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Gravity

5.1 Introduction

The force exerted on an element of mass at the surface of the Earth has two
principal components. One is due to the gravitational attraction of the mass
in the Earth, and the other is due to the rotation of the Earth. Gravity refers
to the combined effects of both gravitation and rotation. If the Earth were
a nonrotating spherically symmetric body, the gravitational acceleration on
its surface would be constant. However, because of the Earth’s rotation,
topography, and internal lateral density variations, the acceleration of gravity
g varies with location on the surface. The Earth’s rotation leads mainly to a
latitude dependence of the surface acceleration of gravity. Because rotation
distorts the surface by producing an equatorial bulge and a polar flattening,
gravity at the equator is about 5 parts in 1000 less than gravity at the poles.
The Earth takes the shape of an oblate spheroid. The gravitational field of
this spheroid is the reference gravitational field of the Earth. Topography
and density inhomogeneities in the Earth lead to local variations in the
surface gravity, which are referred to as gravity anomalies.

The mass of the rock associated with topography leads to surface gravity
anomalies. However, as we discussed in Chapter 2, large topographic features
have low-density crustal roots. Just as the excess mass of the topography
produces a positive gravity anomaly, the low-density root produces a nega-
tive gravity anomaly. In the mid-1800s it was observed that the gravitational
attraction of the Himalayan Mountains was considerably less than would be
expected because of the positive mass of the topography. This was the first
evidence that the crust–mantle boundary is depressed under large mountain
belts.

A dramatic example of the importance of crustal thickening is the ab-
sence of positive gravity anomalies over the continents. The positive mass
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anomaly associated with the elevation of the continents above the ocean
floor is reduced or compensated by the negative mass anomaly associated
with the thicker continental crust. We will show that compensation due to
the hydrostatic equilibrium of thick crust leads in the first approximation
to a zero value for the surface gravity anomaly. There are mechanisms for
compensation other than the simple thickening of the crust. An example
is the subsidence of the ocean floor due to the thickening of the thermal
lithosphere, as discussed in Section 4–23.

Gravity anomalies that are correlated with topography can be used to
study the flexure of the elastic lithosphere under loading. Short wavelength
loads do not depress the lithosphere, but long wavelength loads result in
flexure and a depression of the Moho. Gravity anomalies can also have im-
portant economic implications. Ore minerals are usually more dense than the
country rock in which they are found. Therefore, economic mineral deposits
are usually associated with positive gravity anomalies. Major petroleum oc-
currences are often found beneath salt domes. Since salt is less dense than
other sedimentary rocks, salt domes are usually associated with negative
gravity anomalies.

As we will see in the next chapter, mantle convection is driven by vari-
ations of density in the Earth’s mantle. These variations produce grav-
ity anomalies at the Earth’s surface. Thus, measurements of gravity at
the Earth’s surface can provide important constraints on the flow patterns
within the Earth’s interior. However, it must be emphasized that the surface
gravity does not provide a unique measure of the density distribution within
the Earth’s interior. Many different internal density distributions can give
the same surface distributions of gravity anomalies. In other words, inver-
sions of gravity data are non-unique.

5.2 Gravitational Acceleration External to the Rotationally
Distorted Earth

The gravitational force exerted on a mass m′ located at point P outside the
Earth by a small element of mass dm in the Earth is given by Newton’s law
of gravitation. As shown in Figure 5–1, the gravitational attraction dfm in
the direction from P to dm is given by

dfm =
Gm′dm

b2
, (5.1)

where G is the universal gravitational constant G = 6.673 × 10−11 m3 kg−1

s−2 and b is the distance between dm and the point P . The infinitesimal
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Figure 5.1 Force on a mass m′ due to the gravitational attraction of an
infinitesimal element of mass dm in the Earth.

gravitational acceleration at P due to the attraction of dm is the force per
unit mass exerted on m′ in the direction of P :

dgm =
dfm

m′
. (5.2)

By combining Equations (5–1) and (5–2) we obtain

dgm =
Gdm

b2
. (5.3)

If the distribution of mass in the Earth were known exactly, the gravitational
attraction of the Earth on a unit mass outside the Earth could be obtained
by summing or integrating dgm over the entire distribution. Suppose, for
example, that the entire mass of the Earth M were concentrated at its
center. The gravitational acceleration at a distance r from the center would
then be directed radially inward and, according to Equation (5–3), it would
be given by

gm =
GM

r2
. (5.4)

Following the generally accepted sign convention, we take gm to be positive,
even though it is directed in the −r direction.

We next determine the gravitational acceleration outside a spherical body
with a density distribution that is a function of radius only, ρ = ρ(r′). The
geometry is illustrated in Figure 5–2. It is clear from symmetry considera-
tions that the gravitational acceleration gm at a point P outside the mass
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Figure 5.2 Geometry for the calculation of the gravitational acceleration
at a point outside a spherically symmetric mass distribution.

distribution is directed radially inward and depends only on the distance r
of point P from the center of the sphere. For convenience, we let the line
from P to O be the polar axis of a spherical coordinate system r, θ, ψ. The
gravitational acceleration at P due to an element of mass dm located in the
sphere at r′, θ′, ψ′ is directed along the line from P to dm and is given by
Equation (5–3). The component of this gravitational acceleration along the
line from P to O is

G cosα dm

b2
.

The net radially inward gravitational acceleration at P is found by integrat-
ing this expression over the entire mass distribution:

gm = G
∫

cosα dm

b2
. (5.5)

The element of mass dm is the product of the volume element dV with the
density ρ(r′) at the location of dV

dm = ρ(r′) dV. (5.6)
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The element of volume can be expressed in spherical coordinates as

dV = r′2 sin θ′ dθ′ dψ′ dr′. (5.7)

The integral over the spherical mass distribution in Equation (5–5) can thus
be written

gm = G
∫ a

0

∫ π

0

∫ 2π

0

ρ(r′)r′2 sin θ′ cosα dψ′ dθ′ dr′

b2
,

(5.8)

where a is the radius of the model Earth. The integral over ψ′ is 2π, since
the quantities in the integrand of Equation (5–8) are independent of ψ′. To
carry out the integration over r′ and θ′, we need an expression for cosα.
From the law of cosines we can write

cosα =
b2 + r2 − r′2

2rb
. (5.9)

Because the expression for cos α involves b rather than θ′, it is more conve-
nient to rewrite Equation (5–8) so that the integration can be carried out
over b rather than over θ′. The law of cosines can be used again to find an
expression for cos θ′:

cos θ′ =
r′2 + r2 − b2

2rr′
. (5.10)

By differentiating Equation (5–10) with r and r′ held constant, we find

sin θ′dθ′ =
b db

rr′
. (5.11)

Upon substitution of Equations (5–9) and (5–11) into Equation (5–8), we
can write the integral expression for gm as

gm =
πG

r2

∫ a

0
r′ρ(r′)

∫ r+r′

r−r′

{

r2 − r′2

b2
+ 1

}

db dr′.

(5.12)

The integration over b gives 4 r′ so that Equation (5–12) becomes

gm =
4πG

r2

∫ a

0
dr′r′2ρ(r′). (5.13)

Since the total mass of the model is given by

M = 4π
∫ a

0
dr′r′2ρ(r′), (5.14)
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the gravitational acceleration is

gm =
GM

r2
. (5.15)

The gravitational acceleration of a spherically symmetric mass distribu-
tion, at a point outside the mass, is identical to the acceleration obtained
by concentrating all the mass at the center of the distribution. Even though
there are lateral density variations in the Earth and the Earth’s shape is dis-
torted by rotation, the direction of the gravitational acceleration at a point
external to the Earth is very nearly radially inward toward the Earth’s cen-
ter of mass, and Equation (5–15) provides an excellent first approximation
for gm.

Problem 5.1 For a point on the surface of the Moon determine the ratio
of the acceleration of gravity due to the mass of the Earth to the acceleration
of gravity due to the mass of the Moon.

The rotational distortion of the Earth’s mass adds a small latitude-dependent
term to the gravitational acceleration. This term depends on the excess mass
in the rotational equatorial bulge of the Earth. The observed latitude depen-
dence of gm can thus be used to determine this excess mass. In addition, this
effect must be removed from observed variations in surface gravity before the
residual gravity anomalies can properly be attributed to density anomalies
in the Earth’s interior. The model we use to calculate the contribution of
rotational distortion to gravitational acceleration is sketched in Figure 5–3.
The Earth is assumed to be flattened at the poles and bulged at the equator
because of its rotation with angular velocity ω. The mass distribution is as-
sumed to be symmetrical about the rotation axis. Because of the departure
from spherical symmetry due to rotation, the gravitational acceleration at a
point P outside the Earth has both radial and tangential components. The
radial component is the sum of GM/r2 and the term g′r due to rotational
distortion of the mass distribution; the tangential component g′t is entirely
due to the rotationally induced departure from spherical symmetry. Follow-
ing our previous sign convention both GM/r2 and g′r are positive if directed
inward. Since rotation modifies the otherwise spherically symmetric model
Earth only slightly, g′r and g′t are small compared with GM/r2.
The total gravitational acceleration is

{(

GM

r2
+ g′r

)2

+ g′2t

}1/2

=
{(

GM

r2

)2

+ 2
(

GM

r2

)

g′r + g′2r + g′2t

}1/2

. (5.16)
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Figure 5.3 Geometry for calculating the contribution of rotational distor-
tion to the gravitational acceleration.

It is appropriate to neglect the quadratic terms because the magnitudes of g′r
and g′t are much less than GM/r2. Therefore the gravitational acceleration
is given by

{(

GM

r2

)2

+ 2
(

GM

r2

)

g′r

}1/2

=
(

GM

r2

){

1 +
2g′r

GM/r2

}1/2

=
(

GM

r2

){

1 +
g′r

GM/r2

}

=
GM

r2
+ g′r. (5.17)

Equation (5–17) shows that the tangential component of the gravitational
acceleration is negligible; the net gravitational acceleration at a point P
external to a rotationally distorted model Earth is essentially radially inward
to the center of the mass distribution.

The radial gravitational acceleration for the rotationally distorted Earth
model can be obtained by integrating Equation (5–5) over the entire mass
distribution. We can rewrite this equation for gm by substituting expression
(5–9) for cos α with the result

gm =
G

2r2

∫
{

r

b
+

r3

b3

(

1 −
r′2

r2

)}

dm. (5.18)
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The three distances appearing in the integral of Equation (5–18) r, r′, and
b are the sides of the triangle connecting O, P , and dm in Figure 5–3. It is
helpful for carrying out the integration to eliminate b from the integrand in
terms of r, r′, and the angle β, which is opposite the side of length b in this
triangle. From the law of cosines we can write

b2 = r2 + r′2 − 2rr′ cos β, (5.19)

which can be rearranged as

r

b
=
{

1 +
r′2

r2
−

2r′

r
cos β

}−1/2

. (5.20)

Upon substituting Equation (5–20) into Equation (5–18), we get

gm =
G

2r2

∫
{

1 +
r′2

r2
−

2r′

r
cos β

}−1/2

×
{

1 +
(

1 −
r′2

r2

)(

1 +
r′2

r2
−

2r′

r
cos β

)−1}

dm.

(5.21)

An analytic evaluation of the integral in Equation (5–21) is not possible.
The integration is complicated because both r′ and β vary with the position
of dm. However, the integration can be made tractable by approximating
the integrand with a power series in r′/r and retaining terms only up to
(r′/r)2. For P outside the mass distribution, r′/r < 1. We will show that
the expansion in powers of (r′/r) is equivalent to an expansion of the grav-
itational field in powers of a/r. This approximation yields an expression for
gm that is sufficiently accurate for our purposes. Using the formulas

(1 + ε)−1/2 ≈ 1 −
ε

2
+

3ε2

8
+ · · · (5.22)

(1 + ε)−1 ≈ 1 − ε+ ε2 + · · · , (5.23)

which are approximately valid for ε < 1, we find

gm =
G

r2

∫
{

1 +
2r′

r
cos β +

3r′2

r2

(

1 −
3

2
sin2 β

)}

dm.

(5.24)

The integrations in Equation (5–24) can be carried out in terms of well-
known physical properties of a mass distribution. The first term is just the
integral of dm over the entire mass. The result is simply M . The integral
of r′ cos β over the mass distribution is a first moment of the distribution.
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It is by definition zero if the origin of the coordinate system is the center of
mass of the distribution. Thus Equation (5–24) becomes

gm =
GM

r2
+

3G

r4

∫

r′2
(

1 −
3

2
sin2 β

)

dm. (5.25)

The first term on the right of Equation (5–25) is the gravitational acceler-
ation of a spherically symmetric mass distribution. The second term is the
modification due to rotationally induced oblateness of the body. If higher
order terms in Equations (5–24) and (5–23) had been retained, the expan-
sion given in Equation (5–25) would have been extended to include terms
proportional to r−5 and higher powers of r−1.

We will now express the integral appearing in Equation (5–25) in terms
of the moments of inertia of an axisymmetric body. We take C to be the
moment of inertia of the body about the rotational or z axis defined by θ = 0.
This moment of inertia is the integral over the entire mass distribution of
dm times the square of the perpendicular distance from dm to the rotational
axis. The square of this distance is x′2 + y′2 so that we can write C as

C ≡
∫

(x′2 + y′2) dm =
∫

r′2 sin2 θ′ dm (5.26)

because

x′ = r′ sin θ′ cosψ′ (5.27)

y′ = r′ sin θ′ sinψ′. (5.28)

The moment of inertia about the x axis, which is defined by θ = π/2, ψ = 0,
is

A ≡
∫

(y′2 + z ′2) dm

=
∫

r′2(sin2 θ′ sin2 ψ′ + cos2 θ′) dm (5.29)

because

z′ = r′ cos θ′. (5.30)

Similarly, the moment of inertia about the y axis, which is defined by θ =
π/2, ψ = π/2, is

B ≡
∫

(x′2 + z ′2) dm

=
∫

r′2(sin2 θ′ cos2 ψ′ + cos2 θ′) dm. (5.31)
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For a body that is axisymmetric about the rotation or z axis, A = B. The
addition of Equations (5–26), (5–29), and (5–31) together with the assump-
tion of axisymmetry gives

A + B + C = 2
∫

r′2 dm = 2A + C. (5.32)

This equation expresses the integral of r′2dm appearing in Equation (5–25)
in terms of the moments of inertia of the body.

We will next derive an expression for the integral of r′2 sin2 βdm. Because
of the axial symmetry of the body there is no loss of generality in letting
the line OP in Figure 5–3 lie in the xz plane. With the help of Equation
(5–32) we rewrite the required integral as

∫

r′2 sin2 β dm =
∫

r′2(1 − cos2 β) dm

= A +
1

2
C −

∫

r′2 cos2 β dm.

(5.33)

The quantity r′ cos β is the projection of r′ along OP . But this is also

r′ cos β = x′ cos φ+ z′ sinφ, (5.34)

where φ is the latitude or the angle between OP and the xy plane. Note that
y′ has no projection onto OP , since OP is in the xz plane. We use Equation
(5–34) to rewrite the integral of r′2 cos2 β in the form

∫

r′2 cos2 β dm = cos2 φ
∫

x′2 dm

+ sin2 φ
∫

z ′2 dm

+2cosφ sinφ
∫

x′z′ dm. (5.35)

For an axisymmetric body,
∫

x′2 dm =
∫

y′2 dm. (5.36)

This result and Equation (5–26) give
∫

x′2 dm =
1

2

∫

(x′2 + y′2) dm =
1

2
C. (5.37)



364 Gravity

The integral of z ′2dm can be evaluated by using Equations (5–26) and (5–32)
∫

z ′2 dm =
∫

(x′2 + y′2 + z ′2) dm −
∫

(x′2 + y′2) dm

=
∫

r′2 dm −
∫

(x′2 + y′2) dm

= A −
1

2
C. (5.38)

With mass symmetry about the equatorial plane we have
∫

x′z′ dm =
∫

r′2 cos θ′ sin θ′ cosψ′ dm = 0. (5.39)

Substitution of Equations (5–37) to (5–39) into Equation (5–35) yields
∫

r′2 cos2 β dm =
1

2
C cos2 φ+

(

A −
1

2
C
)

sin2 φ.

(5.40)

When Equations (5–33) and (5–40) are combined, we find, using sin2 φ +
cos2 φ = 1, that

∫

r′2 sin2 β dm = A cos2 φ+ C sin2 φ. (5.41)

The gravitational acceleration is finally obtained by substituting Equations
(5–32) and (5–41) into Equation (5–25):

gm =
GM

r2
−

3G(C − A)

2r4
(3 sin2 φ− 1). (5.42)

Equation (5–42) is a simplified form of MacCullagh’s formula for an ax-
isymmetric body. The moment of inertia about the rotational axis C is larger
than the moment of inertia about an equatorial axis A because of the ro-
tational flattening of the body. It is customary to write the difference in
moments of inertia as a fraction J2 of Ma2, that is

C − A = J2Ma2, (5.43)

where a is the Earth’s equatorial radius. In terms of J2, gm is

gm =
GM

r2
−

3GMa2J2

2r4
(3 sin2 φ− 1). (5.44)

The Earth’s gravitational field can be accurately determined from the track-
ing of artificial satellites. The currently accepted values are:

a = 6378.137 km

GM = 3.98600440 × 1014 m3s−2
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Figure 5.4 Centrifugal acceleration at a point on the Earth’s surface.

J2 = 1.0826265 × 10−3. (5.45)

Although a satellite is acted upon only by the Earth’s gravitational accel-
eration, an object on the Earth’s surface is also subjected to a centrifugal
acceleration due to the Earth’s rotation.

5.3 Centrifugal Acceleration and the Acceleration of Gravity

The force on a unit mass at the surface of the Earth due to the rotation of
the Earth with angular velocity ω is the centrifugal acceleration gω. It points
radially outward along a line perpendicular to the rotation axis and passing
through P , as shown in Figure 5–4, and is given by

gω = ω2s, (5.46)

where s is the perpendicular distance from P to the rotation axis. If r is the
radial distance from P to the center of the Earth and φ is the latitude of
point P , then

s = r cos φ (5.47)

and

gω = ω2r cos φ. (5.48)

The currently accepted value for the Earth’s angular velocity is

ω = 7.292115 × 10−5 rad s−1.
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Problem 5.2 Determine the ratio of the centrifugal acceleration to the
gravitational acceleration at the Earth’s equator.

The gravitational and centrifugal accelerations of a mass at the Earth’s
surface combine to yield the acceleration of gravity g. Because gω ≪ gm, it
is appropriate to add the radial component of the centrifugal acceleration
to gm to obtain g; see Equations (5–16) and (5–17). As shown in Figure 5–
4, the radial component of centrifugal acceleration points radially outward.
In agreement with our sign convention that inward radial accelerations are
positive, the radial component of the centrifugal acceleration is

g′r = −gω cos φ = −ω2r cos2 φ. (5.49)

Therefore, the acceleration of gravity g is the sum of gm in Equation (5–44)
and g′r:

g =
GM

r2
−

3GMa2J2

2r4
(3 sin2 φ− 1) − ω2r cos2 φ.

(5.50)

Equation (5–50) gives the radially inward acceleration of gravity for a point
located on the surface of the model Earth at latitude φ and distance r from
the center of mass.

5.4 The Gravitational Potential and the Geoid

By virtue of its position in a gravitational field, a mass m′ has gravitational
potential energy. The energy can be regarded as the negative of the work
done on m′ by the gravitational force of attraction in bringing m′ from infin-
ity to its position in the field. The gravitational potential V is the potential
energy of m′ divided by its mass. Because the gravitational field is conser-
vative, the potential energy per unit mass V depends only on the position
in the field and not on the path through which a mass is brought to the
location. To calculate V for the rotationally distorted model Earth, we can
imagine bringing a unit mass from infinity to a distance r from the center
of the model along a radial path. The negative of the work done on the unit
mass by the gravitational field of the model is the integral of the product
of the force per unit mass gm in Equation (5–44) with the increment of dis-
tance dr (the acceleration of gravity and the increment dr are oppositely
directed):

V =
∫ r

∞

{

GM

r′2
−

3GMa2J2

2r′4
(3 sin2 φ− 1)

}

dr′
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(5.51)

or

V = −
GM

r
+

GMa2J2

2r3
(3 sin2 φ− 1). (5.52)

In evaluating V , we assume that the potential energy at an infinite distance
from the Earth is zero. The gravitational potential adjacent to the Earth is
negative; Earth acts as a potential well. The first term in Equation (5–52)
is the gravitational potential of a point mass. It is also the gravitational
potential outside any spherically symmetric mass distribution. The second
term is the effect on the potential of the Earth model’s rotationally induced
oblateness. A gravitational equipotential surface is a surface on which V is a
constant. Gravitational equipotentials are spheres for spherically symmetric
mass distributions.

Problem 5.3 (a) What is the gravitational potential energy of a 1-kg mass
at the Earth’s equator? (b) If this mass fell toward the Earth from a large
distance where it had zero relative velocity, what would be the velocity at
the Earth’s surface? (c) If the available potential energy was converted into
heat that uniformly heated the mass, what would be the temperature of the
mass if its initial temperature T0 = 100 K, c = 1 kJ kg−1 K−1, Tm = 1500
K, and L = 400 kJ kg−1?

A comparison of Equations (5–44) and (5–52) shows that V is the integral
of the radial component of the gravitational acceleration gm with respect to
r. To obtain a gravity potential U which accounts for both gravitation and
the rotation of the model Earth, we can take the integral with respect to r
of the radial component of the acceleration of gravity g in Equation (5–50)
with the result that

U = −
GM

r
+

GMa2J2

2r3
(3 sin2 φ− 1)

−
1

2
ω2r2 cos2 φ. (5.53)

A gravity equipotential is a surface on which U is a constant. Within a few
meters the sea surface defines an equipotential surface. Therefore, elevations
above or below sea level are distances above or below a reference equipoten-
tial surface.

The reference equipotential surface that defines sea level is called the geoid.
We will now obtain an expression for the geoid surface that is consistent with
our second-order expansion of the gravity potential given in Equation (5–
53). The value of the surface gravity potential at the equator is found by
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substituting r = a and φ = 0 in Equation (5–53) with the result

U0 = −
GM

a

(

1 +
1

2
J2

)

−
1

2
a2ω2. (5.54)

The value of the surface gravity potential at the poles must also be U0

because we define the surface of the model Earth to be an equipotential
surface. We substitute r = c (the Earth’s polar radius) and φ = ±π/2 into
Equation (5–53) and obtain

U0 = −
GM

c

[

1 − J2

(

a

c

)2]

. (5.55)

The flattening (ellipticity) of this geoid is defined by

f ≡
a − c

a
. (5.56)

The flattening is very slight; that is, f ≪ 1. In order to relate the flattening
f to J2, we set Equations (5–54) and (5–55) equal and obtain

1 +
1

2
J2 +

1

2

a3ω2

GM
=

a

c

[

1 − J2

(

a

c

)2]

. (5.57)

Substituting c = a(1 − f) and the neglecting quadratic and higher order
terms in f and J2, because f ≪ 1 and J2 ≪ 1, we find that

f =
3

2
J2 +

1

2

a3ω2

GM
. (5.58)

Taking a3ω2/GM = 3.46139 × 10−3 and J2 = 1.0826265 × 10−3 from Equa-
tion (5–45), we find from Equation (5–58) that f = 3.3546×10−3 . Retention
of higher order terms in the theory gives the more accurate value

f = 3.35281068 × 10−3 =
1

298.257222
. (5.59)

It should be emphasized that Equation (5–58) is valid only if the surface of
the planetary body is an equipotential.

The shape of the model geoid is nearly that of a spherical surface; that is,
if r0 is the distance to the geoid,

r0 ≈ a(1 − ε), (5.60)

where ε≪ 1. By setting U = U0 and r = r0 in Equation (5–53), substituting
Equation (5–54) for U0 and Equation (5–60) for r0, and neglecting quadratic
and higher order terms in f , J2, a3ω2/GM , and ε, we obtain

ε =
(

3

2
J2 +

1

2

a3ω2

GM

)

sin2 φ. (5.61)
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Figure 5.5 Geoid height (EGM96) above reference ellipsoid WGS84
(Lemoine et al., 1998).

The substitution of Equation (5–61) into Equation (5–60) gives the approx-
imate model equation for the geoid as

r0 = a
{

1 −
(

3

2
J2 +

1

2

a3ω2

GM

)

sin2 φ
}

(5.62)

or

r0 = a(1 − f sin2 φ). (5.63)

The nondimensional quantity a3ω2/GM is a measure of the relative im-
portance of the centrifugal acceleration due to the rotation of the Earth
compared with the gravitational attraction of the mass in the Earth. The
rotational contribution is about 0.33% of the mass contribution.

In the preceding analysis we considered only terms linear in J2 and a3ω2/GM .
In order to provide a reference geoid against which geoid anomalies are mea-
sured, it is necessary to include higher order terms. By convention, the ref-
erence geoid is a spheroid (ellipsoid of revolution) defined in terms of the
equatorial and polar radii by

r2
0 cos2 φ

a2
+

r2
0 sin2 φ

c2
= 1. (5.64)
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The eccentricity e of the spheroid is given by

e ≡
(

a2 − c2

a2

)1/2

= (2f − f2)1/2. (5.65)

It is the usual practice to express the reference geoid in terms of the equa-
torial radius and the flattening with the result

r2
0 cos2 φ

a2
+

r2
0 sin2 φ

a2(1 − f)2
= 1 (5.66)

or

r0 = a
[

1 +
(2f − f2)

(1 − f)2
sin2 φ

]−1/2

. (5.67)

If Equation (5–67) is expanded in powers of f and if terms of quadratic
and higher order in f are neglected, the result agrees with Equation (5–63).
Equation (5–67) with a = 6378.137 km and f = 1/298.257222 defines the
reference geoid.

The difference in elevation between the measured geoid and the reference
geoid ∆N is referred to as a geoid anomaly. A map of geoid anomalies is
given in Figure 5–5. The maximum geoid anomalies are around 100 m; this
is about 0.5% of the 21-km difference between the equatorial and polar radii.
Clearly, the measured geoid is very close to having the spheroidal shape of
the reference geoid.

The major geoid anomalies shown in Figure 5–5 can be attributed to den-
sity inhomogeneities in the Earth. A comparison with the distribution of
surface plates given in Figure 1–1 shows that some of the major anomalies
can be directly associated with plate tectonic phenomena. Examples are the
geoid highs over New Guinea and Chile–Peru; these are clearly associated
with subduction. The excess mass of the dense subducted lithosphere causes
an elevation of the geoid. The negative geoid anomaly over China may be
associated with the continental collision between the Indian and Eurasian
plates and the geoid low over the Hudson Bay in Canada may be associated
with postglacial rebound (see Section 6–10). The largest geoid anomaly is
the negative geoid anomaly off the southern tip of India, which has an am-
plitude of 100 m. No satisfactory explanation has been given for this geoid
anomaly, which has no surface expression. A similar unexplained negative
geoid anomaly lies off the west coast of North America.

The definition of geoid anomalies relative to the reference geoid is some-
what arbitrary. The reference geoid itself includes an averaging over den-
sity anomalies within the Earth. An alternative approach is to define geoid
anomalies relative to a hydrostatic geoid. The Earth is assumed to have a
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Figure 5.6 Relationship of measured and reference geoids and geoid
anomaly ∆ N.

layered structure in terms of density, but each layer is in hydrostatic equilib-
rium relative to the rotation of the Earth. The anomaly map is significantly
different for the two approaches, but the major features remain unaffected.

One of the primary concerns in geodesy is to define topography and
bathymetry. Both are measured relative to “sea level.” Sea level is closely
approximated by an equipotential surface corresponding to a constant value
of U . As we have discussed, geoid anomalies relative to a reference spheroidal
surface can be as large as 100 m. Thus, if we define sea level by a global
spheroid we would be in error by this amount. Topography (and bathymetry)
in any local area must be measured relative to a surface that approximates
the local sea level (equipotential surface).

Problem 5.4 Assume a large geoid anomaly with a horizontal scale of
several thousand kilometers has a mantle origin and its location does not
change. Because of continental drift the passive margin of a continent passes
through the anomaly. Is there a significant change in sea level associated with
the passage of the margin through the geoid anomaly? Explain your answer.

The anomaly in the potential of the gravity field measured on the reference
geoid ∆U can be related directly to the geoid anomaly ∆N . The potential
anomaly is defined by

∆U = Um0 − U0, (5.68)

where Um0 is the measured potential at the location of the reference geoid
and U0 is the reference value of the potential defined by Equation (5–54).
The potential on the measured geoid is U0, as shown in Figure 5–6. It can
be seen from the figure that U0, Um0, and ∆N are related by

U0 = Um0 +
(

∂U

∂r

)

r = r0

∆N, (5.69)

because ∆N/a ≪ 1. Recall from the derivation of Equation (5–53) that we
obtained the potential by integrating the acceleration of gravity. Therefore,
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the radial derivative of the potential in Equation (5–69) is the acceleration
of gravity on the reference geoid. To the required accuracy we can write

(

∂U

∂r

)

r = r0

= g0, (5.70)

where g0 is the reference acceleration of gravity on the reference geoid. Just
as the measured potential on the reference geoid differs from U0, the mea-
sured acceleration of gravity on the reference geoid differs from g0. However,
for our purposes we can use g0 in Equation (5–69) for (∂U/∂r)r = r0 because
this term is multiplied by a small quantity ∆N . Substitution of Equations
(5–69) and (5–70) into Equation (5–68) gives

∆U = −g0∆N. (5.71)

A local mass excess produces an outward warp of gravity equipotentials and
therefore a positive ∆N and a negative ∆U . Note that the measured geoid
essentially defines sea level. Deviations of sea level from the equipotential
surface are due to lunar and solar tides, winds, and ocean currents. These
effects are generally a few meters.

The reference acceleration of gravity on the reference geoid is found by
substituting the expression for r0 given by Equation (5–62) into Equation
(5–50) and simplifying the result by neglecting quadratic and higher order
terms in J2 and a3ω2/GM . One finds

g0 =
GM

a2

(

1+
3

2
J2 cos2 φ

)

+aω2(sin2 φ− cos2 φ).

(5.72)

To provide a standard reference acceleration of gravity against which gravity
anomalies are measured, we must retain higher order terms in the equation
for g0. Gravity anomalies are the differences between measured values of g on
the reference geoid and g0. By international agreement in 1980 the reference
gravity field was defined to be

g0 = 9.7803267715(1 + 0.0052790414 sin2 φ

+ 0.0000232718 sin4 φ

+ 0.0000001262 sin6 φ

+ 0.0000000007 sin8 φ), (5.73)

with g0 in m s−2. This is known as the 1980 Geodetic Reference System
(GRS) (80) Formula. The standard reference gravity field given by Equation
(5–73) is of higher order in φ than is the consistent quadratic approximation
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used to specify both g0 in Equation (5–72) and r0 in Equation (5–67). The
suitable SI unit for gravity anomalies is mm s−2.

Problem 5.5 Determine the values of the acceleration of gravity at the
equator and the poles using GRS 80 and the quadratic approximation given
in Equation (5–72).

Problem 5.6 By neglecting quadratic and higher order terms, show that
the gravity field on the reference geoid can be expressed in terms of the
gravity field at the equator ge according to

g0 = ge

[

1 +
(

2
ω2a3

GM
−

3

2
J2

)

sin2 φ
]

. (5.74)

Problem 5.7 What is the value of the acceleration of gravity at a distance
b above the geoid at the equator (b ≪ a)?

5.5 Moments of Inertia

MacCullagh’s formula given in Equation (5–42) relates the gravitational
acceleration of an oblate planetary body to its principal moments of inertia.
Thus, we can use the formula, together with measurements of a planet’s
gravitational field by flyby or orbiting spacecraft, for example, to constrain
the moments of inertia of a planet. Since the moments of inertia reflect
a planet’s overall shape and internal density distribution, we can use the
values of the moments to learn about a planet’s internal structure. For this
purpose it is helpful to have expressions for the moments of inertia of some
simple bodies such as spheres and spheroids.

The principal moments of inertia of a spherically symmetric body are all
equal, A = B = C, because the mass distribution is the same about any axis
passing through the center of the body. For simplicity, we will determine the
moment of inertia about the polar axis defined by θ = 0. For a spherical
body of radius a, substitution of Equations (5–6) and (5–7) into Equation
(5–26) gives

C =
∫ 2π

0

∫ π

0

∫ a

0
ρ(r′)r′4 sin3 θ′ dr′ dθ′ dψ′. (5.75)

Integration over the angles ψ′ and θ′ results in
∫ 2π

0
dψ′ = 2π

and
∫ π

0
sin3 θ′ dθ′ =

[

1

3
cos3 θ′ − cos θ′

]π

0
=

4

3
,
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Table 5.1 Values of the Dimensionless Polar Moment of Inertia, J2, and
the Polar Flattening for the Earth, Moon, Mars, and Venus

Earth Moon Mars Venus

C/Ma2 0.3307007 0.3935 0.366 0.33

J2 ≡

1

Ma2

(

C −

A + B

2

)

1.0826265 × 10−3 2.037 × 10−4 1.96045 × 10−3 4.458 × 10−6

f ≡

2

(a + b)

(

a + b

2
− c

)

3.35281068 × 10−3 1.247 × 10−3 6.4763 × 10−3 ——

so that Equation (5–75) becomes

C =
8π

3

∫ a

0
ρ(r′)r′4 dr′. (5.76)

For a spherical body with a constant density ρ0, the integration of Equation
(5–76) gives

C =
8π

15
ρ0a

5. (5.77)

Because the mass of the sphere is

M =
4

3
πa3ρ0, (5.78)

the moment of inertia is also given by

C =
2

5
Ma2. (5.79)

The dimensionless polar moments of inertia of the Earth and Moon are listed
in Table 5–1. The value C/Ma2 = 0.3307 for the Earth is considerably
less than the value 0.4 that Equation (5–79) gives for a constant-density
spherical planet. This difference is clearly associated with the Earth’s high-
density core. The value C/Ma2 = 0.3935 for the Moon is close to the value
for a constant-density planet, but does not rule out a small (radius less than
about 300 km) metallic core.

Problem 5.8 Consider a spherical body of radius a with a core of radius
rc and constant density ρc surrounded by a mantle of constant density ρm.
Show that the moment of inertia C and mass M are given by

C =
8π

15
[ρcr

5
c + ρm(a5 − r5

c )] (5.80)

M =
4π

3
[ρcr

3
c + ρm(a3 − r3

c )]. (5.81)

Determine mean values for the densities of the Earth’s mantle and core given
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C = 8.04 × 1037 kg m2, M = 5.97 × 1024 kg, a = 6378 km, and rc = 3486
km.

We will next determine the principal moments of inertia of a constant-
density spheroid defined by

r0 =
ac

(a2 cos2 θ + c2 sin2 θ)1/2
. (5.82)

This is a rearrangement of Equation (5–64) with the colatitude θ being used
in place of the latitude φ. By substituting Equations (5–6) and (5–7) into
Equations (5–26) and (5–29), we can write the polar and equatorial moments
of inertia as

C = ρ
∫ 2π

0

∫ r0

0

∫ π

0
r′4 sin3 θ′ dθ′ dr′ dψ′ (5.83)

A = ρ
∫ 2π

0

∫ r0

0

∫ π

0
r′4 sin θ′

× (sin2 θ′ sin2 ψ′ + cos2 θ′) dθ′ dr′ dψ′, (5.84)

where the upper limit on the integral over r′ is given by Equation (5–82)
and B = A for this axisymmetric body. The integrations over ψ′ and r′ are
straightforward and yield

C =
2

5
πρa5c5

∫ π

0

sin3 θ′ dθ′

(a2 cos2 θ′ + c2 sin2 θ′)5/2
(5.85)

A =
1

2
C +

2

5
πρa5c5

∫ π

0

cos2 θ′ sin θ′ dθ′

(a2 cos2 θ′ + c2 sin2 θ′)5/2
.

(5.86)

The integrals over θ′ can be simplified by introducing the variable x =
cos θ′(dx = − sin θ′ dθ′, sin θ′ = (1 − x2)1/2) with the result

C =
2

5
πρa5c5

∫ 1

−1

(1 − x2) dx

[c2 + (a2 − c2)x2]5/2
(5.87)

A =
1

2
C +

2

5
πρa5c5

∫ 1

−1

x2 dx

[c2 + (a2 − c2)x2]5/2
.

(5.88)

From a comprehensive tabulation of integrals we find

∫ 1

−1

dx

{c2 + (a2 − c2)x2}5/2
=

2

3

(2a2 + c2)

c4a3
(5.89)
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∫ 1

−1

x2 dx

{c2 + (a2 − c2)x2}5/2
=

2

3

1

c2a3
. (5.90)

By substituting Equations (5–89) and (5–90) into Equations (5–87) and (5–
88), we obtain

C =
8

15
πρa4c (5.91)

A =
4

15
πρa2c(a2 + c2). (5.92)

These expressions for the moments of inertia can be used to determine J2

for the spheroid. The substitution of Equations (5–91) and (5–92) into the
definition of J2 given in Equation (5–43), together with the equation for the
mass of a constant-density spheroid

M =
4π

3
ρa2c, (5.93)

yields

J2 =
1

5

(

1 −
c2

a2

)

. (5.94)

Consistent with our previous assumption that J2 ≪ 1 and (1 − c/a) ≪ 1
this reduces to

J2 =
2

5

(

1 −
c

a

)

=
2f

5
. (5.95)

Equation (5–95) relates J2 to the flattening of a constant-density planetary
body. The deviation of the near-surface layer from a spherical shape pro-
duces the difference in polar and equatorial moments of inertia in such a
body. For a planet that does not have a constant density, the deviation from
spherical symmetry of the density distribution at depth also contributes to
the difference in moments of inertia.

If the planetary surface is also an equipotential surface, Equation (5–58)
is valid. Substitution of Equation (5–95) into that relation gives

f =
5

4

a3ω2

GM
(5.96)

or

J2 =
1

2

a3ω2

GM
. (5.97)

These are the values of the flattening and J2 expected for a constant-density,
rotating planetary body whose surface is a gravity equipotential.

Observed values of J2 and f are given in Table 5–1. For the Earth J2/f =
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0.3229 compared with the value 0.4 given by Equation (5–95) for a constant-
density body. The difference can be attributed to the variation of density
with depth in the Earth and the deviations of the density distribution at
depth from spherical symmetry.

For the Moon, where a constant-density theory would be expected to
be valid, J2/f = 0.16. However, both J2 and f are quite small. The ob-
served difference in mean equatorial and polar radii is (a + b)/2 − c = 2
km, which is small compared with variations in lunar topography. Therefore
the observed flattening may be influenced by variations in crustal thick-
ness. Because the Moon is tidally coupled to theEarth so that the same side of
the Moon always faces the Earth, the rotation of the Moon is too small to
explain the observed value of J2. However, the present flattening may be
a relic of a time when the Moon was rotating more rapidly. At that time
the lunar lithosphere may have thickened enough so that the strength of the
elastic lithosphere was sufficient to preserve the rotational flattening.

For Mars, a3ω2/GM = 4.59×10−3 and J2 = 1.960×10−3. From Equation
(5–58) the predicted value for the dynamic flattening is 5.235 × 10−3. This
compares with the observed flattening of 6.4763×10−3 . Again the difference
may be attributed to the preservation of a fossil flattening associated with
a higher rotational velocity in the past. The ratio of J2 to the observed
flattening is 0.3027; this again is considerably less than the value of 0.4 for
a constant-density planet from Equation (5–95).

Problem 5.9 Assuming that the difference in moments of inertia C −A
is associated with a nearsurface density ρm and the mass M is associated
with a mean planetary density ρ̄, show that

J2 =
2

5

ρm

ρ̄
f. (5.98)

Determine the value of ρm for the Earth by using the measured values of
J2, ρ̄, and f . Discuss the value obtained.

Problem 5.10 Assume that the constant-density theory for the moments
of inertia of a planetary body is applicable to the Moon. Determine the
rotational period of the Moon that gives the measured value of J2.

Problem 5.11 Take the observed values of the flattening and J2 for Mars
and determine the corresponding period of rotation. How does this compare
with the present period of rotation?
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Figure 5.7 The gravitational attraction due to a sphere of anomalous den-
sity ∆ρ and radius R buried at a depth b beneath the surface.

5.6 Surface Gravity Anomalies

Mass anomalies on and in the Earth’s crust are a primary source of surface
gravity anomalies. Let us first consider the surface gravity anomalies caused
by buried bodies of anomalous density. Examples include localized mineral
deposits that usually have excess mass associated with them and igneous in-
trusions that often have an associated mass deficiency. The gravity anomaly
due to a body of arbitrary shape and density distribution can be obtained
by integrating Equation (5–3) over the body. However, it is generally im-
possible to carry out the necessary integrals except for the simplest shapes,
and numerical methods are usually required.

As a specific example of a buried body we consider a buried sphere of
radius R with a uniform density anomaly ∆ρ, as shown in Figure 5–7. It
should be emphasized that the effective density in determining the surface
gravity anomaly caused by a buried body is the density difference between
the body and the surrounding rock. From Equation (5–15), the gravitational
acceleration due to the spherical mass anomaly at a distance r from its center
(r > R) is

gm =
4πGR3∆ρ

3r2
. (5.99)

This acceleration is directed toward the center of the sphere if ∆ρ is positive
(see Figure 5–7). Because the gravitational acceleration due to the buried
body is small compared with Earth’s gravitational acceleration, the surface
gravity anomaly ∆g is just the vertical component of the surface gravi-
tational acceleration of the body; see Equations (5–16) and (5–17). From
Figure (5–7) we can write

∆g ≡ gm cos θ, (5.100)
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Figure 5.8 The surface gravity anomaly resulting from a spherical body of
radius R whose center is at a depth b, as in Equation (5–102).

where θ is indicated in the figure. Gravity anomalies are measured positive
downward. For a point on the surface,

cos θ =
b

r
=

b

(x2 + b2)1/2
, (5.101)

where x is the horizontal distance between the surface point at which ∆g
is measured and the center of the sphere and b is the depth to the sphere’s
center. Substituting Equations (5–99) and (5–101) into Equation (5–100),
we obtain

∆g =
4πGR3∆ρb

3r3
=

4πGR3∆ρ

3

b

(x2 + b2)3/2
.

(5.102)

The resulting gravity anomaly is plotted in Figure 5–8.
A specific example of a surface gravity anomaly caused by a density

anomaly at depth is the gravity anomaly over a salt dome off the Gulf
coast of the United States. A contour map of the surface gravity anomaly
is given in Figure 5–9a. Measurements of the gravity on the cross section
AA are given in Figure 5–9b. The measurements are compared with the
theoretical gravity anomaly computed from Equation (5–102) taking b = 6
km and 4πGR3∆ρ/3b2 = 0.1 mm s−2. Assuming that salt has a density of
2200 kg m−3 and that the mean density of the sediments is 2400 kg m−3,
we find that R = 4.0 km. This would appear to be a reasonable radius for
an equivalent spherical salt dome.
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Figure 5.9 (a) Contour map (0.01 mm s−2 contours) of the surface gravity
anomaly over a salt dome 125 miles southeast of Galveston, Texas, near
the outer edge of the continental shelf (Nettleton, 1957). (b) Measurements
of gravity on section AA from (a) compared with a theoretical fit based on
Equation (5–102).

Problem 5.12 A gravity profile across the Pyramid No. 1 ore body near
Pine Point, Northwest Territories, Canada, is shown in Figure 5–10. A
reasonable fit with Equation (5–102) is obtained taking b = 200 m and
4πGR3∆ρ/3b2 = 0.006 mm s−2. Assume that the gravity anomaly is caused
by lead–zinc ore with a density of 3650 kg m−3 and that the country rock has
a density of 2650 kg m−3. Estimate the tonnage of lead–zinc ore, assuming
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Figure 5.10 (a) Contour map (10−2 mm s−2 contours) of the surface gravity
anomaly over the Pyramid No. 1 ore body (Seigel et al., 1968). (b) Gravity
measurements on section BB from (a) compared with a theoretical fit based
on Equation (5–102).

a spherical body. The tonnage established by drilling in this ore body was
9.2 million tons.

Problem 5.13 Show that the gravity anomaly of an infinitely long hor-
izontal cylinder of radius R with anomalous density ∆ρ buried at depth b
beneath the surface is

∆g =
2πGR2∆ρb

(x2 + b2)
, (5.103)
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Figure 5.11 A buried sheet AB of excess mass σ per unit area.

where x is the horizontal distance from the surface measurement point to the
point on the surface directly over the cylinder axis. What is the maximum
gravity anomaly caused by a long horizontal underground tunnel of circular
cross section with a 10-m radius driven through rock of density 2800 kg m−3

if the axis of the tunnel lies 50 m below the surface?

Problem 5.14 Calculate the gravity anomaly for a buried infinitely long
horizontal line of excess mass γ per unit length by taking the limit of ex-
pression (5–103) as R→ 0 and ∆ρ→∞ such that πR2∆ρ→ γ. The result
is

∆g =
2Gγb

x2 + b2
, (5.104)

where x is the horizontal distance from the surface observation point to the
point directly above the line source. By integrating Equation (5–104), show
that the gravity anomaly of a buried infinite slab of mass excess ∆ρ and
thickness h is

∆g = 2πGh∆ρ. (5.105)

Note that the anomaly of the infinite slab depends only on its density excess
and thickness but not on its depth of burial.

Problem 5.15 Integrate Equation (5–104) to find the gravity anomaly,
at x = 0, of the buried mass sheet shown in Figure 5–11. The sheet extends
infinitely far in the z direction and has an excess density σ per unit area.
The surface gravity anomaly at x = 0 is given by

∆g = 2Gσθ, (5.106)

where θ is the angle defined in Figure 5–11.


