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Abstract

Globally ice-covered oceans have been found on multiple moons in the solar system and may also have been a
feature of Earth’s past. However, relatively little is understood about the dynamics of these ice-covered oceans,
which affect not only the physical environment but also any potential life and its detectability. A number of studies
have simulated the circulation of icy-world oceans, but have come to seemingly widely different conclusions. To
better understand and narrow down these diverging results, we discuss the energetic constraints for the circulation
on ice-covered oceans, focusing in particular on Snowball Earth, Europa, and Enceladus. The energy input that can
drive ocean circulation on ice-covered bodies can be associated with heat and salt fluxes at the boundaries as well
as ocean tides and librations. We show that heating from the solid core balanced by heat loss through the ice sheet
can drive an ocean circulation, but the resulting flows would be relatively weak and strongly affected by rotation.
Salt fluxes associated with freezing and melting at the ice sheet boundary are unlikely to energetically drive a
circulation, although they can shape the large-scale circulation when combined with turbulent mixing. Ocean tides
and librations may provide an energy source for such turbulence, but the magnitude of this energy source remains
highly uncertain for the icy moons, which poses a major obstacle to predicting the ocean dynamics of icy worlds
and remains an important topic for future research.

Unified Astronomy Thesaurus concepts: Ocean planets (1151); Saturnian satellites (1427); Europa (2189);
Hydrosphere (770); Planetary science (1255)

1. Introduction

Globally ice-covered oceans have been found on multiple
moons in the solar system (Carr et al. 1998; Kivelson et al.
2000; Nimmo & Pappalardo 2016; Thomas et al. 2016) and
spark our curiosity in part due to their potential to provide
hospitable environments for life (Des Marais et al. 2008; Waite
et al. 2017; Postberg et al. 2018; Hendrix et al. 2019). Earth’s
oceans may also have been covered by a global ice sheet during
the so-called “Snowball Earth” events, and indeed eukaryotic
life not only appears to have survived through these episodes,
but may have evolved significantly during them (e.g., Hoffman
et al. 2017). However, relatively little is known about these
oceans beyond their existence, and due to our inability to
directly observe them at present, we heavily rely on models to
decipher their mysteries.

Although their potential biology may represent the holy grail
for research on the icy-moon oceans, it is natural to start with
the somewhat better-constrained problem of inferring the
physical and chemical environment. In this study we
specifically focus on the ocean circulation and mixing
processes, which control the transport of heat and chemical
tracers, including those that may affect life and our ability to
observe its signatures (e.g., via material ejected in plumes).

Ocean circulation on icy moons can, broadly speaking, be
driven by heat and salt fluxes, tidal forcing, or magnetic forces
(e.g., Soderlund et al. 2020, and references therein). We here
focus primarily on “buoyancy-driven” flows, i.e., flows
associated with temperature and salinity gradients, although
we also include a discussion about the role of tides and

librations in driving vertical mixing, which in turn affects the
buoyancy field and associated flow (e.g., Wunsch & Ferrari
2004). Following most of the previous work on buoyancy-driven
flows, we will neglect magnetic forces, although they may be
significant on Jupiter’s moons (Gissinger & Petitdemange 2019).
A number of studies have simulated the buoyancy-driven

dynamics of ice-covered oceans both in the context of
Snowball Earth (e.g., Ashkenazy et al. 2013; Ashkenazy &
Tziperman 2016; Jansen 2016) and icy moons (e.g., Soderlund
et al. 2014; Soderlund 2019; Kang et al. 2020; Ashkenazy &
Tziperman 2021; Zeng & Jansen 2021; Kang et al. 2022), and
seem to have come to widely different conclusions, in
particular with regards to the characteristic current speeds in
these oceans. The Snowball Earth simulations of Ashkenazy
et al. (2013), Ashkenazy & Tziperman (2016), and Jansen
(2016) consistently show small-Rossby-number turbulent flows
dominated by eddies and jets with characteristic velocities on
the order of 1 cm s−1. For Europa, Soderlund et al. (2014)
suggest moderate-Rossby-number convective turbulence.
Soderlund et al. (2014) report results from their direct
numerical simulation (DNS) in terms of nondimensional
velocities (which amount to flow Rossby numbers) and find |
U/(2ΩD)|∼ 0.5. Taking these DNS results at face value and
redimensionalizing with Europa’s rotation rate and ocean
depth3 would suggest flow speeds in excess of 1 m s−1. Using a
global circulation model for Europa’s ocean, Ashkenazy &
Tziperman (2016) instead find largely geostrophic (i.e., low-
Rossby-number) turbulence and jets with characteristic velo-
cities on the order of 1 cm s−1. In a parameter regime deemed
applicable to Enceladus, DNS by Soderlund (2019) suggests
|U|∼ 0.1 m s−1 if the nondimensional velocities are taken at
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3 Using the rotation rate Ω ∼ 2 × 10−5 s−1 and ocean depth D ∼ 1 × 105 m, |
U/(2ΩD)| ∼ 0.5 translates to |U| ∼ 2.5 m s−1.
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face value.4 Instead Kang et al. (2020) and Zeng & Jansen
(2021) find velocities on the order of 0.1 mm s−1 using global-
scale ocean simulations. The flow dynamics and associated
kinetic energy levels hence appear to vary widely across these
studies, with variations across different studies being larger
than variations between different oceans.

To shed some light on these apparent discrepancies and to
establish what insights can be gained from first principles (i.e.,
without running numerical simulations whose results are
sensitive to many parameters and assumptions), we here
consider energetic constraints for the circulation of a globally
ice-covered ocean. For simplicity we limit ourselves to an
ocean in a statistical equilibrium state (as also assumed in all
studies discussed in the previous paragraph). In particular, we
assume that the net global ocean warming or cooling is small
compared to the heat fluxes through the lower and upper ocean
boundaries, and similarly that the net global mean freezing or
melting rate is small compared to the regional rates. None-
quilibrium effects could be important (e.g., Hussmann & Spohn
2004; Nakajima et al. 2019), but would vastly widen the range
of possible solutions. Our philosophy is that the better-
constrained equilibrium problem should serve as a null
hypothesis, which will be rejected if and only if evidence
contradicts the assumptions or predictions of equilibrium ocean
dynamics. Energetic constraints for equilibrium ocean
dynamics allow us to put bounds on the expected circulation
regimes and flow speeds, and to better understand seemingly
diverging results from previous numerical simulations.

2. Energetics of the Seawater Boussinesq Equations

The weak compressibility of water allows us to employ the
seawater Boussinesq approximation, with which the dynamical
equations reduce to (e.g., Young 2010)

W+ ´ +  = +ˆ ( )v
v

D

Dt
p bk2 , 1

 =· ( )v 0, 2

where v is the velocity, Ω is the planetary rotation, p is the
pressure anomaly relative to a hydrostatic reference state with
constant density, ρ0, b= g(ρ0− ρ)/ρ is the buoyancy5 with g
the gravitational acceleration, f= -k̂ g 1 is the normal vector
in the direction of gravitational acceleration with f the
geopotential, and = -   is the acceleration due to tidal
 and frictional  forces (where we define the frictional force
with a negative sign for illustrative purposes, as it dominantly
acts to decelerate the flow).

Multiplying Equation (1) by v and using ∇ · v= 0 yields an
equation for the kinetic energy:

+  = + -
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where w is the velocity normal to the geopotential surfaces (in
practice usually well approximated by the radial velocity).
Integrating globally over the entire ocean volume and

assuming an equilibrium state and no-normal-flow boundary
conditions,6 we find a balance between the conversion from
potential to kinetic energy, wb, kinetic energy (KE) generation
by tidal forcing, ·v  , and frictional dissipation, ·v :

ò ò ò+ =· · ( )v vwbdV dV dV . 4 

We hence have two potential sources of kinetic energy: (1)
the vertical buoyancy flux, which converts potential to kinetic
energy and is directly related to the vertical heat and salt flux,
and (2) tidal forcing. This paper will focus primarily on
buoyancy-driven circulations; we assume a balance between
the first term on the left-hand side (lhs) of Equation (4) and the
dissipation on the rhs (see also Equation (3.2) in Paparella &
Young 2002). The potential role of tides in modulating the
buoyancy-driven circulation will also be discussed.
Importantly, Equation (4) highlights that buoyancy forcing

can energetically drive a circulation if and only if it is
distributed such that the global mean advective buoyancy flux
required to balance the forcing (minus any diffusive flux) is
directed upward. Notice that there is an interesting discussion
in the Earth ocean literature about the implications of this
statement for a purely “buoyancy-driven” circulation (i.e.,
without any mechanical forcing) in an ocean (or experimental
apparatus) where all heating and cooling is applied at the
surface (e.g., Sandström 1908; Paparella & Young 2002;
Wunsch & Ferrari 2004; Hughes & Griffiths 2008). Energe-
tically speaking, the energy source needed to balance any
dissipation in this so-called “horizontal-convection” problem
must come from molecular diffusion (which can flux buoyancy
downward to balance an upward buoyancy advection that
generates KE). We will return to the potential role of molecular
diffusion below.

2.1. Buoyancy Forcing

The upward buoyancy flux is related to the upward flux of
heat or compositional buoyancy. In this manuscript we assume
a water ocean with dissolved salts, such that compositional
buoyancy effects are encapsulated by the salinity. In general we
thus allow buoyancy to be some function of potential
temperature, salinity, and geopotential height (e.g., Young
2010):

= Q˜( ) ( )b b S z, , , 5

where Θ is the potential temperature,7 S is the salinity, and z is
the depth relative to some reference geopotential height level.
The temperature and salinity evolve according to

k
Q

=  Q ( )D

Dt
, 6T

2

4 Soderlund (2019) reported nondimensionalized velocities |U/(ΩD)| ∼ 0.1
for an Enceladus-like parameter regime. Rescaling with the rotation rate
Ω ∼ 5 × 10−5 s−1 and an ocean depth D ∼ 2 × 104 m would yield
|U| ∼ 0.1 m s−1.
5 Notice that Young (2010) defined b using a constant reference gravity g0
and wrote the first term on the right-hand side (rhs) of Equation (1) as b∇Z,
where Z is f/g0 with f the geopotential (g ≡ |∇f|), such that  = ˆZ g g k0 .
We here absorb the factor g/g0 into the definition of buoyancy, assuming that g
is itself only a function of z.

6 Notice that the no-normal flow boundary condition here amounts to
neglecting any possible kinetic energy injected by jets emanating from the
seafloor or ice shell (e.g., Kite & Rubin 2016). The effect of geothermal vents
or freezing and melting at the ice–ocean interface on buoyant plumes, however,
is included via the heat and salt flux boundary conditions.
7 Notice that temperature is conserved following an adiabatic motion in a
Boussinesq fluid and hence the temperature and potential temperature are
formally identical. However, Θ should be interpreted as the potential
temperature in the observed fluids.

2

The Planetary Science Journal, 4:117 (16pp), 2023 June Jansen et al.



k=  ( )DS

Dt
S, 7S

2

with the boundary conditions
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where κT and κS are the molecular diffusivities of heat and salt,
respectively, and bot top and bot top denote the heat and salt
fluxes through the bottom and top boundaries, respectively. For
simplicity we do not include significant heat sources in the
interior, although such sources could be added.

If the equation of state is nonlinear, the conservation
equations for Θ and S cannot be readily translated into a
conservation equation for buoyancy. The most general way to
account for nonlinearities in the equation of state, which is
discussed in the Appendix, is to introduce the dynamic
enthalpy, which is related to the potential energy. A
significantly simpler (and more intuitive) result can be obtained
if we assume that horizontal variations in the thermal and
haline expansion coefficients are small, such that we can
approximate

a b» á ñ + á ñ Q - áQñ + á ñ - á ñ( ) ( ) ( )b b S S , 10

where α≡ g−1∂Θb and β≡ g−1∂Sb are the thermal and haline
expansion coefficients, respectively, and 〈·〉 denotes a hor-
izontal average at any given depth. Notice that α is typically
positive (except for relatively fresh water at cold temperatures
and modest pressures), while β, as defined here, is negative.
We can then directly relate the total globally integrated upward
advective buoyancy flux (which represents the source of kinetic
energy in a buoyancy-driven flow) to the upward advective
heat and salt fluxes:

ò ò
ò

a

b

º » á ñ Q

+ á ñ º +Q

∬

∬ ( )

wbdV g w dA dz

g wSdA dz , 11S



 

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

where we used that ∬ wdA= 0 due to volume conservation,

and we defined Q and S as the globally integrated net
upward buoyancy fluxes associated with heat and salt
advection, respectively.
The total upward heat and salt fluxes can be related to the

sources and sinks of heat and salt via their conservation
equations (see also sketches in Figures 1 and 2). In particular,
the area-integrated vertical fluxes of heat and salt are
constrained by the conservation of heat and salt above or
below a respective level. In a statistically steady state, where
the mean rate of change in Θ and S at any given depth is

Figure 1. Sketch of the vertical heat flux through the ocean, which provides the energy source for thermally driven flows. In this manuscript we assume that the ocean
and ice sheet are in equilibrium, and that heat sources in the interior of the ocean are negligible, such that the globally integrated heat flux from the core (∫QbotdA) is
equal to the net globally integrated heat flux from the ocean to the ice sheet (∫QtopdA). Notice that the globally integrated vertical heat flux in the ocean () can also
be constrained from the potentially more observable globally integrated heat flux emanating from the planetary body’s surface (∫QsurfdA), which is given by the sum of
the core heating (∫QbotdA) and the tidal energy dissipation in the ice layer (∫QicedA). In particular, the maximum globally integrated vertical heat flux in the ocean is
limited to ò Q dAsurf .

Figure 2. Sketch of the vertical salt flux through the ocean. If melting occurs under thinner ice and freezing occurs under thicker ice, as sketched here, the net globally
integrated salt flux required in the ocean to balance brine rejection from freezing and melting () is upward, which implies a downward buoyancy flux that converts
kinetic to potential energy. In this scenario salt fluxes therefore do not energetically drive a circulation. Instead, kinetic energy from an alternative source is required to
maintain a circulation that can flux salt upward.
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approximately zero, Equation (6) can be integrated over the
volume above or below some depth z to obtain an equation for
the vertical buoyancy flux at this depth:
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where  is the Heaviside function ( = <( )x x0 for 0 and
= >( )x x1 for 0 ), and we defined  as the the vertical

heat flux across any depth z needed to balance the net heat and
salt fluxes through the boundaries above and below the
respective level. Similarly, Equation ((7)) can be integrated to
obtain
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Notice that interior sources of heat or salt could be included by
modifying the definition of  and  , which generally need
to balance any net sources or sinks above or below the
respective level.

These definitions allow us to express the globally integrated
KE generation associated with heat and salt flux forcing as:

     ò òa
r

ak q» á ñ + ¶Q

Q
Q

( )g
c

dz g dV , 14
p

T z

diff









and

     ò òb bk= á ñ + ¶ ( )g dz g SdV . 15S
S z

S S
diff

 

 

The first term on the rhs of Equations (14) and (15) can be
interpreted as the potential energy source associated with heat
and salt forcing at the lower and upper boundaries, while the
second term is the potential energy source or sink due to
diffusion (which provides a source of mechanical energy
whenever the stratification is statically stable, and a sink when
it is unstable).

If vertical variations in gα and gβ are also small, thermal
forcing at the boundaries provides a source of energy that can
drive a circulation if, and only if,

òa > ( )dz 0, 16Q

i.e., for α> 0, heating, on average, needs to occur at a greater
depth than cooling, while for α< 0 cooling needs to occur at a
greater depth than heating. Similarly, salt fluxes can drive

circulation only if

òb > ( )dV 0. 17S

Since generally β< 0, this requires that salt needs to be
removed at greater depth and added at shallower depth. Large
vertical variations in gα and gβ can be accounted for using the
generalized relation in Equations (14) and (15), which allow us
to compute the mechanical energy input associated with any
given heat and salt flux boundary conditions more generally.
When horizontal variations in the thermal and haline expansion
coefficient are nonnegligible, the amount of energy that can be
converted to kinetic energy depends on the specifics of the
circulation, as elaborated on in the Appendix.
Equations (14) and (15) also highlight the potential role of

vertical diffusion. Indeed, buoyancy gain and loss at the same
level combined with vertical diffusion can drive circulation,
which is sometimes referred to as horizontal convection (e.g.,
Sandström 1908; Paparella & Young 2002; Wunsch & Ferrari
2004; Hughes & Griffiths 2008). As the energy source in such a
circulation is derived from diffusion, the energy dissipation has
to go to zero in the limit of vanishing diffusivity. As a result,
Paparella & Young (2002) argue that no “turbulent” circulation
can be maintained in the limit of vanishing diffusivity (and
viscosity), where “turbulence” is defined to imply a forward
energy cascade with a dissipation rate that becomes indepen-
dent of the viscosity.8 In reality, molecular diffusion is not
vanishingly small, and we will discuss its potential role below.
It is also worth noting at this point that many numerical
simulations employ strongly enhanced “eddy diffusivities,”
which can act as a substantial energy source in numerical
simulations. However, it is important to remember that these
parameterizations are meant to represent the effect of turbulent
advection—that is, they parameterize the unresolved contrib-
ution to the wb term in Equation (3). The apparent energy
source associated with parameterized “eddy diffusion” there-
fore needs to be interpreted as a conversion of unresolved
turbulent kinetic energy to potential energy, and accordingly
can be justified only if there exists a corresponding source of
unresolved turbulent kinetic energy.

2.2. Energy Dissipation and Flow Properties

In equilibrium, the total sources and sinks of mechanical
energy have to be in balance. The energy sources thereby
provide a constraint on the energy dissipation, which in turn
provides some constraint on the flow. Relating the energy
dissipation rate to the kinetic energy of the flow itself is not
straightforward, as it depends on the characteristics of the flow
field, but we can make some progress by considering specific
flow regimes and estimating the range of parameters and scales
over which the flow regimes are expected to hold. In the
following, we first discuss the relationship between the kinetic
energy and the dissipation rate for a turbulent flow that is
largely unaffected by rotation, as well as the conditions under
which the assumption that rotation is negligible breaks down.
We then derive an alternative relationship between the kinetic
energy and the dissipation rate in the opposite limit where
rotation is a leading-order effect and the most energetic flows

8 Notice that, unlike 3D turbulence, 2D (and geostrophic) “turbulence” does
not generally exhibit a forward energy cascade, making it not truly “turbulent”
by this definition. We will address constraints for geostrophic turbulence in
Section 2.2.1.
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are geostrophically balanced (i.e., the leading-order momentum
balance is between the pressure gradient and Coriolis
acceleration).

2.2.1. Isotropic Turbulence and the Role of Rotation

We first assume a fully turbulent flow unconstrained by the
influence of rotation in the interior (i.e., away from the
boundaries), and we assume that, in this limit, the dissipation
rate is independent of the value of molecular viscosity. In
particular, we start by considering Kolmogorov’s theory for the
kinetic energy spectrum in the inertial cascade of isotropic
turbulence, which suggests that

= -( ) ( )E k k , 182 3 5 3

where E(k) is the kinetic energy spectrum as a function of the
wavenumber, k, ò is the turbulent spectral KE flux, which in
turn is equal to the dissipation rate, and » 1.5 is the
Kolmogorov constant (e.g., Vallis 2006). Integrating over the
energy inertial range yields

» - ( )E k2 , 19t 0
2 3 2 3

where k0 is the “injection scale” (where the KE spectrum
flattens out), and Et is the total turbulent kinetic energy in the
inertial range.

We can use Equation (19) to estimate the kinetic energy of
turbulent flows up to the largest scales of an isotropic turbulent
energy inertial range. Isotropy may be broken by the geometry
(e.g., the vicinity to a boundary), or by the effects of
stratification or rotation. We will here consider in particular
the importance of rotation, which can break isotropy and
fundamentally change the nature of the turbulent flow
throughout the water column.

The effect of rotation on the turbulent flow in the interior can
be characterized by the flow Rossby number, which we here
define as the ratio of the inverse “eddy turnover timescale,”
t ~- E kteddy

1
0, to the rotation rate, Ω. This ratio measures the

relative magnitude of the nonlinear advection term to the
Coriolis term in the momentum equation, and thus provides a
useful and widely used measure for the role of rotation in the
dynamics of high-Reynolds-number flows (e.g., Vallis 2006).
Using Equation (19), and L≡ 2π/k0, the turbulent flow Rossby
number can be estimated as

º
W

»
W

( )E

L L
Ro . 20t

t
1 3

2 3



Equation (20) suggests a maximum length scale for turbulent
flows unaffected by rotation (see also Fernando et al. 1991;
Jones & Marshall 1993; Maxworthy & Narimousa 1994; Bire
et al. 2022):

»
W

( )L . 21rot

1 2

3 2



Maxworthy & Narimousa (1994) and others found that, once
rotation becomes important, the convective Rossby number of
a rotating plume in the interior scales as

=
W

( )
H

Ro , 22rc

1 2

3 2



where H is the depth of the convecting fluid. Equation (22) is
likely to be a better predictor of the convective flow Rossby

number when ocean depth convection is strongly affected by
rotation (i.e., Lrot<H). If we set L=H, we find =Ro Rotrc

3 2,
and hence both definitions give the same prediction for the
critical length/depth scale at which Ro≈ 1 and rotation
becomes important,9 which indeed also follows directly from
dimensional analysis if we postulate that this scale shall depend
only on ò and Ω. If this length scale is significantly smaller than
the scale of the most energetic flows, we expect these flows to
be strongly affected by rotation. For convective flows
unconstrained by rotation, the natural length scale for the
largest convective motion is the depth of the ocean, such that
we expect the interior convective dynamics to become strongly
affected by rotation if Lrot is much smaller than the depth of the
ocean (see also Fernando et al. 1991).

2.2.2. Boundary-layer Dissipation in Geostrophic Dynamics

When rotation becomes of dominant importance it is likely
that much of the energy becomes trapped in geostrophically
balanced vortices and large-scale mean flows, which result
from the upscale kinetic energy cascade associated with quasi-
balanced turbulent motions (e.g., Vallis 2006). The lack of a
forward energy cascade means that dissipation is likely to be
limited mostly to turbulent boundary layers near the seafloor
and the ice–ocean interface.
We can estimate the energy dissipation per unit area in a

turbulent boundary layer as (e.g., Jansen 2016, and references
therein):

ò = ∣ ∣ ( )dz c U , 23D gBL
3

where the integral on the lhs is over the depth of the turbulent
boundary layer, cD is the turbulent drag coefficient, and Ug is
the characteristic near-surface geostrophic velocity. The value
of cD depends on the surface roughness, with cD≈ 0.0025 an
empirical average value that is commonly used for the drag
coefficient for Earth’s seafloor (e.g., Egbert et al. 2004; Sen
et al. 2008). The skin drag coefficient under smooth ice can be
estimated to be around cD≈ 0.002, although rough morphology
can significantly increase this value (e.g., Brenner et al. 2021).
Lacking information about the ice roughness, and noting the
order-of-magnitude nature of our estimates, we will here use
cD≈ 0.001–0.01 at both the seafloor and under the ice sheet at
the top. Experience from oceanic and atmospheric modeling
has shown that drag coefficients of this order produce
reasonable results for a wide range of flows (e.g., Smagorinsky
et al. 1965; Egbert et al. 2004; Sen et al. 2008; Chen et al.
2018; Adcroft et al. 2019), which instills confidence that a
similar coefficient can be used to obtain useful order-of-
magnitude estimates for icy-moon oceans.

9 Aubert et al. (2001) defines the parameter g a r= W = W( ) ( )g c H Hpbot
3 2 3 2

to characterize rotating convection at high Reynolds numbers, where in the
second equality we assumed a balance between potential energy generation by
the heat flux forcing and kinetic energy dissipation. With this parameter, we
can write Rot ∼ γ1/3 while Rorc ∼ γ1/2. Aubert et al. (2001) and others (e.g.,
Cardin & Olson 1994; Gastine et al. 2016) suggested that Ro ∼ γ2/5 in the
highly nonlinear limit of rapidly rotating convection, thus giving an
intermediate power dependence of Ro on γ. However, all scaling relations
give the same result for the threshold where Ro ∼ 1.
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Averaging the energy dissipation in the top and bottom
boundary layers over the depth of the whole water column
gives an average energy dissipation rate per unit volume

» ( )c

H
E

2
, 24D

gBL

5 2
3 2

where H is the depth of the ocean, and Eg= 1/2|Ug|
2 is the

characteristic KE of the geostrophic flow. We can solve
Equation (24) to get a crude estimate for the characteristic KE
in a flow that is dominated by large-scale balanced dynamics,
where KE dissipation occurs primarily in turbulent boundary
layers:

» ( )E
H

c2
. 25g

D

2 3

5 3 2 3 BL
2 3

In general, balanced dynamics may coexist with intermedi-
ate-Rossby-number and high-Rossby-number convective tur-
bulence and/or tidal waves, in which case interior energy
dissipation may be important and thus òBL= ò− òint< ò, where
òint denotes energy dissipation away from the boundary layers.
It is also important to note that numerical simulations of
planetary circulation typically use very high artificial viscos-
ities for numerical stability, which can lead to a large, albeit
probably unphysical, dissipation of balanced KE in the interior
(e.g., Jansen 2016).

3. Scaling Laws for the Kinetic Energy of Thermally Driven
Flows on Snowball Earth, Enceladus, and Europa

We can derive estimates for the kinetic energy of buoyancy-
driven flows by assuming a statistically steady state where the
source of KE equals the sink. If the primary source of mechanical
energy is given by thermal buoyancy forcing, Equation (4)
together with Equations (11) and (14) provide a scaling relation
for the mean kinetic energy dissipation per unit volume:
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where Q is the average heat flux through the seafloor per unit
area, and for now we neglect variations in the thermal
expansion coefficient, α, as well as radial variations in the
gravity and the surface area throughout the depth of the ocean.
(The latter assumption leads to O(10%) errors for Europa and
Enceladus, which is not of concern here. The former may lead
to larger errors if the ocean is relatively fresh, and we will
return to this issue later.) We also ignored the energetic effect
of molecular diffusion (the second term in Equation (14)),
which is likely to be small if the ocean is convective.10 We will
return to the potential importance of molecular diffusion in a
stratified ocean below.

Equation (26) provides a key constraint for the energetics of
thermally driven flows. It predicts that the energy dissipation
rate per unit volume increases linearly with the bottom
buoyancy flux, which in turn is given by the heat flux
multiplied by the thermal expansivity and the gravity. The
results are shown in Figure 3 for the parameter range occupied
by the icy moons and Snowball Earth. In the following, we use

this result together with the results from Sections 2.1 and 2.2 to
obtain order-of-magnitude estimates for thermally driven ocean
flows on Snowball Earth, Europa, and Enceladus.
To estimate the kinetic energy dissipation rate for thermally

driven flows in the oceans of Snowball Earth, Europa, and
Enceladus, we assume an average heating rate at the ocean
floor of Q≈ 0.1 Wm−2 for Snowball Earth (Korenaga 2008),
Q≈ 0.02–0.1 Wm−2 for Europa (Ruiz 2005; Vance et al.
2018), and Q≈ 0.01–0.08 Wm−2 for Enceladus (Čadek et al.
2016; Choblet et al. 2017; Hemingway et al. 2018; Vance et al.
2018). The gravitational acceleration is g≈ 10 m s−2 for Earth,
g≈ 1 m s−2 for Europa, and g≈ 0.1 m s−2 for Enceladus. The
thermal expansion coefficient depends on the temperature,
salinity, and pressure. The salinity in the Snowball Earth ocean
was likely between around 40–70 g kg−1 (e.g., Ashkenazy et al.
2013) while the pressure would have ranged from ∼100 bar
under the ice sheet to ∼400 bar at the seafloor. Assuming
temperatures near the freezing point, this suggests a mean
ocean thermal expansivity of around α≈ 1− 2× 10−4 K−1.
Salt concentration (and composition) on Europa is poorly
constrained and may be anywhere below about 100 g kg−1

(Vance et al. 2018). The pressure may be as low as 50 bar
below a 5 km deep ice shell and reach 1000 bar at the
seafloor. Assuming temperatures near the freezing point, the
mean ocean thermal expansivity is expected to be α≈ 1–3×
10−4 K−1 (although α may be vanishingly small at the bottom
of the ice shell). The salinity on Enceladus has been estimated
to be around 5–30 g kg−1 (Glein et al. 2018). Due to the
relatively low pressures on Enceladus (50 bar), the thermal
expansion coefficient near the freezing point would be negative
if the salinity is 20 g kg−1 (Zeng & Jansen 2021; Kang et al.
2022), and we will return to this low-salinity scenario in
Section 3.3. In general, we expect α< 10−4 K−1 for Enceladus.
All parameters and assumed uncertainties are summarized in
Table 1. Using further that ρcp≈ 4× 106 Jm−3 K−1 on all
bodies, we find

» ´ - -– ( )2.5 5 10 m s for Snowball Earth, 2711 2 3

» ´ ´- - -– ( )5 10 8 10 m s for Europa, 2813 12 2 3

Figure 3. Energy dissipation rate per unit volume for thermally driven flows
predicted by the scaling in Equation (26) as a function of the bottom heat flux
(Q) times α/(ρcp) and the gravitational acceleration (g). The white bars mark
the estimates for Snowball Earth (Ea), Europa (Eu), and Enceladus (En),
assuming the parameters given in Table 1. The color bar is logarithmic with
contours at 10−13.5, 10−13, ... , 10−10.5 m2 s−3.

10 Notice that this formally amounts to assuming a large Nusselt number—i.e.,
we assume that the advective heat flux is large compared to the diffusive
heat flux.
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´ - - ( ) 2 10 m s for Enceladus. 2913 2 3
The energy dissipation rate is thus likely to be the largest for

Snowball Earth and the smallest for Enceladus, with the
differences mostly driven by the differences in the gravity and
further amplified by differences in the estimated vertical heat
flux and thermal expansivity. For comparison, the kinetic
energy dissipation rate in Earth’s deep ocean today is around
2 TW (Wunsch & Ferrari 2004), which divided by the mass of
the ocean amounts to about 1.5× 10−9 m2 s−3. This dissipation
is balanced by the energy input primarily from winds and tides,
which provide significantly more energy to the present-day
ocean circulation than geothermal heating.

3.1. The Role of Rotation

Given the energy dissipation rate, ò, and the rotation rate of
the planetary body, Ω, we can use Equation (21) to estimate a
critical scale Lrot above which we may expect turbulent motions
to become strongly affected by rotation (Figure 4). Using the
energy dissipation rates estimated above and Ω≈ 8× 10−5 s−1

for Snowball Earth, 5× 10−5 s−1 for Enceladus, and
2× 10−5 s−1 for Europa, we find the scale at which convection
is expected to become strongly affected by rotation from
Equation (21) to be Lrot∼O(10 m) for Snowball Earth and
Europa and Lrot 1 m for Enceladus. In addition to parametric
uncertainties (quantified in Figure 4 and Table 2), it is possible
that assumptions leading to Equation (21) may not hold. In
particular, we here assumed that the interior dissipation (which
enters the scaling for Lrot) is of similar order as the total kinetic
energy dissipation. If the dissipation is dominated by boundary
layers, the length scale where the interior flow would become
strongly affected by rotation would be further reduced.
Regardless, Lrot is much smaller than the ocean depth in all
three cases, and we therefore expect deep convection and any

other potential large-scale flow to be strongly affected by
rotation. It is also worth noting that, for Snowball Earth and
Europa, Lrot is likely to be much larger than the Kolmogorov
scale where viscous dissipation occurs, n=n ( )L 3 1 4 , which
is expected to be on the order of a few centimeters, thus
indicating that an isotropic inertial range is expected to exist at
scales smaller than Lrot. On Enceladus it is not clear whether
Lrot is significantly larger than the Kolmogorov scale, raising
the possibility that no isotropic cascade exists. In that case, the
relationship in Equation (18) may not be expected to hold at
any scale, but the conclusion that the large-scale flow would be
strongly affect by rotation would remain true, as indeed the
flow at all scales (down to the viscous dissipation scale) would
be strongly affected by rotation. We also note that, for all icy
oceans considered here, Lrot is significantly smaller than the
smallest length scales that can be resolved in global-scale
numerical simulations of these oceans, suggesting that large-
eddy-simulations that can explicitly resolve part of the isotropic
turbulent inertial range are not feasible with realistic parameters
(see Bire et al. 2022).

3.1.1. Comparison to Existing Simulation Results

The importance of rotation in the oceans of Snowball Earth,
Europa, and Enceladus is qualitatively consistent with the
Snowball Earth simulations of Ashkenazy et al. (2013) and
Jansen (2016), the Europa simulations of Ashkenazy &
Tziperman (2021), and the Enceladus simulations of Kang
et al. (2020, 2022) and Zeng & Jansen (2021). For illustration,
Figures 5 and 6 showsimulation results from Jansen (2016)
and Zeng & Jansen (2021) for heating-driven flows in the
oceans of Snowball Earth and Enceladus, respectively.
The flow field in the Snowball Earth simulation shows a

horizontal eddy field characteristic of geostrophic turbulence
(Figure 5(b)), with the flow largely barotropized—i.e., varying
little in the vertical (Figure 5(b)). The characteristic vertical-
flow Rossby numbers are small (Figure 5(a)), qualitatively
consistent with the predictions in Section 2.2.1. However, we
notice that the vertical flows here are associated with the quasi-
geostrophic eddies rather than convection, as geostrophic
eddies establish a statically stable stratification. Neither of the
convective Rossby-number scalings in Equations (20) and (22)
are therefore expected to apply to this flow (although the
conclusion that rotation is important still holds, as it is indeed a
necessary condition for the development of quasi-geostrophic
eddies in the first place).
The vertical-flow Rossby numbers in the high-salinity

Enceladus ocean simulations of Zeng & Jansen (2021) are
even smaller and show a pattern of grid-scale convection
(Figure 6(a)). The grid-scale convection is qualitatively
consistent with the prediction that the scale at which rotation
affects convective plumes (O(1m)) is much smaller than the
model resolution (∼1 km), but unfortunately also implies that
the details of the simulated flow are expected to be sensitive to
the model resolution and somewhat arbitrary modeling choices,
such as parameterized “eddy” viscosities and diffusivities (see
Zeng & Jansen 2021). Nevertheless, the importance of rotation
is robust and can also be seen in the organization of the zonal
mean flow into jets that are approximately aligned with the axes
of rotation (Figure 6(c)).
The result that flows are very strongly affected by rotation

may appear at odds with simulation results for Europa’s ocean
by Soderlund et al. (2014), which show strong turbulent

Figure 4. Estimated length scale above which turbulence in the interior is
expected to become strongly affected by rotation, as predicted by the scaling in
Equation (21), as a function of the turbulent dissipation rate (ò) and the rotation
rate (Ω). The white bars mark the estimates for thermally driven circulation in
Snowball Earth (Ea), Europa (Eu), and Enceladus (En), assuming the parameter
ranges given in Table 1. The markers indicating Snowball Earth, Europa, and
Enceladus further assume that most of the turbulent kinetic energy dissipation
occurs in the interior. If the dissipation is dominated by boundary layers, the
markers would move to the left, thus further reducing the length scale where
the interior flow would become strongly affected by rotation. The color bar is
logarithmic with contours at 10−1 m, 10−0.5 m, ..., 102.5 m.
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convection with relatively moderate flow Rossby numbers. The
apparent contradiction can readily be understood by noting that
the dimensional vertical heat flux in the DNS of Soderlund
et al. (2014) would amount to about 105Wm−2 after
redimensionalizing with Europa’s planetary parameters—
versus a heat flux of 0.02–0.1Wm−2 assumed here. Increasing
the vertical heat flux on Europa to 105Wm−2 would yield
Lrot≈ 25 km, which in turn would make significant turbulent
convection that is only relatively weakly affected by rotation
plausible. Indeed, using Equation (20) with L≈H≈ 100 km
(for the depth of Europa’s ocean) and a heat flux of 105 Wm−2

(which gives ò≈ 5× 10−6 m2 s−3) we can estimate a Rossby
number for full-depth turbulent convection of Rot≈ 0.4, which
is broadly consistent with the Rossby numbers of convective
motions found in the simulations of Soderlund et al. (2014).
The large implied dimensional heat flux in the DNS of
Soderlund et al. (2014) is meant to account for the large
viscosities and diffusivities that are necessary in numerical
simulations. However, the energetic argument discussed here
clarifies that the greatly amplified heat flux is expected to lead
to much larger dimensional flow speeds. Hence, the magnitude
of the dimensionalized velocities from the DNS of Soderlund
et al. (2014), and the associated large-scale-flow Rossby
numbers, should not be taken at face value.

In summary, our results suggest that the turbulent flow
characteristics in the ocean’s interior are strongly constrained
by the rate of energy input, which in the case of thermally
driven flows is given by the vertical heat flux, and the nature of
the energy dissipation. The dissipation mechanisms and in
some cases the energy source are likely to be misrepresented in
numerical modeling studies, which cannot resolve all relevant
scales of motion. The quantitative results of icy-moon ocean
simulations therefore need to be interpreted with care.

3.2. Quasi-balanced Flows

At scales much larger than Lrot, we expect the motion to be
strongly affected by rotation, leading to quasi-balanced flows
that do not undergo a forward energy cascade. Energy
dissipation then may be limited mostly to turbulent boundary
layers, such that we can assume òBL∼ ò. In this case,

Equation (25) may provide a useful estimate for the total KE
and thus typical flow speeds as a function of the energy
dissipation rate, ò, and the depth of the ocean, H (Figure 7).
Assuming an ocean depth of H≈ 2− 3 km for Snowball Earth
(Ashkenazy et al. 2013; Yang et al. 2017), H≈ 50− 150 km
for Europa (Anderson et al. 1998; Vance et al. 2018), and
H≈ 10–50 km for Enceladus (Čadek et al. 2016; Hemingway
et al. 2018; Vance et al. 2018), we find

» - - -– ( )E 10 10 m s for Snowball Earth, 30g
4 3 2 2

» ´ ´- - -– ( )E 5 10 3 10 m s for Europa, 31g
5 3 2 2

- - ( )E 10 m s for Enceladus. 32g
4 2 2

These results suggest potential balanced flow velocities of up to
a few cm s−1 for Snowball Earth and Europa and up to one
cm s−1 for Enceladus. These estimates should generally be
viewed as upper bounds as we here assumed that all energy
input goes into balanced motions that are dissipated only in the
boundary layers, while we ignored any potential additional
dissipation in the interior, which would reduce the expected
kinetic energy level.

3.2.1. Comparison to Existing Simulation Results

Flow velocities on the order of centimeters per second are
broadly consistent with the Snowball Earth simulations of
Jansen (2016; Figure 5(b)), as well as the Snowball Earth
simulations of Ashkenazy et al. (2013) and Europa simulations
of Ashkenazy & Tziperman (2021). Figure (8)) shows the
energy budget terms for the Snowball Earth simulation of
Jansen (2016; see Figure 5(b) for the corresponding flow
fields). As assumed in our scaling argument, the primary
energy source is associated with the vertical heat flux imposed
by the seafloor heating, whose magnitude ~ » ´Q V 2.5

-10 11 m2 s−3 is consistent with our estimate in Equation (28).
Somewhat more than half of this kinetic energy is dissipated at
the boundary (where the model uses a quadratic drag,
consistent with the assumption in Equation (23)), with the
remainder dissipated by viscous dissipation in the interior. It is
likely that the interior dissipation is unrealistically large in the

Figure 5. Results from an idealized Snowball Earth ocean simulation, originally presented in Jansen (2016). (a) Snapshot of the nondimensional vertical velocity
normalized as w/(ΩH), where Ω is the planetary rotation rate and H is the ocean depth, such as to provide a flow Rossby number. (b) Snapshot of the horizontal flow
speed near the seafloor. (c) Snapshot of the zonal mean zonal flow (as a function of the depth and latitude). The model simulates a buoyancy-driven flow associated
with a spatially inhomogeneous bottom heating with a mean of 0.1 W m−2, crudely mimicking the expected dynamics in a Snowball Earth ocean. The simulation uses
a linear equation of state with thermal expansivity α = 1 × 10−4 K−1 and an idealized Cartesian-coordinate domain representative of the mid latitudes (see
Jansen 2016 for additional details).
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simulations due to the limited resolution and required large
“eddy” viscosity. However, the interior dissipation does not
affect the order of magnitude of the velocity as long as
boundary frictionis a first-order contributor to dissipation, and
hence the simulated velocities are consistent with the prediction
in Equation (30).

The high-salinity Enceladus ocean simulation of Zeng &
Jansen (2021) has flow velocities on the order of 10−4 m s−1

(Figure 6), which is broadly similar to results reported in Kang
et al. (2020) but 2 orders of magnitude weaker than our
estimate for the maximum flow speeds (Equation (32)). The
parameters used in the Enceladus simulation of Zeng & Jansen
(2021) are expected to place the energy input about a factor of
10 below our upper bound estimate, which by itself would
translate to flow speeds that are only about a factor of 2 below

the predicted maximum (see Equation (23)). Some discrepan-
cies may be expected due to the parameterized boundary-layer
drag. Instead of the quadratic boundary-layer drag assumed in
Equation (24), the simulations of Zeng & Jansen (2021; and
also Kang et al. 2020) apply a relatively strong linear drag
parameterization. However, the stronger boundary-layer drag
(which can readily be incorporated into the scaling law) can
only explain a relatively small part of the misfit. Instead,
interior viscous dissipation is key to explaining the much
weaker velocities in the simulations, as shown explicitly in
Figure 8(b) for the Enceladus simulation of Zeng & Jansen
(2021). Strong dissipation of kinetic energy associated with the
(numerically necessary) large interior viscosity implies that the
total dissipation rate is much larger than the boundary-layer
dissipation (i.e., ò? òBL), thus leading to much weaker
velocities. The large viscosities in the simulations (which
cannot resolve the inertial cascade range) cannot be justified on
physical grounds. Whether a dominant contribution from
interior dissipation is likely to exist on Enceladus, or is purely
an artifact of insufficient resolution and artificially large
viscosity in the simulations, remains unknown and depends
on how efficiently energy is transferred into balanced motions.
In either case, the estimate in Equation (32) is expected to
remain valid as an upper bound, although the true velocities
may be much smaller.
The Europa simulations of Soderlund et al. (2014) as well as

the Enceladus-like small Ekman number simulations of
Soderlund (2019) suggest much larger velocities than estimated
here (if redimensionalized with the actual ocean depth and
rotation rate of the respective icy moons). Qualitatively, this
discrepancy may be expected as a result of the much larger
dimensional vertical heat flux, which leads to a much larger
energy source, as discussed above. However, the scaling
argument leading to Equation (25) is not expected to apply to
the simulations of Soderlund et al. (2014) and Soderlund
(2019), due to different boundary conditions, thus not allowing
for a quantitative prediction of their simulation results. In
particular, Soderlund et al. (2014) and Soderlund (2019) use
smooth boundaries with free-slip boundary conditions, which
implies no boundary drag.

Figure 6. Results from an idealized high-salinity Enceladus ocean simulation, originally presented in Zeng & Jansen (2021). (a) Snapshot of the nondimensional
vertical velocity normalized as w/(ΩH), where is the planetary rotation rate and H is the ocean depth, such as to provide a flow Rossby number. (b) Snapshot of the
horizontal flow speed near the seafloor. (c) Snapshot of the zonal mean zonal flow (as a function of the depth and latitude). The model simulates a buoyancy-driven
flow associated with a spatially inhomogeneous bottom heating with a mean of 0.04 W m−2, crudely mimicking the conditions in Enceladus’ ocean. The simulation
assumes a spatially constant salinity of 35 g kg−1 with an Earth-like salt composition and simulates the flow in a 15° wide sector of a spherical shell (see Zeng &
Jansen 2021 for additional details).

Figure 7. Estimated geostrophic flow speeds ( =U E2g g ) as a function of the
energy dissipation rate (ò) and ocean depth (H) as predicted by the scaling in
Equation (25) assuming that most dissipation happens in turbulent boundary
layers near the seafloor and ice–ocean interface with a drag coefficient of
Cd = 0.025. Notice that a 1 order of magnitude uncertainty in Cd would amount
to an uncertainty in the flow speed of just over a factor of 2 (101/3). The white
boxes mark the estimated locations for Snowball Earth (Ea), Europa (Eu), and
Enceladus (En), assuming the parameter ranges given in Table 1. The color bar
is logarithmic with contours at 10−3 m s−1, 10−2.75 m s−1, ... , 10−0.75 m s−1.

9

The Planetary Science Journal, 4:117 (16pp), 2023 June Jansen et al.



3.3. Thermally Driven Flows in a Low-salinity, Low-pressure
Ocean

If salinity and pressure are relatively low, the thermal
expansion coefficient near the freezing point is negative. This
scenario was first suggested for Europa by Melosh et al. (2004),
although due to the modest pressures that are required for a
negative thermal expansion coefficient, it appears most likely to
be relevant for Enceladus, and was considered in the low-
salinity Enceladus ocean simulations of Zeng & Jansen (2021)
and Kang et al. (2022). To estimate the energetics of such an
ocean, we assume a stably stratified layer below the ice sheet
and above some depth zstrat, as found in the low-salinity
simulation of Zeng & Jansen (2021; Figure 9). In the stratified
layer, the temperature decreases upward from the “critical
temperature,” Θc, where α(Θc, zstrat)= 0 to the freezing point,
Θf, at the bottom of the ice sheet, zice (where α(Θf, zice)< 0).
For illustrative purposes, we assume that the seafloor and ice
sheet are flat (i.e., both boundaries follow a geopotential height
surface), such that  is vertically constant and equal to the
total bottom heat flux. Assuming again that horizontal
variations in the thermal expansion coefficient are small,

Equation (14) gives the KE generation as
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In the stratified layer, 〈α〉< 0, such that the first term in the
integral in Equation (33) amounts to an energy sink. One
plausible solution is then that the vertical heat flux through the
stratified layer is balanced by molecular diffusion (i.e., the
second term in the integral in Equation (33)), which amounts to
a conversion from internal to potential energy. In this case the
stratified layer would only be a few tens of meters thick (Zeng
& Jansen 2021), and most of the ocean would be convective
with Θ>Θc and hence α> 0. The dynamics in the convective
layer would follow scaling laws analogous to those presented
above, although the very small thermal expansion coefficient at
temperatures only marginally warmer than Θc implies that the
energy input and hence maximum flow speeds would be much
smaller than the upper bound estimated above.
The simulations of Zeng & Jansen (2021) used a relatively

large “eddy diffusivity” (κz= 5× 10−5m2 s−1), chosen such as

Figure 8. Mechanical energy budget of (a) the Snowball Earth ocean simulation from Jansen (2016) and (b) the Enceladus ocean simulation from Zeng & Jansen
(2021). From left to right are the energy sources and sinks (per unit volume) due to heat flux forcing at the boundaries ( Q V ), vertical diffusion ( Q Vdiff ),
parameterized boundary-layer dissipation (òBL), and interior viscous dissipation (òint). The last bar shows the residual associated with nonequilibrium effects and errors
in our offline calculation of the energy budgets.

Figure 9. Results from the Enceladus ocean simulation with low salinity from Zeng & Jansen (2021; as described in Figure 6 but with salinity 8.5 g kg−1). Although
the ocean is heated from below, convection is suppressed in the upper ocean as the thermal expansivity is negative near the freezing point. (a) Temperature; (b) thermal
expansivity; (c) advective (red), diffusive (blue), and total (black) vertical heat flux, all as a function of the depth. Panel (d) shows the energy budget decomposition as
in Figure 8. Panels (a)–(c) are reproduced from Zeng & Jansen (2021).
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to obtain a well-resolved stratified layer with negative thermal
expansivity, above a convective deep ocean with weakly
positive thermal expansivity (Figure 9(a),(b)). The vertical heat
flux through the stratified layer is balanced by this “eddy
diffusion” (Figure 9(c)), such that from the perspective of the
model’s energetics, the two terms in the integral in
Equation (33) balance in the stratified layer. Below the
stratified layer, the thermal expansivity is positive such that
convective upward heat flux releases kinetic energy that can
balance dissipation. Integrated over the entire ocean, however,
diffusion is the only net energy source and balances the energy
loss associated with net upward heat flux and the viscous
dissipation (Figure 9(d)). The simulations of Kang et al. (2022)
used an even larger eddy diffusivity (κ= 5× 10−3 m2 s−1),
such that the entire depth of the ocean becomes stratified with
the upward heat flux and associated downward buoyancy flux
accomplished by “eddy diffusion” (not shown). However, in
both studies the model’s diffusivities, which are much larger
than the molecular value, need to be interpreted as representing
turbulent mixing. If these turbulent mixing rates are real, the
associated vertical heat flux represents turbulent advection,
which amounts to a negative Q - that is a conversion of
turbulent kinetic energy to large-scale potential energy. An
additional implied energy source is therefore needed to
generate the turbulent kinetic energy and justify the applied
eddy diffusivities. A possible source are tides and/or librations,
to which we will return below.

4. Salinity Forcing

A number of studies have recently argued for the importance
of salt forcing in driving a circulation on Europa and Enceladus
(Zhu et al. 2017; Kang et al. 2020; Ashkenazy & Tziperman
2021; Lobo et al. 2021; Kang et al. 2022). Because β, as
defined in Equation (10), is always negative, salinity forcing
provides a source of mechanical energy if, and only if, salt is
added (e.g., by freezing) at a shallower depth and removed (or
fresh water is added by melting) at a greater depth
(Equations (13) and (15)). At steady state, however, freezing
and melting need to balance the convergence of ice flow, which
tends to flow from regions of thick ice to regions of thin ice.
We therefore expect melting to occur where the ice is thin, and
hence the ice–ocean interface is shallow, while freezing occurs
where the ice is thick and hence the ice–ocean interface is deep
(see Figure 2). In this case the required upward salt flux reduces
the kinetic energy of the ocean and hence cannot, energetically
speaking, drive a circulation.

Although salt and freshwater flux forcing is not likely to
represent a source of energy, it can generate a stable
stratification over much of the ocean, which in turn allows
diffusion to transport fresh buoyant water downward, thus
allowing for the maintenance of a diffusively driven over-
turning circulation (via the second term in Equation (15)). We
can estimate an upper bound for the energy source associated
with molecular salt diffusion, given a maximum vertical
salinity contrast. In an ocean driven by surface freshwater
forcing, most of the ocean is expected to fill up with the saltiest
water, leaving a relatively fresh surface layer in the region of
net melting. The vertical salt contrast can then be approxi-
mately bounded by the global mean ocean salinity, as the deep
ocean’s salinity is expected to be near this mean value, while
the surface salinity may be smaller but has to be positive. This
gives an estimated upper bound for the global mean energy

source rate as

k b ( ) g S

H
. 34S

For Snowball Earth, using κS∼ 10−9 m2 s−1, g= 10 m s−2,
β∼ 10−3 kg g−1, S 70 g kg−1, and H 2× 103 m, we obtain
ò 3× 10−13 m2 s−3. For Europa, using S 100 g kg−1,
g= 1m s−2, and H∼ 105 m, we obtain ò 10−15 m2 s−3; and
for Enceladus, with g= 0.1 m s−2, S 30 g kg−1, and H
1× 104 m, we obtain ò 3× 10−16 m2 s−3. For Snowball Earth
and Europa, these upper bound estimates are at least 2 orders of
magnitude lower than our estimates for the energy input from
vertical heat flux (Table 2), suggesting that molecular diffusion
even in the presence of a strong salt stratification is unlikely to be
a major energy source. For Enceladus, vertical salt diffusion is
also unlikely to be an important energy source although
molecular diffusion may be important if the salinity is low
enough for the thermal expansivity to be negative and if other
potential mechanical energy sources (such as tides or librations)
are negligible. In the presence of significant tidally driven
turbulence, the tidally driven mixing effectively replaces the
molecular diffusivity and can become a dominant energy source
in all oceans. This will be discussed in the next section.
As for virtually all numerical simulations, the models of Zhu

et al. (2017), Kang et al. (2020), Ashkenazy & Tziperman
(2021), Kang et al. (2022), and Lobo et al. (2021) employ
vertical diffusivities that are multiple orders of magnitude
larger than the molecular value. In this case vertical diffusion
acting against a statically stable stratification can drive a
substantial circulation. This is illustrated in Figure 10 for a
“salt-driven” Enceladus ocean simulation from Kang et al.
(2022),11 which uses a vertical diffusivity of κ= 5×
10−3 m2 s−1. The primary source of mechanical energy in the
simulations is associated with vertical diffusion of salt, which
balances the energy sink associated with salt fluxes at the ice–
ocean interface as well as the kinetic energy dissipation at the
boundaries and in the ocean interior. However, as in the low-
salinity Enceladus simulations of Zeng & Jansen (2021)
discussed above, the large vertical diffusivities need to be
interpreted as representing mixing by unresolved small-scale
turbulence. In reality, this turbulent mixing requires a source of
kinetic energy, and the mechanistic basis for this energy source
must be established in order for the results of the simulations to
be sound. In Earth’s ocean today the source of energy for
small-scale turbulent kinetic energy ultimately comes from
winds and tides (e.g., Wunsch & Ferrari 2004). Surface wind
stress is absent in globally ice-covered oceans, which leaves
tides or librations as the most obvious source of turbulent
kinetic energy in an ocean where buoyancy forcing is primarily
due to salt fluxes at the ice–ocean interface.

5. Tides and Turbulent Mixing

5.1. Theory

Tidal forcing generates kinetic energy in the ocean (via the
second term on the lhs of Equation (4)). The tidal perturbation
potential is typically approximately vertically constant through-
out the depth of the ocean, thus generating primarily barotropic

11 The results shown here are from the simulation with a 3D geometry and
intermediate salinity S = 20 g kg−1 in Kang et al. (2022).
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(i.e., vertically constant) tides. In Earth’s ocean these barotropic
tidal waves are largely linear until they encounter shallow
shelves, where the tidal amplitude increases and most of the
tidal energy dissipation is assumed to occur (Wunsch & Ferrari
2004). The icy moons do not have shelf seas similar to Earth’s
ocean, although tidal dissipation may nevertheless be sig-
nificantly enhanced in specific regions (e.g., Hay & Matsuyama
2019). Linear tides in the deep ocean do not contribute
significantly to the transport of heat, salt, and other properties
in the ocean, such that global models of Earth’s ocean
circulation can reproduce realistic large-scale circulations and
tracer distributions without explicitly accounting for tides.
However, it is possible that tidal waves on some icy moons
become sufficiently nonlinear to lead to substantial rectified
mean flows (e.g., Huthnance 1981; Brink 2011). As the current
manuscript is focused on buoyancy-driven circulation, we will
not further consider the possible role of rectified tidal flows
here, but note that this remains a potentially important topic for
further research.

Despite weak direct interactions with the large-scale flow,
ocean tides can have an important effect on the large-scale
circulation in the presence of a statically stable stratification
(e.g., driven by freshwater fluxes at the ice–ocean interface).
Barotropic tides interacting with a rough seafloor topography in
the presence of a statically stable stratification can transfer their
energy into baroclinic tides, i.e., internal waves that propagate
both horizontally and vertically and can be associated with
substantial vertical shears (e.g., MacKinnon et al. 2017 and
references therein). These shears in turn can lead to instabilities
and eventually the generation of turbulence within the water
column. This pathway is believed to be one of the main drivers
of 3D turbulence in Earth’s deep ocean (Vic et al. 2019).
Although most of the the turbulent kinetic energy is dissipated
into heat, some fraction, usually denoted by the “mixing
efficiency,” Γ, is converted to potential energy via vertical
mixing of the stratified water column:

ò ò= ¢ ¢ = - G( ) ( )w b dV dV , 35t t t

where - t is the potential energy generation due to tidally
driven turbulent mixing, ¢ ¢( )w b t is the vertical buoyancy flux
associated with tidally driven turbulence, ò t is the tidally
generated turbulent kinetic energy dissipation rate per unit
mass, and Γ 0.2 is the mixing efficiency (e.g., Peltier &
Caulfield 2003).
The potential energy generated by turbulent mixing in a

stratified ocean can then drive a large-scale circulation that
converts the potential energy back to kinetic energy via a
positive conversion wb (where the overbars denote the large-
scale circulation). If turbulent mixing is the dominant source of
potential energy (i.e., when buoyancy gain and buoyancy loss
from external forcing occur at approximately the same depth)
the conversion wb is, on average, approximately equal and
opposite to the downward buoyancy flux associated with tidally
driven turbulence:

ò ò òº = + ¢ ¢ º + »( )

( )

wbdV wbdV w b dV 0,

36

t t  

where  is the kinetic energy generated (and ultimately
dissipated) by the mean flow. The energy cycle can then be
summarized as follows. Tides generate turbulent kinetic
energy, a fraction of which is converted into large-scale
potential energy via downward turbulent buoyancy flux (with
the remainder being dissipated into heat). This potential energy
can then be converted back to kinetic energy (and ultimately be
dissipated) by the large-scale circulation. This mechanism
requires a statically stable stratification such that turbulent
mixing transports buoyancy downward. In the absence of a
statically stable stratification, we still expect tidally driven
turbulence to contribute to the mixing of properties, but we do
not expect it to contribute to driving large-scale circulation.
In addition to tides, librations and injection of fluid through

fissures in the ice or solid core may provide sources of kinetic
energy. Librations are expected to play a similar role to tides,
and as for tides, their effect on the large-scale circulation is
expected to depend on their ability to generate turbulence in the

Figure 10. Results for a “salt-driven” Enceladus ocean simulation from Kang et al. (2022). Salt flux forcing from freezing and melting is prescribed at the bottom of an
ice sheet that is thicker at the equator and thinner near the poles. The mean ocean salinity is 20 g kg−1, which leads to a very small thermal expansivity, and the
simulation does not include heating at the ocean floor. As a result, density gradients and energetics are dominated by the salinity and salt fluxes. (a) Snapshot of the
salinity and (b) zonal velocity as a function of the depth and latitude. (c) Energy budget. From left to right are the energy sources and sinks (per unit volume) due to
heat flux forcing at the boundaries ( Q V ), salt flux forcing at the boundaries ( VS ), vertical diffusion of heat ( Q Vdiff ), vertical diffusion of salt ( VS

diff ),
boundary-layer dissipation (òBL), and interior viscous dissipation (òint). The last bar shows the residual associated with nonequilibrium effects and errors in our offline
calculation of the energy budgets.
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ocean interior and on the presence of a statically stable
stratification. Injection of water through fissures in the
boundaries (which is not formally included in the global
kinetic energy budget in Equation (4), where we assumed no-
normal-flow boundary conditions) is likely to drive mechanical
turbulence primarily in the vicinity of the boundaries, but
strong jets emanating from the ice shell, as proposed by Kite &
Rubin (2016), may play an important role in the dynamics of
the upper ocean.12 A full investigation of the effects of such
jets is beyond the scope of this study, but remains an interesting
subject for future research.

5.2. Application to Snowball Earth, Europa, and Enceladus

We begin by estimating the potential role of tidally driven
turbulence in the Snowball Earth ocean. Although little is
known about tidal energy dissipation during the Snowball
Earth periods, the average tidal dissipation between the
Precambrian and the present was likely somewhat smaller but
of similar order of magnitude as the present-day value
(Williams 2000; Green et al. 2017). The direct effect of the
Snowball Earth ice sheet on tides was likely small (Wunsch
2016). For scaling purposes we therefore here assume a tidal
energy input on the order of 1012W, which is comparable to
the present-day value of around 3.5× 1012W (Wunsch &
Ferrari 2004). Assuming a mean ocean depth of about 2 km, an
ocean area of 3.5× 1014 m2, and density ρ0≈ 1000 kg m−3, the
average tidal energy dissipation per unit mass is around
ò t≈ 10−9 m2 s−3, which is a little over an order of magnitude
larger than the estimated energy input due to thermal forcing

(see Table 2). If a significant fraction of the dissipated tidal
energy is dissipated in the stratified ocean interior and is
relatively efficiently converted to potential energy (i.e.,
Γ 10%) it thus may play a significant role in driving a
large-scale ocean circulation. In particular, one may envision a
scenario where freezing and melting at the ice–ocean interface
combined with tidally driven turbulent mixing, which pushes
the light fresh water into the ocean interior, can drive a
significantly stronger large-scale ocean circulation than the
thermal forcing alone. This scenario appears to be relevant for
the interpretation of the simulation results by Ashkenazy et al.
(2013) and Jansen (2016), although the turbulent vertical
mixing in these simulations is parameterized with prescribed
vertical diffusivities (i.e., k¢ ¢  - ¶( )w b bt z )and is thus not
constrained by tidal energy dissipation. The present analysis
nevertheless suggests that the vertical mixing may be justifiable
on energetic grounds given the expected tidally driven
turbulence, although it would require that a significant fraction
of the tidal energy is dissipated in the stratified ocean interior
(as opposed to being highly localized in boundary layers where
the stratification is vanishingly small) and is relatively
efficiently converted to potential energy.
Tidal energy dissipation on Europa has been estimated from

modeling to be on the order of 109–1011W (Chen et al. 2014;
Matsuyama et al. 2018; Hay & Matsuyama 2019). Assuming,
as before, an ocean depth on the order of 105 m, an area of
around 3× 1013 m2, and a density ρ0≈ 1000 kg m−3, we
estimate a tidal energy dissipation per unit volume of around
ò t≈ 3× 10−13

–3× 10−11 m2 s−3, which is between about 1
order of magnitude smaller to 2 orders of magnitude larger than
the energy input by buoyancy forcing (see Table 2). Depending
on the estimate for tidal energy dissipation, and the fraction of
the dissipated tidal energy that is converted to potential energy,
tidally driven turbulent mixing thus may or may not play a
significant role in driving a large-scale ocean circulation on
Europa. In particular, freezing and melting at the ice–ocean
interface combined with tidally driven turbulent mixing may
drive a significantly stronger large-scale ocean circulation then
the thermal forcing alone, if, and only if, ocean tidal dissipation
is near the upper end of these estimates and a large fraction of
that energy contributes to vertical mixing against a stable
stratification. A significant salt-driven circulation was found in

Table 1
Overview of Assumed Parameter Ranges for the Seafloor Heating Rate, Q, Gravitational Acceleration, g, Thermal Expansion Coefficient, α, Ocean Depth, H, and
Coriolis Parameter, f, for Snowball Earth, Europa, and Enceladus. (The Sources are Cited in the Text.) Notice That the Uncertainties in Gravity and Rotation Rate are

Comparatively Small and Hence Ignored Here

Q (Wm−2) g (ms−2) α (K−1) H (m) Ω (s−1)

Snowball Earth 0.1 10 1 × 10−4
–2 ×10−4 2 × 103–3 ×103 8 ×10−5

Europa 0.02–0.1 1 1 × 10−4
–3 ×10−4 5 × 104–1.5 ×105 2 ×10−5

Enceladus 0.01–0.08 0.1 <1 × 10−4 1 × 104–5 ×104 5 ×10−5

Table 2
Overview of Estimates for Mechanical Energy Input (Per Unit Mass) Due to Thermal Forcing, = H  , the Critical Length Scale Where Rotation is Expected to
Become Important, Lrot, the Convective Rossby Number for Rotating Convection, Rorc, and an Estimate of the Maximum Characteristic KE Energy (Assuming Small

Interior Dissipation) of the Large-scale Geostrophic flow, Eg, for Snowball Earth, Europa, and Enceladus

ò (m2 s−3) Lrot(m) Rorc Eg(m
2 s−2)

Snowball Earth 2.5–5 × 10−11 7–10 2–5 × 10−3 10−4
–10−3

Europa 5 × 10−13
–8 × 10−12 8–30 1–8 × 10−4 5 × 10−5

–3 × 10−3

Enceladus 2 × 10−13 1 1 × 10−4 10−4

12 For steady planar turbulent jets in an unstratified fluid, the peak mean flow
speed has been found to decay with distance from the orifice as

»U d x2.5max , where d is the width of the slot from which the jet emanates
and x is the distance (e.g., Gutmark & Wygnanski 1976). Turbulent flow
speeds are about 20%–25% of this value. Kite & Rubin (2016) suggest that
Enceladus’ “tiger stripes” are associated with O(1 m) wide slots in which tidal
forces generate O(1 m s−1) jets. Assuming a neutral stratification, the results for
planar turbulent jets would then suggest peak mean flows on the order of
10 cm s−1 and associated turbulent velocities on the order of a few cm s−1 to
persist to a depth of a few hundred meters into the ocean. The relatively weak
depth dependence ( µ -U xmax

1 2) moreover indicates that weaker but
significant flows may be penetrating much deeper, although results for steady
jets are likely to become less applicable to the oscillatory jets proposed by Kite
& Rubin (2016) at a greater depth. Stratification may further limit the
penetration depth of turbulent jets.
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the simulations of Ashkenazy & Tziperman (2021), although
turbulent vertical mixing is parameterized with a prescribed
Earth-like vertical diffusivity in the simulations and is not
constrained by tidal energy dissipation. Better estimates of tidal
energy dissipation in Europa’s ocean are needed to determine
whether such a large turbulent vertical diffusivity can be
justified for stratified regions of Europa’s ocean.

For Enceladus’ ocean, energy dissipation associated with the
eccentricity and obliquity tides has been estimated to be
relatively small, with a total dissipation between 10 and 104W
suggested by Matsuyama et al. (2018) and Hay & Matsuyama
(2019). More recently, Rovira-Navarro et al. (2023) argued that
much larger tidal dissipation may occur in the presence of
strong stratification and baroclinic tide resonances, although
dissipation rates larger than 106W remain unlikely for the
expected range of stratifications. Tyler (2020) has argued that
much larger dissipation rates are possible, accounting for
virtually all of the observed O(1010W) heat flux, although the
calculations generally predict the total dissipation in the ice–
ocean system, and it is likely that most of the dissipation in the
suggested scenarios would indeed occur in the ice sheet (see
Beuthe 2016). Assuming that the most likely range for ocean
tidal dissipation on Enceladus is ∼10–106W, and using an
average ocean depth of around 3× 104 m and an area of around
5× 1011 m2, we find an average tidal energy dissipation rate
anywhere between around ò t≈ 7× 10−19

–7× 10−14 m2 s−3.
The upper end of this range remains more than an order of
magnitude smaller than the estimated maximum mechanical
energy input via thermal forcing (see Table 2).

However, Enceladus’ ocean may be more strongly affected
by librations of the ice shell, which is decoupled from the solid
interior (Thomas et al. 2016). It is not clear whether librations
lead to relatively modest dissipation confined to the ice–ocean
boundary layer, thus not contributing significantly to interior
mixing, or whether the excitation of internal waves or elliptical
instability (an instability that can break up elliptical stream-
lines) can lead to relatively strong mixing throughout the depth
of the ocean (Lemasquerier et al. 2017; Wilson & Kerswell
2018; Rekier et al. 2019; Soderlund et al. 2020). At the extreme
end, Wilson & Kerswell (2018) argue that it is possible that all
of the O(10 GW) of heating on Enceladus may be a result of
librational dissipation, which, divided by the mass of
Enceladus’ ocean would give ò t∼ 10−9 m2 s−3

—many orders
of magnitude larger than the possible mechanical energy input
from thermal forcing. In this case it is likely that libration-
driven turbulence would play the dominant role in ocean
mixing. Narrowing down the large uncertainty in the energy
dissipation rate associated with libration-driven turbulence will
be key to constraining the turbulent diffusivity, which is an
essential parameter in numerical simulations of Enceladus’
ocean (Zeng & Jansen 2021; Kang et al. 2022).

6. Conclusions

Consideration of the sources and dissipation rates of kinetic
energy provides useful constraints for the circulation of ice-
covered oceans. In general, kinetic energy can be generated by
tides or by conversion from potential energy, which in turn can
be generated by heat and salt flux forcing. We here assumed an
ocean in a statistically steady state in the sense that the mean
tendencies of heat, salt, and kinetic energy are small. Relaxing
this assumption—e.g., by allowing for an actively growing ice
sheet where the heat loss through the ice sheet is much larger

than the heating from the core (as proposed by Roberts &
Nimmo 2008) would require the inclusion of tendency terms in
our budgets, which in turn would lead to a significantly less
well-constrained problem.
A commonly assumed forcing consists of heating from the

solid core balanced by heat loss through the ice sheet, which
acts as a source of potential energy and can drive an ocean
circulation, as long as the thermal expansivity of the water is
positive. In the oceans of Snowball Earth, Europa, and
Enceladus, the associated energy input, however, is orders of
magnitude smaller than the wind energy input that dominantly
drives the circulation in Earth’s present-day ocean. We predict
that the resulting thermally driven flows have flow speeds of at
most a few cm s−1 and will be strongly affected by rotation
(i.e., small Rossby numbers). Numerical simulations of
thermally driven flows on icy moons, which typically use
artificially large viscous dissipation and sometimes artificially
large thermal forcing may misrepresent both energy sources
and sinks by multiple orders of magnitude, which can lead to
widely different and unrealistic levels of kinetic energy.
The salt fluxes associated with freezing and melting at the ice

sheet boundary only provide a source of potential energy if
freezing occurs under thinner ice than melting, which is
unlikely in equilibrium where freezing and melting needs to be
in balance with the ice flow. In the more likely scenario where
melting on average occurs at a shallower depth than freezing,
the salt flux forcing acts as a sink of potential energy. Vertical
mixing, which can push the lighter fresh water into the interior,
is then needed to drive a circulation. Molecular diffusion can in
theory accomplish such mixing, but the associated energy
source is likely to be relatively small. Much stronger turbulent
mixing may be driven by tidal energy dissipation.
Ocean tides and librations may provide a key energy source

for ocean turbulence. Current estimates indicate that tidally
driven vertical mixing is likely to be important in a Snowball
Earth ocean, and could possibly play a significant role on
Europa, while librations may provide a key source of turbulent
kinetic energy on Enceladus. However, the magnitude and
spatial distribution of turbulence generated by tides and
librations remains highly uncertain, which represents a major
hurdle to better constrain the circulations of icy-world oceans.
An improved understanding of ocean tides and librations on icy
moons thus remains an important topic for future research.

Appendix
A Generalized Expression for the Energy Input from

Buoyancy Forcing

To quantify the role of heat and salinity forcing on the
vertical buoyancy flux, while fully accounting for nonlinearities
in the equation of state, it is useful to introduce the dynamic
enthalpy (Young 2010):

òQ = Q ¢ ¢( ) ˜( ) ( )‡h S z b S z dz, , , , . A1
z

0

The dynamic enthalpy, h‡, is closely related to the potential
energy, and indeed reduces to the well-known expression for
the potential energy in the limit of an equation of state with no
explicit depth dependence (i.e., = Q˜( )b b S, ), where h‡→ bz.
The evolution equation for h‡ is

 = - + Q¶ + ¶Q ( )
‡

‡ ‡Dh

Dt
wb h S h , A2S
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where  qQ º D Dt and  ºS DS Dt are given by Equations (6)
and (7), respectively.

Integrating globally and assuming the global enthalpy
budget to be in equilibrium, we can relate the globally
integrated vertical advective buoyancy flux, , which provides
a source of KE, to the thermal and salinitiy forcing, Q and S:

 ò òº = Q¶ + ¶Q( ) ( )‡ ‡wbdV h S h dV . A3S

Defining

 òa aQ º
-

¶ =
-

Q ¢ ¢Q( ) ( ) ( )‡g S z
z

h
z

g S z dz, ,
1 1

, , A4
z

0

and

 òb bQ º
-

¶ =
-

Q ¢ ¢( ) ( ) ( )‡g S z
z

h
z

g S z dz, ,
1 1

, , , A5S
z

0

we can write Equation (A3) as
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Equation (A6) allows us to relate the globally integrated
advective upward buoyancy flux (and hence the associated KE
generation) to the heat and salt fluxes through the boundaries
(the first four terms on the rhs of Equation (A6)), reduced by
the diffusive buoyancy flux (the fifth term on the rhs of
Equation (A6)). The last term in Equation (A6) captures the
effect of buoyancy sources or sinks that arise from horizontal
diffusive mixing of Θ and S due to the nonlinearity in the
equation of state (the cabbeling effect).

The potential role of the cabbeling term in Equation (A6) can
be illustrated by considering again the example of Section 3.3,
which may resemble the conditions on Enceladus, assuming a
relatively low salinity for the latter. That is we assume a
stratified layer with negative thermal expansion coefficient
above a convective deep layer with weakly positive thermal
expansion coefficient. For illustrative purposes, let us assume
the upper and lower boundaries to be horizontal, and the
bottom and surface heat fluxes to be spatially uniform; we also
ignore radial variations in the surface area, such that
Qtop=Qbot≡Q, as well as vertical variations in gravity. As
variations in the thermal expansion coefficient are primarily
due to differences in the temperature, we moreover neglect the
direct depth dependence of b̃ and assume that variations in
salinity are small, such that a a q= ( )g g . In this case,

Equation (A6) simplifies to
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where we used that ∇hα ·∇hΘ= ∂Θα|∇hΘ|2. The last term
can now be associated with the diffusive destruction of
temperature variance, which leads to a buoyancy source if
∂Θα> 0 (amounting to a positive curvature in b(θ)).
Notice that the magnitude (and potentially the sign) of the

first and last terms in Equation (A7) depend on the choice of
reference level. For instance, setting zbot= 0 and ztop=H,
where H is the depth of the ocean (which we assume to be
constant with flat upper and lower boundaries), we find
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Defining the reference level instead such that ztop= 0 and
zbot=−H, we obtain
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The first term differs dramatically in the two equations, as α

(Θtop)< 0 while α(Θbot)> 0. This difference is compensated
by the last term, which also changes sign, as z> 0 in
Equation (A7) and z< 0 in Equation (A8). The last term in
Equation (A6) hence can be of leading-order importance if
variations in the thermal (or haline) expansion coefficient are
large. As this term cannot be predicted based on knowledge of
the boundary conditions alone, this most general formulation is
hence less immediately useful as a predictor of flow energetics.
However, if horizontal temperature variations are relatively
small, Equation (14) remains a useful approximation and
allows us to estimate the kinetic energy input without explicit
consideration of diffusive variance destruction.
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