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Text S1. 23 
Trend of XH with crater size disfavors brief wet events. 24 
Bigger craters were not any drier than small craters (there is a trend to bigger craters being 25 
wetter, p<10-4, with XH<10 found mainly in large craters, p=0.003) (Fig. 4c). This argues against 26 
brief wet events, for the following reason. Let the energetic upper limit on evaporation E be 27 
Emax. For a given lake, if we have lake area A, drainage area D, and a terrain model, we know the 28 
minimum total runoff production Ptot in order to flood area A. If the wet event was very brief 29 
(short timescale τ), then Ptot /τ ≫ Emax. But if Ptot /τ ≫ Emax, then during a wet event, small craters 30 
would fill up more than big craters. So, brief wet climates predict higher XH for bigger craters 31 
(XH ∝ Rcrater

2/3) because small sinks fill quicker than big sinks. That is in contradiction to the 32 
observations. For fiducial values of Emax = 1 m/yr (Irwin et al. 2015) and Ptot = 30 m, each wet 33 
event must have lasted at least decades. This disfavors the scenario in which late-stage river-34 
forming climates were powered by the greenhouse forcing from a single volcanic eruption, or 35 
the energy of a distant impact. 36 
 37 
An alternative way of reaching the same result is as follows. Approximate a lake with volume V 38 
as an inverted cone, V = ⅓ π Rlake

2 h, where h is lake depth. Suppose that crater floors have the 39 
same floor slope s, so V = ⅓ s π Rlake

3. Considering a range of craters with different sizes, for 40 
uniform runoff production V ∝ Rcrater

2. Thus Rlake ∝ Rcrater
2/3  (Rlake/ Rcrater) ∝ Rcrater

–1/3. Since for a 41 
closed basin XH ∝ (Rlake/ Rcrater)2, XH ∝ Rcrater

2/3. Contrary to this prediction, XH is negatively 42 
correlated with Rcrater (Fig. 4c). This disfavors the brief-wet-event hypothesis. However, brief 43 
impact-triggered runoff appears to have occurred at some locations, such as Mojave crater 44 
(Goddard et al. 2014). Future work might use variable timescales, and full CTX DTM terrain 45 
models, to evaluate allowed combinations of timescale and XH (Stucky de Quay et al. 2020). 46 
 47 
Details of analysis. 48 

To check if the XH trends could be a statistical artifact, we used two approaches. First, we 49 
counted the number of hard constraints falling into rectangular regions in Fig. 4 (bold 50 
numbers in Fig. 4). We define a hard constraint to exclude channel-stops, candidate lake 51 
deposits, and basins where data permit XH on both sides of XH = 10. (This is conservative in that 52 
channel-stops are probably good paleohydrologic constraints). This leaves 46 data points. The 53 
data are not evenly distributed between the rectangular regions. To find the probability that 54 
the trends result from chance, we resampled-with-replacement from the hard-constraint 55 
occurrences. Resampling showed p = 0.0017 for the latitude trend (lower XH at latitudes S of 56 
10°S), p = 0.0034 for the crater-diameter trend (lower XH for crater diameter > 60 km), and p = 57 
0.0134 for the elevation trend (lower XH at elevations < -1500m). As an alternative approach to 58 
uncertainty quantification, we randomly sampled aridities from a log-uniform prior on 59 
XH = {0.1, 104}, clipped on a per-basin basis to satisfy the geologic constraints. (We did not 60 
resample basin occurrence in this approach, only the uncertainty on XH within each basin). This 61 
approach uses all 223 measurements and 118 basins. For each bootstrapped ensemble of 62 
basin aridities, we calculated the number of bootstrapped data falling into the rectangular 63 
regions shown in Fig. 4. Then, as for the first approach, we assessed trend agreement. From 64 
104 bootstraps, we found that in all cases the latitudinal trend is recovered, in all cases the 65 
crater-diameter trend is recovered, and in 9422 cases the elevation trend is recovered. We did 66 
a sensitivity test using a different log-uniform prior, XH = {0.1, 1014}. The sensitivity test results 67 
were unchanged for the latitude trend and crater-diameter trend and increased to 9695/10000 68 
for the elevation trend. We conclude that systematic errors are more important than random 69 
error in our analysis.  70 
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 80 
Location Evidence (pre-fluviolacustrine-sed or syn-

fluviolacustrine-sed impact craters internal to AHi 
impact rims) (ø = diameter) 

Main-crater 
diam. (km) 

Estimate [*] 
of Time Gap 

83°E 30°S 
(Nako) 

Rivers/lakes activity postdate ejecta from large crater 
(40 km diameter?) to the E  long time gap 

43 At least Gyr

167°E 10°S 
(Reuyl) 

ø = 6 km crater on SW side contains fan. 86 0.4 Gyr

303.5°E 7.6°S ø = 2 km crater inside large crater (on W side) has inlet 
breach or alcove. 

45 0.2 Gyr

311°E 8°N Contains ø = 11 km crater that has alcoves, fans, and a 
possible lake deposit. [**] 

68 0.2 Gyr

326°E 23°N 
(Wahoo) 

Material with lineations perpendicular to high relief 
grades into wind-eroded material that is itself 
embayed by smoother, ramp material with much less 
wind erosion. Channel also postdates wind erosion. 

67 At least Myr 
(to allow 
time for 

wind 
erosion) 

84°E 25.4°N  
(Peridier) 

ø = 9 km crater on NW side is prefluvial. 100 0.6 Gyr

22°E 32°N 
(Cerulli) 

Channel crosscuts ø  = 7 km crater on the SW rim. 130 0.2 Gyr

144°E 38°S Exit breach on ø  = 2km crater on E side (internal to 
main crater). 

47 0.2 Gyr

187°E 30°S FCBD postdates ejecta from ø  = 10 km crater on E rim 
(which itself contains an FCBD). 

31 6.5 Gyr (sic)

297.5°E 3°N Inlaid ø = 4 km crater inside W rim has exit breach into 
main crater. 

27 2 Gyr

280°E 36°S Probable exit-breach crater (ø  = 6 km), inside N rim. 69 0.6 Gyr
326°E 26°S 
(Holden) 

Noted by Irwin et al. (2015) and Kite et al. (2017). 154 At least Myr

Kite et al. 2017 
sites (14 
craters) 

Interbedded craters. See Kite et al. 2017. Varies 
between 

sites. 

>(100–300) 
Myr 

Table S1. Evidence against a localized impact trigger for late-stage rivers and lakes. Notes: [*] Best-81 
estimate time gap assuming modern impact flux (valid for the Amazonian, too low by a factor of 3.2 at 82 
3.5 Ga) and the Hartmann chronology, using the nearest bin in the tables of Michael (2013). Assuming 83 
the count area for detection of interbedded craters is the entire crater (which will greatly understate the 84 
true time gap), and dividing results by a factor of 20 to take account of the fact that we only found 85 
interbedded craters in 12 of the ~219 craters that we surveyed. In reality synsedimentary and 86 
presedimentary impact craters are usually detected at/near the perimeter of sedimentary deposits, so 87 
the survey area is smaller than assumed here. Thus these estimates are crude and are likely biased low; 88 
even so, the timescales are long. [**] Additionally, PSP_008167_1885 shows a 700m-diameter crater 89 
prograded into by, and so predating, the Tyras fan. In addition to the craters tabulated here, sediments 90 
of uncertain origin (plausibly lacustrine) postdate a 1km-diameter crater within the SE of the 37km-91 
diameter fan-bearing crater at 174°E 32°S.  92 
 93 
  94 
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Table S2. Constrained basins. [Table uploaded separately per AGU instructions] Explanation. A zero or 95 
dash corresponds to “no constraint.” Constraint types: 1 = Fan terminus. 2 = Channel terminus. 3 = Delta 96 
break-in-slope elevation or stepped-delta top. 4 = Fan toe/playa contact. 5 = Lake deposit. 7 = 97 
Candidate lake deposit. 10 = Overspilled contour. 11 = Shoreline feature. Additional notes. At Gale 98 
crater, we adopted Palucis et al. (2016)’s interpretation that the Pancake Delta is post-Mt. Sharp, fed by a 99 
small enclosed-basin catchment. The elevation of candidate shoreline features inside Nicholson crater 100 
(Salese et al. 2019; ESP_059361_1795) were treated as a best estimate of past lake level (a blue diamond 101 
in Fig. 4). At Saheki crater (Morgan et al. 2014), we observed the transition between an alluvial fan and a 102 
playa deposit. The elevation contour corresponding to this transition corresponds to our best-estimate 103 
of paleolake extent (a blue diamond in Fig. 4). Our approach treats the present-day topographic 104 
relationships between lake deposit outcrops and alluvial fan deposit outcrops as being representative 105 
of the topographic relationships between deposits when the rivers were flowing. Sometimes we 106 
observe FCBDs topographically above fan toes (e.g., at Luba crater), presumably due to differential wind 107 
erosion. Holden is omitted as the drainage area at the time deltas formed (Grant et al. 2008) is not 108 
known. At Peridier, channels extend topographically below the flat crater-bottom deposits that we 109 
interpret as lake deposits, perhaps corresponding to a later wet episode.  110 
 111 
 112 
 113 
Table S3. Fan terminus or delta-top elevation contours. [Table uploaded separately per AGU 114 
instructions] Explanation: Constraint types: 1 = Fan terminus. 2 = Channel-stop. 3 = Delta break-in-slope 115 
or Stepped-delta top. 4 = Fan terminus/playa intersection. 116 
 117 
 118 
 119 
Lon (°) Lat (°) Elev 

(m) 
Lake area at 

overspill/shoreline 
(km2) 

Topog. 
catchment 
area (km2) 

Hydrologic 
X-ratio, XH 

Diam. of 
host crater 

(km) 

Notes 

325.83 -23.71 -520 164.23 15540.70 93.63 n.a.  1. 

326.58 -23.92 -1400 422.84 20921.80 48.48 62 2. 

195.28 0.34 -4420 1423.02 7853.98 4.52 100 3. 

297.42 3.18 -100 10.53 36.00 2.42 27 4. 

57.75 22.19 945 448.14 855.30 0.91 33 5. 

75.07 20.36 -540 440.47 836.00 0.90 33 SW of 
Hargraves. 

163.07 -33.45 -540 221.64 1849.70 7.35 59  

65.33 -22.50 -1885 19.36 502.00 24.93 43 SW of 
Harris. 

Table S4. Overspilled contours + shoreline feature. Notes: 1. Overspilled contour corresponds to a 120 
sediment trap upstream of the Eberswalde Delta. Topographic catchment is within the ejecta blanket of 121 
Holden crater (151 km diameter). 2. Overspilled contour within Eberswalde crater (Irwin et al. 2015). 3. 122 
This corresponds to ridges interpreted as a shoreline feature at Nicholson crater (Salese et al. 2019). 4. A 123 
5×4 km crater-in-crater with an exit breach. 5. Exit-breach 33 km diameter crater immediately adjacent 124 
to a 71 km crater.  125 
 126 
Table S5. Flat Crater-Bottom Deposits Interpreted as Lake Deposits [Table uploaded separately per 127 
AGU instructions] Notes: * When lake deposits were close to one another and appeared to be deposits 128 
from the same wet event, we combined their areas for the purpose of assessing lake size. In this table, 129 
deposit area is added to subsequent deposit area (with a common same drainage area) to give a 130 
combined hydrologic constraint. The area of the individual deposit is the difference between rows.  131 
** Combined lake areas for hydrology constraint. 132 
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*** Combined with FCBDs for hydrology constraint. 133 
 134 
 135 

Name Stereopair 
image 1 

Stereopair 
image 2 

DTM resolution 

Luba1 ESP_072479_1615 ESP_072545_1615 2m 
Luba2 ESP_019467_1615 ESP_018966_1615 2m 
Ritchey PSP_003249_1510 PSP_003526_1510 1m 
Unnamed_Magelhaens ESP_065480_1496 ESP_065414_1695 1m 
Table S6. HiRISE DTMs made for this study. 136 
 137 
 138 


