related to the physics 
of the active erosion processes, directed small-scale field and 
modeling studies of these processes are greatly needed. 
Potential erosion processes include plucking, bashing by 
bedload, abrasion by suspended load, cavitation, solution, 
and weathering [Alexander, 1932; Maxson and Campbell, 
1935; Barnes, 1956; Foley, 1980; Wohl, 1993; Zen and 
Prestegaard, 1994; Hancock et al., 1998; Sklar and 
Dietrich, 1998; Whipple et al., submitted manuscript, 1999]. 
A number of field and laboratory studies are underway [e.g., 
Slingerland et al., 1997; Sklar and Dietrich, 1998; Snyder 
and Whipple, 1998; Snyder et al., submitted manuscript, 
1999], but many questions remain unanswered. 

Study of the variation in the effective erosion coefficient K 
accompanying adjustments to imposed boundary conditions 
is also greatly needed. In most modeling studies to date, 
including our analysis presented above, the coefficient of 
erosion has been treated as a constant (dK/dt = 0; dK/dx = 0). 
In addition to the obvious assumption that lithology and 
precipitation be held constant in space and time, holding K 
constant carries the implicit assumption that slope is the 
only morphologic variable that may adjust in response to a 
change in boundary conditions. Even in the simplest cases, 
this assumption will often be violated, with either the 
amount of alluvial/colluvial cover [e.g., Howard, 1998; Sklar 
and Dietrich, 1998] or the channel width changing in con- 
cert with the gradient. Spatial and temporal variations in the 
coefficient of erosion may importantly influence the dynamics 
of river response to tectonic and climatic forcing. 

The classic problem of scaling observations of local ero- 
sion rates and processes up to the reach scale relevant in 
landscape evolution models is, of course, a difficulty faced by 
small-scale process studies. A major hurdle in this effort will 
be finding an effective way to constrain the reach-averaged 
competition and interaction of the various erosion processes 
active at the bed. Answers to several questions are needed. 

Which process is dominant under what conditions? What 
are the appropriate forms of (2) and (3)? Over what distance 
is an appropriate gradient measured? Similarly, the need to 
integrate over the full spectrum of flood discharges to derive a 
meaningful long-term average rate is a problem [Willgoose, 
1989; Tucker and Bras, 1997]. One approach that may help 
to bridge this gap is to pursue small-scale process-oriented 
field studies in conjunction with reach-scale modeling 
studies, pursuing top-down and bottom-up approaches in 
concert. Field areas encompassing known differences in 
either climate, lithology, or uplift histories but similar in 
other respects will be critical to such studies [e.g., Merritts 
and Vincent, 1989; Snyder and Whipple, 1998; Snyder et al., 
submitted manuscript, 1999]. Moreover, field areas where a 
transient response to a recent climatic or tectonic perturba- 
tion from a known initial condition can be studied would be 

most advantageous because o? the sensitivity of predicted 
transient responses to critical model parameters. 

Notation 

Variables 

re 

f(qs) 
f 
g 

H 

L 

Q 

R•c 
s 

Sc 

t 

v 

w 

x 

Xc 

vertical erosion rate [LT-•]. 
density of water [ML -3]. 
basal shear stress [ML '•T'2]. 
upstream drainage area [L 2]. 
critical upstream drainage area for fluvial erosion 
processes [L 2]. 
kinematic wave speed [LT'•]. 
hydraulic friction factor. 
average flow depth [L]. 
erodibility scaling factor for sediment loading. 
rock uplift rate ratio. 
gravitational acceleration [LT'2]. 
representative vertical length scale [L]. 
total bedrock stream length [L]. 
discharge [L 3T-•]. 
fluvial bedrock channel relief [L]. 
hillslope and colluvial channel relief [L]. 
streamwise channel bed gradient. 
average gradient of hillslope/colluvial channel 
profile. 
time [7]. 
response time for sudden baselevel fall [7]. 
response time for step increase in uplift rate [T]. 
rock uplift rate defined relative to erosional base 
level [LT4]. 
average rock uplift rate defined relative to erosional 
base level [LT-•]. 
mean velocity [LT'•]. 
channel width [L]. 
streamwise distance from divide [L]. 
critical distance for transition to fluvial erosion [L]. 
elevation of stream bed [L]. 

Exponents 
a shear-stress or stream-power exponent. 
b exponent in channel width-discharge relation. 
c exponent in discharge-area relation. 
h exponent in area-length relation (reciprocal 

Hack's exponent). 
area exponent, erosion rule. 
slope exponent, erosion rule. 



WHIPPLE AND TUCKER: DYNAMICS OF THE STREAM-POWER LAW 17,673 

Dimensional constants 

K coefficient of erosion [L •-2m 
ka area-length coefficient [L 2-h]. 
kb total erodibility [M-•L a+lr2a-1 (shear-stress) or M 

LT 3a-i (stream-power)]. 
ke intrinsic erodibility [M-aL a+lT 2a-i (shear-stress) or 

M -• LT 3a-1 (stream-power)]. 
kq discharge-area coefficient (effective precipitation) 

[L 3-2½ T-l]. 
channel width-discharge coefficient [L •-3b T •]. 

Dimensionless variables 

re, 

NEr 

R,f 
S, 

t, 

T,• 

r,u 

X*c 

dimensionless kinematic wave speed. 
uplift-erosion number. 
reference value of the uplift-erosion number. 
dimensionless fluvial bedrock channel relief. 

dimensionless channel gradient. 
dimensionless time. 

dimensionless response time for sudden base level 
fall. 

dimensionless response time for step increase in 
uplift rate. 
dimensionless rock uplift rate. 
dimensionless distance downstream. 

dimensionless critical distance for transition to 
fluvial erosion. 

dimensionless streambed elevation. 
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