
6

Uniform Flow and Flow
Resistance

6.0 Introduction and Overview

The central problem of open-channel-flow hydraulics can be stated as follows: Given
a channel reach with a specified geometry, material, and slope, what are the relations
among flow depth, average velocity, width, and discharge? Solutions to this problem
are essential for solving important practical problems, including 1) the design of
channels and canals, 2) the areal extent of flooding that will result from a storm or
snowmelt event, 3) the rate of travel of a flood wave through a channel network, and
4) the size and quantity of material that can be eroded or transported by various flows.

The characterization of flow resistance (defined precisely in section 6.4) is essential
to the solutions of this central problem, because it provides the relation between
velocity (usually considered the dependent variable) and 1) specified geometric
and boundary characteristics of the channel, usually considered to be essentially
constant; and 2) the flow magnitude expressed as discharge or depth, considered as
the independent variable that may change with time in a given reach.

The definition of flow resistance is developed from the concepts of uniform flow
(section 4.2.1.2) and force balance (section 4.7). Recall that in a steady uniform flow,
there is no acceleration; thus, by Newton’s second law of motion, there is no net force
acting on the fluid. Although uniform flow is an ideal state seldom strictly achieved
in natural flows, it is often a valid assumption because open-channel flows are self-
adjusting dynamic systems (negative feedback loops) that are always tending toward
a balance of driving and resisting forces: an increase (decrease) in velocity produces
an increase (decrease) in resistance tending to decrease (increase) velocity.
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212 FLUVIAL HYDRAULICS

To better appreciate the basic concepts underlying the definition and determination
of resistance, this chapter begins by reviewing the basic geometric features of river
reaches and reach boundaries presented in section 2.3. We then adapt the definition of
uniform flow as applied to a fluid element to apply to a typical river reach and derive
the Chézy equation, which is the basic equation for macroscopic uniform flows. This
derivation allows us to formulate a simple definition of resistance. We then undertake
an examination of the factors that determine flow resistance; this examination involves
applying the principles of dimensional analysis developed in section 4.8.2 and the
velocity-profile relations derived in chapter 5. The chapter concludes by exploring
resistance in nonuniform flows and practical approaches to determining resistance in
natural channels.

As we will see, there is still much research to be done to advance our understanding
of resistance in natural rivers.

6.1 Boundary Characteristics

As noted above, the nature as well as the shape of the channel boundary affects
flow resistance. The classification of boundary characteristics in figure 2.15 provides
perspective for the discussion in the remainder of this chapter: Most of the analytical
relations that have been developed and experimental results that have been obtained
are for rigid, impervious, nonalluvial or plane-bed alluvial boundaries, while many,
if not most, natural channels fall into other categories.

In this chapter, we consider cross-section-averaged or reach-averaged conditions
rather than local “vertically” averaged velocities (Uw) and local depths (Yw), and
will designate these larger scale averages as U and Y , respectively. Figure 6.1
shows the spatial scales typically associated with these terms. Since our analytical
reasoning will be based on the assumption of prismatic channels, there is no distinction
between cross-section averaging and reach averaging. We will often invoke the wide

Reach (U, Y )

Cross section (U, Y )

Local (Uw, Yw)

10−3 10−2 10−1 100 101 102 103 104 105

Spatial scale (m) 

Figure 6.1 Spatial scales typically associated with local, cross-section-averaged, and reach-
averaged velocities, depths, and resistance. After Yen (2002).
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UNIFORM FLOW AND FLOW RESISTANCE 213

open-channel concept to justify applying the local, two-dimensional “vertical”
velocity distributions discussed in chapter 5 [especially the Prandtl-von Kármán
(P-vK) law] to entire cross sections.

We saw in section 5.3.1.6 that channel boundaries can be hydraulically “smooth”
or “rough” depending on whether the boundary Reynolds number Reb is greater or
less than 5, where

Reb ≡ u∗·yr

�
(6.1)

u∗ is shear velocity, � is kinematic viscosity, and yr is the roughness height, that is,
the characteristic height of roughness elements (projections) on the boundary (see
figure 5.7). In natural alluvial channels, the bed material usually consists of sediment
grains with a range of diameters (figure 2.17a). For a particular reach the characteristic
height yr is usually determined as shown in figure 2.17b:

yr = kr ·dp, (6.2)

where dp is the diameter of particles larger than p percent of the particles on the
boundary surface and kr is a multiplier ≥1. Different investigators have used different
values for p and kr (see Chang 1988, p. 50); we will generally assume kr = 1 and
p = 84 so that yr = d84.

Of course, other aspects of the boundary affect the effective roughness height,
especially the spacing and shape of particles. And, as suggested in figure 2.15, the
appropriate value for yr is affected by the presence of bedforms, growing and dead
vegetation, and other factors.

6.2 Uniform Flow in Open Channels

6.2.1 Basic Definition

The concepts of steady flow and uniform flow were introduced in section 4.2.1.2 in
the context of the movement of a fluid element in the x-direction along a streamline:

If the element velocity u at a given point on a streamline does not change with
time, the flow is steady (local acceleration du/dt = 0); otherwise, it is
unsteady.
If the element velocity at any instant is constant along a streamline, the flow is
uniform (convective acceleration du/dx = 0); otherwise, it is nonuniform.

In the remainder of this text we will be concerned with the entirety of a flow
within a reach of finite length rather than an individual fluid element flowing along
a streamline. Furthermore, in turbulent flows, which include the great majority of
natural open-channel flows, turbulent eddies preclude the existence of strictly steady
or uniform flow. To account for these conditions we must modify the definition of
“steady” and “uniform.” To do this, we first designate the X-coordinate direction as the
downstream direction for a reach and define U as the downstream-directed velocity,
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214 FLUVIAL HYDRAULICS

1) time-averaged over a period longer than the time scale of turbulent fluctuations
and 2) space-averaged over a cross section. Then,

• In steady flow, dU/dt = 0 at any cross section.
• In uniform flow, dU/dX = 0 at any instant.

As noted by Chow (1959, p. 89), unsteady uniform flow is virtually impossible of
occurrence. Thus, henceforth, “uniform flow” implies “steady uniform flow.” Note,
however, that a nonuniform flow may be steady or unsteady.

We will usually assume that the discharge, Q, in a reach is constant in space and
time, where

Q = W ·Y ·U, (6.3)

W is the water-surface width, and Y is average depth.
In uniform flow with spatially constant Q, it must also be true that depth and width

are constant, so “uniform flow” implies dY /dX = 0 and dW /dX = 0.1 And, since
the depth does not change, “uniform flow” implies that the water-surface slope is
identical to the channel slope. Thus, it must also be true that for strictly uniform flow,
cross-section shape is constant through a reach (i.e., the channel is prismatic).

Figure 6.2 further illustrates the concept of uniform flow. Here, a river or canal with
constant channel slope �0, geometry, and bed and bank material, and no other inputs
of water, connects two large reservoirs that maintain constant surface elevations.
Under these conditions, the discharge will be constant along the entire channel.
As the water leaves the upstream reservoir, it accelerates from zero velocity due
to the downslope component of gravity, g·sin�s, where �s is the local slope of the
water surface. As it accelerates, the frictional resistance of the boundary is transmitted
into the fluid by viscosity and turbulence (as in figure 3.28). This resistance increases
as the velocity increases and soon balances the gravitational force,2 at which point
there is no further acceleration. Downstream of this point, the water-surface slope �s

equals the channel slope �0, the cross-section-averaged velocity and depth become
constant, and uniform flow is established. The velocity and depth remain constant

θS

θ0

Figure 6.2 Idealized development of uniform flow in a channel of constant slope, �0, geometry,
and bed material connecting two reservoirs. The shaded area is the region of uniform flow, where
the downstream component of gravity is balanced by frictional resistance and the water-surface
slope �S equals �0.
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UNIFORM FLOW AND FLOW RESISTANCE 215

until the water-surface slope begins to decrease (�s < �0) to allow transition to the
water level in the downstream reservoir, which is maintained at a level higher than
that associated with uniform flow. This marks the beginning of negative acceleration
and the downstream end of uniform flow.

6.2.2 Qualifications

Even with the above definitions, we see that strictly uniform flow is an idealization that
cannot be attained in nonprismatic natural channels. And, even in prismatic channels
there are hydraulic realities that usually prevent the attainment of truly uniform flow;
these are described in the following subsections. Despite these realities, the concept
of uniform flow is the starting point for describing resistance relations for all open-
channel flows. If the deviations from strict uniform flow are not too great, the flow is
quasi uniform, and the basic features of uniform flow will be assumed to apply.

6.2.2.1 Uniform Flow as an Asymptotic Condition

Although figure 6.2 depicts a long channel segment as having uniform flow, in
fact uniform flow is approached asymptotically. As stated by Chow (1959, p. 91),
“Theoretically speaking, the varied depth at each end approaches the uniform depth
in the middle asymptotically and gradually. For practical purposes, however, the depth
may be considered constant (and the flow uniform) if the variation in depth is within
a certain margin, say, 1%, of the average uniform-flow depth.” Thus, the shaded area
in figure 6.2 is the portion of the flow that is within this 1% limit.

6.2.2.2 Water-Surface Stability

Under some conditions, wavelike fluctuations of the water surface prevent the
attainment of truly uniform flow.As we will discuss more fully in chapter 11, a gravity
wave in shallow water travels at a speed relative to the water, or celerity, Cgw, that
is determined by the depth, Y :

Cgw = (g·Y )1/2, (6.4)

where g is gravitational acceleration. (“Shallow” in this context means that the
wavelength of the wave is much greater than the depth.) Note from figure 6.3 that
this celerity is of the same order as typical river velocities. The Froude number, Fr,
defined as

Fr ≡ U

Cgw
= U

(g·Y )1/2
, (6.5)

is the ratio of flow velocity to wave celerity and defines the flow regime:3

When Fr = 1, the flow regime is critical; when Fr < 1 it is subcritical, and
when Fr > 1 it is supercritical.

Figure 6.4 shows the combinations of velocity and depth that define flows in
the subcritical and supercritical regimes. Most natural river flows are subcritical
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216 FLUVIAL HYDRAULICS
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Figure 6.3 Celerity of shallow-water gravity waves, Cgw, as a function of flow depth, Y
(equation 6.4). Note that Cgw is of the same order of magnitude as typical river velocities.

(Grant 1997), but when the slope is very steep and/or the channel material is
very smooth (as in some bedrock channels and streams on glaciers, and at local
steepenings in mountain streams), the Froude number may approach or exceed 1.
When Fr approaches 1, waves begin to appear in the free surface, and strictly
uniform flow is not possible. In channels with rigid boundaries, the amplitude
of these waves increases approximately linearly with Fr (figure 6.5). When Fr
approaches 2 (Koloseus and Davidian 1966), the flow will spontaneously form
roll waves—the waves you often see on a steep roadway or driveway during
a rainstorm (figure 6.6). However, this situation is unusual in natural channels.
In channels with erodible boundaries (sand and gravel), wavelike bedforms called
dunes or antidunes begin to form when Fr approaches 1. The water surface
also becomes wavy, either out of phase (dunes) or in phase (antidunes) with the
bedforms; these are discussed further in section 6.6.4 and in sections 10.2.1.5
and 12.5.4.

In situations where surface instabilities occur, it may be acceptable to relax the
definition of “uniform” by averaging dU/dX and dY /dX over distances greater than
the wavelength of the surface waves.

6.2.2.3 Secondary Currents

The concept of uniform flow as described in section 6.2.1 implicitly assumes that
flow is the downstream direction only, and this assumption underlies most of the
analyses in this text. However, as we saw in section 5.4.2, even in straight rectangular
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UNIFORM FLOW AND FLOW RESISTANCE 217
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Figure 6.4 Flow states and flow regimes as a function of average velocity, U, and depth Y .
The great majority of river flows are in the turbulent state (Re > 2000) and subcritical regime
(Fr < 1). When the Froude number Fr (equation 6.5) approaches 1, the water surface becomes
wavy, and strictly uniform flow cannot occur. When Fr approaches 2, pronounced waves are
present. Note that some authors (e.g., Chow 1959) use the term “regime” to apply to one of
the four fields shown on this diagram rather than to the subcritical/supercritical condition.
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Figure 6.5 Ratio of wave amplitude to mean depth as a function of Froude number as observed
in flume experiments by Tracy and Lester (1961, their figure 6).

channels spiral circulations are often present, making the velocity distribution three-
dimensional and suppressing the level of maximum velocity below the surface. These
secondary or helicoidal currents spiral downstream with velocities on the order of 5%
of the downstream velocity and differ in direction by only a few degrees from the
downstream direction (Bridge 2003). Thus, their effect on the assumptions of uniform
flow is generally small.
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218 FLUVIAL HYDRAULICS

Roll waves

Figure 6.6 Roll waves on a steep driveway during a rainstorm. These waves form when the
Froude number approaches 2. Photo by the author.

6.3 Basic Equation of Uniform Flow: The Chézy Equation

In this section, we derive the basic equation for strictly uniform flow. This
equation forms the basis for understanding fundamental resistance relations and other
important aspects of flows in channel reaches.

Because there is no acceleration in a uniform flow, Newton’s second law states
that there are no net forces acting on the fluid and that

FD = FR, (6.6)

where FD represents the net forces tending to cause motion, and FR represents the
net forces tending to resist motion. The French engineer Antoine Chézy (1718–1798)
was the first to develop a relation between flow velocity and channel characteristics
from the fundamental force relation of equation 6.6.4 Referring to the idealized
rectangular channel reach of figure 6.7, Chézy expressed the downslope component
of the gravitational force acting on the water in a channel reach, FD, as

FD = �·W ·Y ·X·sin� = �·A·X·sin�, (6.7)

where � is the weight density of water, A is the cross-sectional area of the flow,
and � denotes the slope of the water surface and the channel, which are equal in
uniform flow.

Chézy noted that the resistance forces are due to a boundary shear stress �0 [F L−2]
caused by boundary friction. This is the same quantity defined in equation 5.7, but
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UNIFORM FLOW AND FLOW RESISTANCE 219

θ

W

Y

U
 X Pw

A

Figure 6.7 Definitions of terms for development of the Chézy relation (equation 6.15). The
idealized channel reach has a rectangular cross-section of slope �, width W , and depth Y . A is the
wetted cross-sectional area (shaded), Pw is the wetted perimeter, and U is the reach-averaged
velocity.

now applies to the entire cross section, not just the local channel bed. Chézy further
reasoned that this stress is proportional to the square of the average velocity:

�0 = KT ·�·U2, (6.8)

where KT is a dimensionless proportionality factor. This expression is dimension-
ally correct and is physically justified by the model of turbulence developed in
section 3.3.4, which shows that shear stress is proportional to the turbulent velocity
fluctuations (equation 3.32; see also equation 5.27b) and that these fluctuations are
proportional to the average velocity.5

This boundary shear stress acts over the area of the channel that is in contact with
the water, AB (the frictional resistance at the air-water interface is negligible), which
in the rectangular channel shown in figure 6.7 is given by

AB = (2Y + W )·X = Pw·X, (6.9)

where Pw is the wetted perimeter of the flow. Thus,

FR = �0·AB = KT ·�·U2·Pw·X, (6.10)

where �0 designates the shear stress acting over the entire flow boundary.
Combining equations 6.6, 6.7, and 6.10 gives

�·A·X·sin� = KT ·�·U2·Pw·X, (6.11)

which (noting that �/� = g) can be solved for U to give

U =
(

g

KT

)1/2

·
(

A

Pw

)1/2

·(sin�)1/2 (6.12)

The ratio of cross-sectional area to wetted perimeter is called the hydraulic radius, R:

R ≡ A

Pw
. (6.13)
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220 FLUVIAL HYDRAULICS

Incorporating equation 6.13 and defining

S ≡ sin�, (6.14)

We can write the Chézy equation as

U =
(

1

KT

)1/2

·(g·R·S)1/2. (6.15a)

For “wide” channels we can approximate the hydraulic radius by the average depth.
Thus, we can usually write the Chézy equation as

U =
(

1

KT

)1/2

·(g·Y ·S)1/2. (6.15b)

In engineering contexts, the Chézy equation is usually written as described in box 6.1.
The Chézy equation is the basic uniform-flow equation and is the basis for

describing the relations among the cross-section or reach-averaged values of the
fundamental hydraulic variables velocity, depth, slope, and channel characteristics.
It provides a partial answer to the central question posed at the beginning of the
chapter, as we have found that

The average velocity of a uniform open-channel flow is proportional to the
square root of the product of hydraulic radius (R) and the downslope
component of gravitational acceleration (g·S).

Also note that the Chézy equation was developed from force-balance considerations
and is a macroscopic version of the general conductance relation (equation 4.54,
section 4.7). The Chézy equation was derived by considering the water in the channel
as a “block” interacting with the channel boundary; we did not consider phenomena
within the “block” except to justify the relation between �0 and the square of the
velocity (equation 6.8).

A more complete answer to the central question posed at the beginning of this
chapter requires some way of determining the value of KT . This quantity is the
proportionality between the shear stress due to the boundary and the square of the
velocity; thus, presumably it depends in some way on the nature of the boundary.
Most of the rest of this chapter explores the relation between this proportionality and
the nature of the boundary. We will see that the velocity profiles derived in chapter 5
along with experimental observations provide much of the basis for formulating this
relation. But before proceeding to that exploration, we use the Chézy derivation to
formulate the working definition of resistance.

6.4 Definition of Reach Resistance

By comparison with equation 5.24, the quantity (g·R·S)1/2 can be considered to be
the reach-averaged shear velocity, so henceforth

u∗ ≡ (g·R·S)1/2. (6.16a)

Again, we have seen that we can usually approximate this definition as

u∗ = (g·Y ·S0)1/2. (6.16b)
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UNIFORM FLOW AND FLOW RESISTANCE 221

BOX 6.1 Chézy’s C

In engineering texts, the Chézy equation is usually written as

U = C ·(R·S)1/2, (6B1.1)

where C expresses the reach conductance and is known as “Chézy’s C .”
Note from equation 6.15a that

C ≡
(

g
KT

)1/2
, (6B1.2)

and thus has dimensions [L1/2 T −1].
In engineering practice, however, C is treated as a dimensionless quantity

so that it has the same numerical value in all unit systems. This can be
a dangerous practice: equation 6B1.1 is in fact correct only if the British
(ft-s) unit system is used. If C is to have the same numerical value in all unit
systems, the Chézy equation must be written as

U = uC ·C ·(R·S)1/2, (6B1.3)

where uC is a unit-adjustment factor that takes the following values:

Unit system uC
Système Internationale 0.552
British 1.00
Centimeter-gram-second 5.52

No systematic method for estimating Chézy’s C from channel characteristics
has been published (Yen 2002). The following statistics from a database of
931 flows in New Zealand and the United States collated by the author give
a sense of the range of C values in natural channels:

Statistic C value
Mean 32.5
Median 29.3
Standard deviation 17.7
Maximum 86.6
Minimum 2.1

Using this definition, we define reach resistance, �, as the ratio of reach-averaged
shear velocity to reach-averaged velocity:

� ≡ u∗
U

. (6.17)

This definition simply provides us with a notation that will prove to be more
convenient than using KT : the relation between them is obviously

� = K1/2
T . (6.18)
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222 FLUVIAL HYDRAULICS

Box 6.2 defines the Darcy-Weisbach friction factor, a dimensionless resistance
factor that is commonly used as an alternative to KT and �.

Note that using equation 6.17, we can rewrite the Chézy equation as

U = �−1·u∗. (6.19)

BOX 6.2 The Darcy-Weisbach Friction Factor

In 1845 Julius Weisbach (1806–1871) published the results of pioneering
experiments to determine frictional resistance in pipe flow (Rouse and
Ince 1963) and formulated a dimensionless factor, fDW, that expresses this
resistance:

fDW ≡ 2·
(

he

X

)
·
(

D·g
U2

)
, (6B2.1)

where he (L) is the loss in mechanical energy per unit weight of water, or head
(see equation 4.45) in distance X, D is the pipe diameter, U is the average flow
velocity, and g is gravitational acceleration. In 1857, the same Henry Darcy
(1803–1858) whose experiments led to Darcy’s law, the central formula of
groundwater hydraulics, published the results of similar pipe experiments,
and fDW is known as the Darcy-Weisbach friction factor.

The pipe diameter D equals four times the hydraulic radius, R, so

fDW ≡ 8·
(

he

X

)
·
(

R·g
U2

)
. (6B2.2)

The quantity he/X in pipe flow is physically identical to the channel and
water-surface slope, S ≡ sin �, in uniform open-channel flow, so the friction
factor for open-channel flow is

fDW ≡ 8·g·R·S
U2 . (6B2.3a)

From the definition of shear velocity, u∗ (equation 6.16a), 6B2.3a can also
be written as

fDW = 8· u2∗
U2 , (6B2.3b)

and from the definition of � (equation 6.17), we see that

fDW = 8·�2; (6B2.4a)

� =
(

fDW

8

)1/2
= 0.354·fDW

1/2. (6B2.4b)

The Darcy-Weisbach friction factor is commonly used to express resistance
in open channels as well as pipes. However, the � notation is used herein
because it is simpler: It does not include the 8 multiplier and is written in
terms of u∗ and U rather than the squares of those quantities.
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UNIFORM FLOW AND FLOW RESISTANCE 223

The inverse of a resistance is a conductance, so we can define �−1 as the
reach conductance, and we can use the two concepts interchangeably. The central
problem of open-channel flow can now be stated as, “What factors determine the
value of �?”

6.5 Factors Affecting Reach Resistance in Uniform Flow

In section 4.8.2.2, we used dimensional analysis to derive equation 4.63:

U = f�

(
Y

yr
,

Y

W
,Re

)
·(g·Y ·S)1/2 = f�

(
Y

yr
,

Y

W
,Re

)
·u∗, (6.20)

where Re is the flow Reynolds number. Thus, we see that the Chézy equation is
identical in form to the open-channel flow relation developed from dimensional
analysis.And, comparing 6.19 and 6.20, we see that the dimensional analysis provided
some clues to the factors affecting resistance/conductance:

� = f�

(
Y

yr
,

Y

W
,Re

)
, (6.21)

where f� denotes the resistance/conductance function. Thus, we have reason to
believe that, in uniform turbulent flow, resistance depends on the relative smoothness
Y/yr (or its inverse, relative roughness yr/Y ),6 the depth/width ratio Y/W (or
W/Y ), and the Reynolds number, Re. However, as we saw in section 2.4.2, most
natural channels have small Y/W values, so the effects of Y/W should usually
be minor; thus, we focus here on the effects of relative roughness and Reynolds
number.

The nature of f� has been explored experimentally in pipes and wide open
channels and can be summarized as in figure 6.8. Here, � (y-axis) is shown as
a function of Re (x-axis) and Y/yr (separate curves at high Re) for wide open
channels with rigid impervious boundaries. Graphs relating resistance to Re and
Y/yr are called Moody diagrams because they were first presented, for flow in
pipes, by Moody (1944). The original Moody diagrams were based in part on
experimental data of Johann Nikuradse (1894–1979), who measured resistance
in pipes lined with sand particles of various diameters. These relations have
been modified to apply to wide open channels (Brownlie 1981a; Chang 1988;
Yen 2002).

Figure 6.8 reveals important aspects of the resistance relation for uniform flow.
First, note that, overall, � tends to decrease with Re and that the �− Re relation f�
differs in different ranges of Re. For laminar flow and hydraulically smooth turbulent
flow, � depends only on Reynolds number:

Laminar flow (Re < 500):

� =
(

3

Re

)1/2

= 1.73

Re1/2
. (6.22)
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Figure 6.8 The Moody diagram: Relation between resistance, �; Reynolds number, Re; and
relative smoothness, Y/yr , for laminar, smooth turbulent, and rough turbulent flows in wide
open channels. Y/yr affects resistance only for rough turbulent flows (Re > 2000 and Reb > 5).
The effect of Re on resistance in rough turbulent flows decreases with Re; resistance becomes
independent of Re for “fully rough” flows (Reb > 70).

Smooth turbulent flow (Re > 500;Reb < 5):

� = 0.167

Re1/8
. (6.23)

For turbulent flow in hydraulically rough channels (Reb > 5), the relation depends on
both Re and Y/yr and can be approximated by a semiempirical function proposed by
Yen (2002):

� = 0.400·
[
− ln

(
yr

11·Y + 1.95

Re0.9

)]−1

(6.24)

Note that at very high values of Re, the second term in 6.24 becomes very small
and resistance depends only on Y/yr (i.e., the curves become horizontal); this is the
region of fully rough flow, Reb > 70. The transition to fully rough flow occurs at
lower Re values as the boundary gets relatively rougher (i.e., as Y/yr decreases).
Figure 6.9 shows the relation between � and Y/yr given by 6.24 for fully rough flow,
that is, where

�∗ = 0.400·
[
− ln

( yr

11·Y
)]−1 = 0.400·

[
ln

(
11·Y

yr

)]−1

. (6.25)
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Figure 6.9 Baseline resistance, �∗, as a function of relative smoothness, Y/yr , for fully
rough turbulent flow in wide channels as given by equation 6.25. This is identical to the
relation given by the integrated P-vK velocity profile (equation 6.26). (a) Arithmetic plot; (b)
semilogarithmic plot.

Co
py
ri
gh
t 
©
 2
00
9.
 O
xf
or
d 
Un
iv
er
si
ty
 P
re
ss
. 
Al
l 
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e 
re
pr
od
uc
ed
 i
n 
an
y 
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n 
fr
om
 t
he
 p
ub
li
sh
er
, 
ex
ce
pt
 f
ai
r 
us
es
 p
er
mi
tt
ed
 u
nd
er

U.
S.
 o
r 
ap
pl
ic
ab
le
 c
op
yr
ig
ht
 l
aw
.

EBSCO Publishing : eBook Academic Collection (EBSCOhost) - printed on 2/19/2017 4:55 PM via
UNIV OF CHICAGO
AN: 271150 ; Dingman, S. L..; Fluvial Hydraulics
Account: s8989984



226 FLUVIAL HYDRAULICS

In the reminder of this chapter, we designate the resistance given by 6.25 as �∗
and use it to represent a baseline resistance value that applies to rough turbulent flow
in wide channels.

In general, natural channels will have a resistance greater than �∗ due to the
complex effects of many factors that affect resistance in addition to Y/yr and Re.
These additional factors are explored in section 6.6.

For fully rough flow and very large values of Re, equation 6.25 can be inverted
and written as

U = 2.50·u∗· ln
(

11·Y
yr

)
, (6.26)

a form that looks similar to the vertically integrated P-vK velocity profile (equa-
tion 5.34a–d). In fact, if we combine equations 5.39–5.41 and recall from equa-
tion 5.32b that y0 = yr /30 for rough flow, the integrated P-vK law is identical to
equation 6.26. This should not be surprising, given that the integrated P-vK profile
gives the average velocity for a wide open channel. Equation 6.26 is often called the
Keulegan equation (Keulegan 1938); we will refer to it as the Chézy-Keulegan or
C-K equation.

We can summarize resistance relations for uniform turbulent flows in wide open
channels with rigid impervious boundaries as follows:

• Although width/depth ratio potentially affects reach resistance, most natural flows
have width/depth values so high that the effect is negligible.

• In smooth flows, resistance decreases as the Reynolds number increases.
• In rough flows with a given relative roughness, resistance decreases as the

Reynolds number increases until the flow becomes fully rough, beyond which it
ceases to depend on the Reynolds number.

• In rough flows at a given Reynolds number, resistance increases with relative
roughness.

• In wide fully rough flows, resistance depends only on relative roughness and
the relation between resistance and relative roughness is given by the integrated
P-vK profile (C-K equation).

6.6 Factors Affecting Reach Resistance in Natural Channels

The analysis leading to equation 6.21 indicates that resistance in uniform flows in
prismatic channels is a function of the relative smoothness, Y/yr ; the Reynolds
number, Re; and the depth/width ratio, Y/W . Because flow resistance is determined
by any feature that produces changes in the magnitude or direction of the velocity
vectors, we can expect that resistance in natural channels is also affected by additional
factors. We will use the quantity (�−�∗)/�∗ to express the dimensionless “excess”
resistance in a reach, that is, the difference between actual resistance � and the
resistance computed via equation 6.25. Figure 6.10 shows this quantity plotted against
Y/W for a database of 664 flows in natural channels.Although for many of these flows
actual resistance is close to that given by 6.25 [i.e., (�−�∗)/�∗ = 0], a great majority
(86%) have higher resistance, and some have resistances several times �∗. This plot
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Figure 6.10 Ratio of “excess” resistance to baseline resistance computed from equation 6.25,
(� − �∗)/�∗, plotted against Y/W for a database of 664 flows in natural channels. Most
(86%) of these flows have resistance greater than �∗. Clearly, the additional resistance is due
to factors other than Y/W .

clearly indicates that, in general, factors other than Y/W cause “excess” resistance in
natural channels.

The following subsections discuss, for each of four classes of factors that may
produce this excess resistance, 1) approaches to quantifying its contribution, and 2)
evidence from field and laboratory studies that gives an idea of the magnitude of the
excess resistance produced. Keep in mind, however, that the variability of natural
rivers makes this a very challenging area of research and that the approaches and
results presented here are not completely definitive.

6.6.1 Effects of Channel Irregularities

Clearly, any irregularities in channel geometry will cause velocity vectors to deviate
from direct downstream flow, producing accelerations and concomitant increases in
resisting forces. Figure 6.11 shows three categories of geometrical irregularities: in
cross section, in plan (map) view, and in reach-scale longitudinal profile (slope).
These geometrical irregularities are usually the main sources of the excess resistance
apparent in figure 6.10.

6.6.1.1 Cross-section Irregularities

Equation 6.25 gives resistance in hydraulically rough flows in wide open channels in
which the depth is constant, the P-vK velocity profile applies at all locations in the
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(a)

(b)

rc

ac

ζ ≡
ΔXV

ΔXV

λm

αm

ΔX

ΔX

(c)  High flow 

Low flow 

Figure 6.11 Three categories of channel irregularity that cause changes in the magnitude
and/or direction of velocity vectors and hence increase flow resistance beyond that given
by equation 6.25. (a) Irregularities in cross-section. (b) Irregularities in plan (map) view. �

designates sinuosity, the streamwise distance �X divided by the valley distance �Xv; rc is the
radius of curvature of a river bend, 
m is meander wavelength, am is meander amplitude, and
ac represents the centrifugal acceleration. (c) Reach-scale irregularities in longitudinal profile
(channel slope); these are more pronounced at low flows and less pronounced at high flows.

cross section, and the only velocity gradients are “vertical.” Under these conditions,
the isovels (lines of equal velocity) are straight lines parallel to the bottom.

As shown in figure 6.12, irregularities in cross section (represented here by the
sloping bank of a trapezoidal channel) cause deviations from this pattern and introduce
horizontal velocity gradients that increase shear stress and produce excess resistance.
These effects are also apparent in figure 5.22, which shows isovels in two natural
channels, where bottom irregularities and other factors produce marked horizontal
velocity gradients and significant excess resistance. The presence of obstructions also
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Figure 6.12 Isovels in the near-bank portion of an idealized flow in a trapezoidal channel.
The P-vK vertical velocity distribution applies at all points; contours are in m/s. Cross-
section irregularities, represented here by the sloping bank, induce horizontal velocity gradients
that increase turbulent shear stress and therefore resistance.

induces secondary circulations and tends to suppress the maximum velocity below
the surface (see figures 5.17, 5.19, and 5.20), further increasing resistance.

These effects are very difficult to quantify. However, the effects of cross-
section irregularity should tend to diminish as depth increases in a particular reach,
so at least to some extent these effects are accounted for by the inclusion of the
relative smoothness Y/yr in equation 6.25. Apparently, there been no systematic
studies attempting to relate resistance to some measure of the variation of depth in
a reach or cross section (e.g., the standard deviation of depth).

Bathurst (1993) reviewed resistance equations for natural streams in which gravel
and boulders are a major source of cross-section irregularity. For approximately
uniform flow in gravel-bed streams, he found that resistance could be estimated with
±30% error as

� = 0.400·
[
− ln

(
d84

3.60·R
)]−1

, (6.27)

for reaches in which 39 mm ≤ d84 ≤ 250 mm and 0.7 ≤ R/d84 ≤ 17. For boulder-bed
streams, Bathurst (1993) suggested the following equation, which is based on data
from flume and field studies:

� = 0.410·
[
− ln

(
d84

5.15·R
)]−1

, (6.28)

for reaches in which 0.004 ≤ S ≤ 0.04 and R/d84 ≤ 10. Note that the form of
equations 6.27 and 6.28 is identical to that of equation 6.25, assuming yr = d84.
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230 FLUVIAL HYDRAULICS

Figure 6.13 shows that excess resistance for gravel and boulder-bed streams given
by equations 6.27 and 6.28 is typically in the range of 20% to well more than 50%.
However, it seems surprising that resistance in gravel-bed streams is larger than in
boulder-bed streams, and this result may reflect the very imperfect state of knowledge
about resistance in natural streams, as Bathurst (1993) emphasizes. In some recent
studies, Smart et al. (2002) developed similar relations for use in the relative-
roughness range 5 ≤ R/d84 ≤ 20, and Bathurst (2002) recommended computing
resistance as a function of R/d84 via the formulas shown in table 6.1 as minimum
values for resistance in mountain rivers with R/d84 < 11 and 0.002 ≤ S0 ≤ 0.04.

0.0
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Figure 6.13 Ratio of excess resistance to baseline resistance for gravel and boulder-bed
streams according to Bathurst (1993) (equations 6.27 and 6.28). Values are typically in the
range of 20% to well more than 50%.

Table 6.1 Minimum values of resistance recommended by Bathurst
(2002) for mountain rivers with R/d84 < 11 and 0.002 ≤ S0 ≤ 0.04.a

Slope range Resistance (�)

0.002 ≤ S0 ≤ 0.008 3.84·
(

Y

d84

)0.547

0.008 ≤ S0 ≤ 0.04 3.10·
(

Y

d84

)0.93

aThese values apply to situations in which resistance is primarily due to bed roughness;
variations in planform, longitudinal profile, vegetation, and so forth, increase � beyond values
given here.
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UNIFORM FLOW AND FLOW RESISTANCE 231

6.6.1.2 Plan-View Irregularities

As we saw in section 2.2, few natural river reaches are straight, and there are several
ways in which plan-view irregularities can be characterized. The overall degree of
deviation from a straight-line path is the sinuosity, �, defined as the ratio of streamwise
distance to straight-line distance (figure 6.11b).The local deviation from a straight-line
path can be quantified as the radius of curvature, rc (figure 6.11b).

From elementary physics, we know that motion with velocity U in a curved path
with a radius of curvature rc produces a centrifugal acceleration ac where

ac = U2

rc
. (6.29)

This acceleration multiplied by the mass of water flowing produces an apparent force,
and because this force is directed at right angles to the downstream direction, it adds
to the overall flow resistance.

Because velocity is highest near the surface, water near the surface accelerates
more than that near the bottom; this produces secondary circulation in bends, with
surface water flowing toward the outside of the bend and bottom water flowing in
the opposite direction (see figure 5.21a). Thus, curvature enhances the secondary
currents, increasing the resistance beyond that due to the curved flow path alone
(Chang 1984).

The magnitude of the resistance due to curvature computed from a set of
laboratory experiments (see box 6.3) is shown in figure 6.14. The data indicate
that resistance can be increased by a factor of 2 or more when U2/rc exceeds
0.8 m/s2 or sinuosity exceeds 1.04; as noted by Leopold (1994, p. 64), these
experiments showed that “the frictional loss due to channel curvature is much larger
than previously supposed.” Sinuosities of typical meandering streams range from 1.1
to about 3.

6.6.1.3 Longitudinal-Profile Irregularities

At the reach scale, the longitudinal profiles of many streams have alternating steeper
and flatter sections. In meandering streams (see section 2.2.3), the spacing of pools
usually corresponds closely to the spacing of meander bends, so that pools tend
to occur at spacings of about five times the bankfull width (equation 2.14). Steep
mountain streams (see section 2.2.5, table 2.4) are characterized by relatively deep
pools separated by steep rapids or cascades (step/pool reaches). On gentler slopes,
the pools are shallower and separated by rapids (pool/riffle reaches).

The Chézy equation (equation 6.15) shows that velocity is proportional to the
square root of slope. Thus, variations in slope produce accelerations and decelerations,
vertical deflections of velocity vectors, and changes in depth along a river’s
course. Where longitudinal slope alterations are marked, they are typically a major
component of overall resistance (Bathurst 1993). However, the effect in a given
reach is dependent on discharge: At high flows, the water surface smoothes out
and is less affected by alterations in the channel slope, whereas at low flows,
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BOX 6.3 Flume Experiments on Resistance in Sinuous Channels

Leopold et al. (1960) conducted a series of experiments in a tiltable flume
with a length of 15.9 m. Sand with a median diameter of 2 mm was placed in
the flume, and a template was designed that could mold straight or curved
trapezoidal channels in the sand. Once the channels were molded, they
were coated with adhesive to prevent erosion. Plan-view geometries were as
in table 6B3.1.

Table 6B3.1

Wavelength 
 (m) Radius of curvature rc (m) Sinuosity �

Straight Straight 1.000
1.22 1.01 1.024
1.18 0.58 1.056
0.65 0.31 1.048
0.70 0.19 1.130

Flows were run at two depths; cross-section geometries were as in
table 6B3.2.

Table 6B3.2

Maximum
depth
Ym(m)

Bottom
width
Wb(m)

Water-
surface
width
W (m)

Average
depth
Y (m)

Cross-sectional
area A (m2)

Wetted
perimeter
Pw (m)

Hydraulic
radius
R (m)

0.027 0.117 0.191 0.020 0.00418 0.209 0.020
0.041 0.117 0.224 0.027 0.00697 0.252 0.028

For each run, slope (S) and discharge (Q) could be set to obtain constant
depth (uniform flow) throughout. The ranges of velocities (U), Reynolds
numbers (Re) and Froude numbers (Fr ) observed are listed in table 6B3.3.

Table 6B3.3

S Q (m3/s) U (m/s) Re Fr

Maximum 0.0118 0.00326 0.466 12100 0.970
Minimum 0.00033 0.00048 0.097 2130 0.187

The results of these experiments were used to plot figure 6.14 and gain
quantitative insight on the effects of curvature on resistance.
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Figure 6.14 Effects of plan-view curvature on flow resistance from the experiments of Leopold
et al. (1960) (see box 6.3). Excess resistance, (�−�∗)/�∗, is plotted against (a) sinuosity, �

and (b) centrifugal acceleration, ac = U 2/rc.

water-surface slope tends to parallel the local bottom slope and be more variable
(figure 6.11c).

In one of the few detailed hydraulic studies of pool/fall streams, Bathurst (1993)
measured resistance at three discharges in a gravel-bed river in Britain. As shown
in figure 6.15, the effects of step/pool configuration are very pronounced at low
discharges (low relative smoothness) and decline as discharge increases.
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Excess resistance relative to Equation (6.25)
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(gravel-bed stream) 
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Figure 6.15 Excess resistance due to slope variations in a gravel-bed step-pool stream (River
Swale, UK). The upper curve shows the excess resistance computed relative to the baseline
relation (equation 6.25); the lower curve shows the excess relative to that of a uniform gravel
stream (equation 6.27). The effect of the slope alterations decreases at higher discharges (higher
relative smoothness). Data from Bathurst (1993).

6.6.2 Effects of Vegetation

Floodplains are commonly covered with brush or trees, and active channels can
also contain living and dead plants. The effects of vegetation on resistance are
complex and difficult to quantify; the major considerations are the size and shape
of plants, their spacing, their heights, and their flexibility. The effects can change
significantly during a particular flow event due to relative submergence and to the
bending of flexible plants. Over longer time periods, the height and spacing of plants
can vary seasonally and secularly due to, for example, anthropogenic increases in
nutrients contained in runoff or simply to ecological processes (succession) or tree
harvesting.

Kouwen and Li (1980) formulated an approach to estimating vegetative resistance
that is conceptually similar to that of equations 6.27 and 6.28:

� = kveg·
[
− ln

(
yveg

Kveg·Y
)]−1

, (6.30)

where yveg is the deflected vegetation height, and kveg and Kveg are parameters.
Approaches to determining values of yveg, kveg, and Kveg are given by Kouwen
and Li (1980). Arcement and Schneider (1989) presented detailed field procedures
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0.030
20000 40000 60000 80000 100000 120000 140000 160000 1800000

0.035

0.040

0.045

0.050

0.055

Re

Ω

Equation (6.25) 

Fr > 3.5 

Figure 6.16 Plot of flow resistance, �, versus Reynolds number, Re, showing the effect of
surface instability on flow resistance. The curve is the standard resistance relation for smooth
channels given in equation 6.25; the points are resistance values measured in flume experiments
of Sarma and Syala (1991). The points clustering close to the curve have 1 < Fr < 3.5; those
plotting substantially above the curve have Fr > 3.5.

for estimating resistance due to vegetation on floodplains. Recent analyses and
experiments evaluating resistance due to vegetation are given by Wilson and Horritt
(2002) and Rose et al. (2002) and summarized by Yen (2002).

6.6.3 Effects of Surface Instability

As noted in section 6.2.2.2, wavelike fluctuations begin to appear in the surfaces
of open-channel flows as the Froude number Fr approaches 1. A few experi-
mental studies in flumes have examined the effects of these instabilities on flow
resistance.

Figure 6.16 summarizes measurements of supercritical flows in a straight, smooth,
rectangular flume (Sarma and Syala 1991). It shows that for flows with 1 <

Fr < 3.5, flow resistance is essentially as predicted by the standard relation for
smooth turbulent flows (equation 6.25). However, when Fr exceeds a threshold
value of about 3.5, there is a discontinuity, and resistance jumps to a value
about 10% larger than the standard value. Because Froude numbers in natural
channels seldom exceed 1, Sarma and Syala’s (1991) results suggest that one can
usually safely ignore the effects of surface instabilities on resistance in straight
channels.

However, the experiments of Leopold et al. (1960) described in box 6.3 indicate the
existence of discontinuities in resistance that they attributed to surface instabilities
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236 FLUVIAL HYDRAULICS

at channel bends and called spill resistance. These sudden increases in resistance
occurred at Froude numbers in the range of 0.4−0.55, much lower than found by
Sarma and Syala (1991) in straight smooth flumes. Thus, spill resistance may be
a significant contributor to excess resistance at high flows in channel bends.

6.6.4 Effects of Sediment

Sediment transport affects flow resistance in two principal ways: 1) the effects of
suspended sediment on turbulence characteristics, and 2) the effects of bedforms that
accompany sediment transport on channel-bed configuration.

6.6.4.1 Effects of Sediment Load

As noted in section 5.3.1.4, there is evidence that suspended sediment suppresses
turbulence and causes the value of von Kármán’s constant, �, to decrease below
its clear-water value of � = 0.4. Evidence analyzed by Einstein and Chien (1954)
suggested values as low as � = 0.2 at high sediment concentrations. Because the
coefficient in equation 6.25 is �, this suggests that resistance could be as little as 50%
of its clear-water value in flows transporting sediment.

However, some researchers contend that � remains constant and the observed
resistance reduction in flows transporting sediment is due to an altered velocity
distribution such that, in sediment-laden flows, velocities near the bed are reduced
and those near the surface increased compared with the values given by the P-vK
law (Coleman 1981; Lau 1983). Other studies have even suggested that resistance is
generally increased sediment-laden flows compared with clear-water flows under
identical conditions (Lyn 1991). Clearly this is a question that requires further
research.

6.6.4.2 Effects of Bedforms

Observations of rivers and experiments in flumes (e.g., Simons and Richardson
1966) have revealed that in flows over sand beds, there is a typical sequence of
bedforms that occurs as discharge changes. These forms are intimately related to
processes of erosion that begin when the critical value of boundary shear stress, �0, is
reached,7 and in turn they strongly affect the velocity because of their effects on flow
resistance.

The bedforms are described and illustrated in table 6.2 and figures 6.17–6.19,
and figure 6.20 shows qualitatively how resistance changes through the sequence. In
general, resistance increases directly with bedform height (amplitude) and inversely
with bedform wavelength.

Bathurst (1993) developed an approach to accounting for these effects that involves
computing the effective roughness height of the bedforms, ybf, as a function of grain
size, d84; bedform amplitude, Abf; and bedform wavelength, 
bf:

ybf = 3 · d84 + 1.1 · Abf · [1 − exp(−25 · Abf/
bf)] (6.31)
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Table 6.2 Bedforms in sand-bed streams (see figures 6.17–6.20).

Migration
Bedform Description Amplitude Wavelength velocity (mm/s) �bf

Lower flow
regime, Fr < 1

Plane bed Generally flat bed, often with irregularities due to
deposition; occurs in absence of erosion.

0.05–0.06

Ripples Small wavelike bedforms; may be triangular to
sinusoidal in longitudinal cross section. Crests are
transverse to flow and may be short and irregular to
long, parallel, regular ridges; typically migrate
downstream at velocities much lower than stream
velocity; may occur on upslope portions of dunes.

< 40 mm; mostly
10–20 mm

< 60 mm 0.1–1 0.07–0.1

Dunes Larger wavelike forms with crests transverse to flow,
out of phase with surface waves; generally triangular
in longitudinal cross section with gentle upstream
slopes and steep downstream slopes. Crest lengths are
approximately same magnitude as wavelength;
migrate downstream at velocities much lower than
stream velocity.

0.1–10 m; usually
≈ 0.1 × Y to
0.3 × Y

0.1–100 m,
usually ≈ 2 × Y
to 10 × Y

0.1–1 0.07–0.14

Upper flow
regime, Fr > 1

Plane bed Often occurs with heterogeneous, irregular forms;
a mixture of flat areas and low-amplitude ripples
and/or dunes.

< 3 mm Irregular 10 0.05–0.06

Antidunes Large wavelike forms with triangular to sinusoidal
longitudinal cross sections that are in phase with
water-surface waves. Crest lengths approximately
equal wavelength; may migrate upstream or
downstream or remain stationary.

30–100 mm 2··Y Variable 0.05–0.06

Chutes and pools Large mounds of sediment that form steep chutes in
which flow is supercritical, separated by pools in
which flow may be subcritical or supercritical.
Hydraulic jumps (see chapter 10) form at
supercritical-to-subcritical transitions; migrate slowly
upstream.

1–50

After Task Force on Bed Forms in Alluvial Channels (1966) and Bridge (2003).
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238 FLUVIAL HYDRAULICS

(a)

(b)

Figure 6.17 Ripples. (a) Side view of ripples in a laboratory flume. The flow is from left to
right at a mean depth of 0.064 m and a mean velocity of 0.43 m/s (Fr = 0.54). Aluminum
powder was added to the water to make the flow paths visible. Note that the water surface
is unaffected by the ripples. Photograph courtesy of A. V. Jopling, University of Toronto. (b)
Ripples on the bed of the Delta River in central Alaska. Flow was from left to right.

Resistance is then computed as

� = 0.400 ·
[
− ln

( ybf

12.1·R
)]−1

, (6.32)

where R is hydraulic radius (≈ Y for wide channels).
In another approach, the resistance is separated into 1) that due to the bed

material (the plane-bed resistance �∗ given by equation 6.25) and 2) that due to
the bedforms, �bf:

� = �∗ +�bf. (6.33)

Co
py
ri
gh
t 
©
 2
00
9.
 O
xf
or
d 
Un
iv
er
si
ty
 P
re
ss
. 
Al
l 
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e 
re
pr
od
uc
ed
 i
n 
an
y 
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n 
fr
om
 t
he
 p
ub
li
sh
er
, 
ex
ce
pt
 f
ai
r 
us
es
 p
er
mi
tt
ed
 u
nd
er

U.
S.
 o
r 
ap
pl
ic
ab
le
 c
op
yr
ig
ht
 l
aw
.

EBSCO Publishing : eBook Academic Collection (EBSCOhost) - printed on 2/19/2017 4:55 PM via
UNIV OF CHICAGO
AN: 271150 ; Dingman, S. L..; Fluvial Hydraulics
Account: s8989984



UNIFORM FLOW AND FLOW RESISTANCE 239

(a)

(b)

Figure 6.18 Dunes. (a) Side view of dunes in a laboratory flume. The flow is from left to
right at a mean depth of 0.064 m and a mean velocity of 0.67 m/s (Fr = 0.85). Aluminum
powder was added to the water to make the flow paths visible. Note that the water surface is
out of phase with the bedforms. Photograph courtesy of A.V. Jopling, University of Toronto.
(b) Dunes in a laboratory flume. Flow was toward the observer at a mean depth of 0.31 m and a
mean velocity of 0.85 m/s (Fr = 0.49). Note ripples superimposed on some dunes. Photograph
courtesy of D.B. Simons, Colorado State University.

Yen (2002) reviews several approaches to estimating �bf; some typical values are
indicated in table 6.2.

6.6.5 Effects of Ice

As noted in section 3.2.2.3, the presence of an ice cover or frazil ice can significantly
increase resistance. For a uniform flow in a rectangular channel (figure 6.7), the effect
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240 FLUVIAL HYDRAULICS

Figure 6.19 Side view of antidunes in a laboratory flume The flow is from left to right at
a mean depth of 0.11 m and a mean velocity of 0.79 m/s (Fr = 0.76). Note that the surface
waves are approximately in phase with the bedforms, which are also migrating to the right.
Photograph courtesy of J. F. Kennedy, University of Iowa.

BED FORM

STREAM POWER

Lower regime

Bed

Plain bed Ripples Dunes Transition Plain bed Standing waves
and antidunes

Water
surface

Transition Upper regime

Resistance to flow
(Manning’s roughness
coefficient)

Figure 6.20 Sequence of bedforms and flow resistance in sand-bed streams. From Arcement
and Schneider (1989). See table 6.2 for typical � values.

of an ice cover can be included in formulating the expression for the resisting forces,
so that equation 6.10 becomes

FR = �B·(2·Y + W )·X + �I ·W ·X, (6.34)

where �B is the shear stress on the bed and �I is the shear stress on the ice cover. If this
force balances the downstream-directed force (equation 6.7) and we assume a wide
channel (i.e., Pw = W ), the modified Chézy equation becomes

U = (�2
B +�2

I )−1/2·u∗, (6.35)

where �B and �I are the resistances due to the bed and the ice cover, respectively.
One would expect �I to vary widely in natural streams due to 1) variations in

the degree of ice cover, 2) development of ripplelike and dunelike bedforms on the
underside of the ice cover (Ashton and Kennedy 1972), 3) development of partial or
complete ice jamming, and 4) the concentration of frazil ice in the flow. An analysis
of ice resistance on the St. Lawrence River by Tsang (1982) indicates that �I is on
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UNIFORM FLOW AND FLOW RESISTANCE 241

the order of 0.7−1.5 times �B, and data presented by Chow (1959) suggest values in
the range from �I = 0.03 for smooth ice without ice blocks to �I = 0.085 for rough
ice with ice blocks. White (1999) and Brunner (2001b) summarized resistance due to
ice given by several studies; these cover a very wide range of values.

6.7 Field Computation of Reach Resistance

Validation of methods of determining reach resistance requires comparison with
actual resistance values. The method developed here to compute resistance in natural,
nonprismatic channels is based closely on the concepts used to derive the Chézy
equation for uniform flow in prismatic channels in section 6.3.

Designating X as the distance measured along the stream course, the cross-
sectional area, A, wetted perimeter, Pw, hydraulic radius, R, and water-surface
slope, SS , vary through a natural-channel reach (figure 6.21) and so are written as
functions of X: A(X), Pw(X), R(X), and SS(X) respectively. With this notation, the
downstream-directed force, FD, is

FD = �·
∫ XN

X0

A(X)·SS(X)·dX, (6.36)

where X0 and XN are the locations of the upstream and downstream boundaries of
the reach, respectively. Note that this expression is analogous to equation 6.7, but for
nonprismatic rather than prismatic channels.

Similarly, the upstream-directed resistance force, FR in a nonprismatic channel is

FR = KT ·�·U2·
∫ XN

X0

Pw(X)·dX, (6.37)

where U is the reach-average velocity. This expression is analogous to equation 6.10.
For a given discharge, Q, the reach-average velocity is

U = Q(
1

�X

)
·∫ XN

X0
A(X)·dX

. (6.38)

where �X ≡ XN − X0.
Equating FD and FR as in equation 6.6, substituting equations 6.36–6.38, and

solving for KT gives

KT =
g·∫ XN

X0
A(X)·SS(X)·dX ·

[∫ XN
X0

A(X)·dX
]2

Q2·�X2·∫ XN
X0

Pw(X)·dX
= �2; (6.39a)

� =
g1/2·

[∫ XN
X0

A(X)·SS(X)·dX
]1/2 ·∫ XN

X0
A(X)·dX

Q·�X·
[∫ XN

X0 Pw(X)·dX
]1/2

. (6.39b)
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Figure 6.21 Plan view and cross sections of the Deep River at Ramseur, North Carolina,
showing typical cross-section variability. From Barnes (1967).

In practice, the geometric functions A(X), SS(X), and so on, can be approximated
only by measurements at specific cross sections within the reach. Thus. for practical
application, equation 6.39b becomes

� =
g1/2·

[
N∑

i = 1
Ai·SSi·�Xi

]1/2

·
N∑

i = 1
Ai·�Xi

Q·�X·
[

N∑
i = 1

Pwi·�Xi

]1/2
, (6.39c)

where the subscripts indicate the measured value of the variable at cross section i, i =
1,2, . . .,N , and �Xi is the downstream distance between successive cross sections.
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UNIFORM FLOW AND FLOW RESISTANCE 243

Box 6.4 shows how field computations are used to compute resistance. It is
important to be aware that careful field measurements are essential for accurate
hydraulic computations. The manual by Harrelson et al. (1994) is an excellent
illustrated guide to field technique.

6.8 The Manning Equation

6.8.1 Origin

In the century following the publication of the Chézy equation in 1769, European
hydraulic engineers did considerable field and laboratory research to develop practical
ways to estimate open-channel flow resistance (Rouse and Ince 1963; Dooge 1992).
In 1889, Robert Manning (1816–1897), an Irish engineer, published an extensive
review of that research (Manning 1889). He concluded that the simple equation that
best fit the experimental results was

U = KM ·R2/3·S1/2
S , (6.40a)

where KM is a proportionality constant representing reach conductance. For historical
reasons (see Dooge 1992), subsequent researchers replaced KM by its inverse, 1/nM ,
and wrote the equation as

U =
(

1

nM

)
·R2/3·S1/2

S , (6.40b)

called Manning’s equation, where the resistance factor nM is called
Manning’s n.

Manning’s equation has come to be accepted as “the” resistance equation for
open-channel flow, largely replacing the Chézy equation in practical applications.
The essential difference between the two is that the hydraulic-radius exponent is
2/3 rather than 1/2. This difference is important because it makes the Manning
equation dimensionally inhomogeneous.8 As with Chézy’s C (see box 6.1), values of
nM are treated as constants for all unit systems, and in order to give correct results,
the Manning equation must be written as

U = uM ·
(

1

nM

)
·R2/3·S1/2, (6.40c)

where uM is a unit-adjustment factor that takes the following values:

Unit system uM

Système Internationale 1.00
British 1.49
Centimeter-gram-second 4.64
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BOX 6.4 Calculation of Resistance, Deep River at Ramseur, North
Carolina

The channel-geometry values in the table below were measured by Barnes
(1967) at seven cross sections on the Deep River at Ramseur, North Carolina,
on 28 December 1958, when the flow was Q = 235 m3/s (figure 6.21). Note
that i = 0 for the upstreammost cross section, so N+1 sections are measured,
defining N subreaches (table 6B4.1).

Table 6B4.1

Section, i Ai (m2) Ri (m) Pwi (m) �Xi (m) |�Zi | (m) SSi = |�Zi |/�Xi

0 230.0 3.29 69.8
1 198.4 3.17 62.6 66.8 0.052 0.000776
2 198.6 2.85 69.8 66.5 0.015 0.000229
3 223.4 2.66 83.9 55.5 0.037 0.000659
4 191.6 2.42 79.1 56.4 0.061 0.001081
5 210.5 3.29 63.9 102.7 0.091 0.000890
6 188.3 3.17 59.4 80.8 0.073 0.000906

(The quantity |�Zi | is the decrease in water-surface elevation between
successive sections.)

To compute the resistance via equation 6.39c, we calculate the quantities
in table 6B4.2 from the above data.

Table 6B4.2

Section, i Ai ·SSi ·�Xi (m3) Ai ·�Xi (m3) Pwi ·�Xi (m3)

1 10.286 13,250 4178.9
2 3.029 13,202 4636.2
3 8.172 12,394 4656.5
4 11.681 10,805 4463.6
5 19.256 21,631 6569.4
6 13.779 15,215 4798.5
Sum 66.202 86,497 29,303.1

From the previous table, �X =��Xi =428.7 m. Substituting the appropriate
values into 6.39c gives

� = 9.811/2· [66.202]1/2 ·86497

235·428.7· [29303.1]1/2 = 0.128.

The Reynolds number for this flow, assuming kinematic viscosity � = 1.5 ×
10−6 m2/s, is

Re = U·R
�

= 1.15 m/s ×2.98 m
1.5 × 10−6m2/s

= 2.28×106.

Referring to figure 6.8, we see that this flow was well into the “fully rough”
range and that the actual resistance � = 0.128 was well above the baseline
value �∗ ≈ 0.04 given by equation 6.25.
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UNIFORM FLOW AND FLOW RESISTANCE 245

From equations 6.12, 6.19, 6B1.3, and 6.40c, we see that

nM = uM ·R1/6·K1/2
T

g1/2
= uM ·R1/6

uC ·C = uM ·R1/6·�
g1/2

. (6.41)

A major justification for using the Manning equation instead of the Chézy
equation has been that, because nM depends on the hydraulic radius, it accounts
for relative submergence effects and tends to be more constant for a given reach
(i.e., changes less as discharge changes) than is C. However, this reasoning may not
be compelling, because we have seen that we can write the Chézy equation using
�−1 instead of uC ·C (equation 6.19) and that �, in fact, depends in large measure
on relative submergence (equation 6.24). Another reason for the popularity of the
Manning equation is that a number of methods have been developed that provide
expedient (i.e., “quick-and-dirty”) estimates of the resistance coefficient nM . These
methods are discussed in the following section.

6.8.2 Determination of Manning’s nM

In order to apply the Manning equation in practical problems, one must be able to
determine a priori values of nM . An overview of approaches to doing this are listed
in table 6.3 and briefly described in the following subsections.

6.8.2.1 Visual Comparison with Photographs

Table 6.4 summarizes publications that provide guidance for field determination of
nM by means of photographs of reaches in which nM values have been determined
by measurement for one or more discharges. The books by Barnes (1967) and Hicks
and Mason (1991) are specifically designed to provide visual guidance for the field
determination of nM for in-bank flows in natural rivers. Examples from Barnes (1967)
are shown in figure 6.22.

6.8.2.2 Tables of Typical nM Values

Chow (1959) provides tables that give a range of appropriate nM values for various
types of human-made canals and natural channels; the portions of those tables
covering natural channels are reproduced here in table 6.5.

6.8.2.3 Formulas That Account for Components of
Reach Resistance

Cowan (1956) introduced a formula that allowed for explicit consideration of many
of the factors that determine resistance (see section 6.6) in determining an appropriate
nM value:

nM = (n0 + n1 + n2 + n3 + n4)·m�, (6.42)

where n0 is the base value for straight, uniform, smooth channel in natural
material; n1 is the factor for bed and bank roughness; n2 is the factor for effect of
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Table 6.3 General approaches to a priori estimation of Manning’s nM .

Approach Comments References

1. Visual comparison with
photographs of channels
for which nM has been
measured (see table 6.4)

Expedient method; subjective, dependent on
operator experience; subject to
considerable uncertainty

Faskin (1963), Barnes
(1967), Arcement and
Schneider (1989),
Hicks and Mason
(1991)

2. Tables of typical nM

values for reaches of
various materials and
types (see table 6.5)

Expedient method; subjective, dependent on
operator experience; subject to
considerable uncertainty

Chow (1959), French
(1985)

3. Formulas that account for
components of reach
resistance (see table 6.6)

Expedient method; more objective than
approaches 1 and 2 but lacks theoretical
basis

Cowan (1956), Faskin
(1963), Arcement and
Schneider (1989)

4. Formulas that relate nM to
bed-sediment grain size dp

(see table 6.7)

Require measurement of bed sediment;
reliable only for straight quasi-prismatic
channels where bed roughness is the
dominant factor contributing to resistance

Chang (1988), Marcus
et al. (1992)

5. Formulas that relate nM to
hydraulic radius and
relative smoothness

Require measurement of bed sediment,
depth, and slope; forms are based on
theory; coefficients are based on field
measurement; can give good results in
conditions similar to those for which
established

Limerinos (1970),
Bathurst (1985)

6. Statistical formulas that
relate nM to measurable
flow parameters
(see table 6.8)

Can provide good estimates, especially
useful when bed-material information is
lacking, as in remote sensing, but subject
to considerable uncertainty

Riggs (1976), Jarrett
(1984), Dingman and
Sharma (1997),
Bjerklie et al. (2003)

Table 6.4 Summary of reports presenting photographs of reaches for which Manning’s nM

has been measured.

Types of reach No. of reaches No. of flows Minimum nM Maximum nM Reference

Canals and
dredged
channels (USA)

48 326 0.014 0.162 Faskin (1963)

Natural rivers
(USA)

51 62 0.024 0.075 Barnes (1967)

Flood plains
(USA)

16 16 —a —a Arcement and
Schneider
(1989)

Natural rivers
(New Zealand)

78 559 0.016 0.270 Hicks and Mason
(1991)

a See reference for methodology for computing composite (channel plus flood plain) nM values.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.22 Photographs of U.S. river reaches covering a range of values of Manning’s nM ,
computed from measurements. (a) Columbia River at Vernita, Washington: nM = 0.024; (b)
West Fork Bitterroot River near Conner, Montana: nM = 0.036; c) Moyie River at Eastport,
Idaho: nM = 0.038; (d) Tobesofkee Creek near Macon, Georgia: nM = 0.041; (e) Grande Ronde
River at La Grande, Oregon: nM = 0.043; (f) Clear Creek near Golden, Colorado: nM = 0.050;
(g) Haw River near Benaja, North Carolina: nM = 0.059; (h) Boundary Creek near Porthill,
Idaho: nM = 0.073. From Barnes (1967); photographs courtesy U.S. Geological Survey.
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248 FLUVIAL HYDRAULICS

Table 6.5 Values of Manning’s nM for natural streams.

Channel description Minimum Normal Maximum

Minor streams (bankfull width < 100 ft)
Streams on plain
1. Clean, straight, full stage, no riffles or deep pools 0.025 0.030 0.033
2. Same as above, but more stones and weeds 0.030 0.035 0.040
3. Clean, winding, some pools and shoals 0.033 0.040 0.045
4. Same as above, but some weeds and stones 0.035 0.045 0.050
5. Same as above, but lower stages, more ineffective

slopes and sections
0.040 0.048 0.055

6. Same as item 4, but more stones 0.045 0.050 0.060
7. Sluggish reaches, weedy, deep pools 0.050 0.070 0.080
8. Very weedy reaches, deep pools, or floodways with

heavy stand of timber and underbrush
0.075 0.100 0.150

Mountain Streams
No vegetation in channel, banks usually steep, trees

and brush along banks submerged at high stages
1. Bottom: gravels, cobbles, and few boulders 0.030 0.040 0.050
2. Bottom: cobbles with large boulders 0.040 0.050 0.070

Major Streams (bankfull width > 100 ft)

1. Regular section with no boulders or brush 0.025 — 0.060
2. Irregular and rough section 0.035 — 0.100

Floodplains

1. Short grass, no brush 0.025 0.030 0.035
2. High grass, no brush 0.030 0.035 0.050
3. Cultivated area, no crop 0.020 0.030 0.040
4. Mature row crops 0.025 0.035 0.045
5. Mature field crops 0.030 0.040 0.050
6. Scattered brush, heavy weeds 0.035 0.050 0.070
7. Light brush and trees, in winter 0.035 0.050 0.060
8. Light brush and trees, in summer 0.040 0.060 0.080
9. Medium to dense brush, in winter 0.045 0.070 0.110

10. Medium to dense brush, in summer 0.070 0.100 0.160
11. Dense willows, summer, straight 0.110 0.150 0.200
12. Cleared land with tree stumps, no sprouts 0.030 0.040 0.050
13. Same as above, but with heavy growth of sprouts 0.050 0.060 0.080
14. Heavy stand of timber, a few down trees, little

undergrowth, flood stage below branches
0.080 0.100 0.120

15. Same as above, but with flood stage reaching
branches

0.100 0.120 0.160

From Chow (1959, table 5.6). Reproduced with permission of McGraw-Hill.

cross-section irregularity; n3 is the factor for the effect of obstructions; n4 is the
factor for vegetation and flow conditions; and m� is the factor for sinuosity. Table 6.6
summarizes the determination of values for these factors.

Although equation 6.42 may provide a somewhat more objective method for
considering the various factors that affect resistance than simply referring to tables or
figures, note that there is no theoretical basis for assuming that nM values are simply
additive.
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UNIFORM FLOW AND FLOW RESISTANCE 249

Table 6.6 Values of factors for estimating nM via
Cowan’s (1956) formula (equation 6.42).

Material n0

Concrete 0.011–0.018
Rock cut 0.025
Firm soil 0.020–0.032
Sand (d = 0.2 mm) 0.012
Sand (d = 0.5 mm) 0.022
Sand (d = 1.0 mm) 0.026
Sand (1.0 ≤ d ≤ 2.0 mm) 0.026–0.035
Gravel 0.024–0.035
Cobbles 0.030–0.050
Boulders 0.040–0.070

Degree of Irregularity n1

Smooth 0.000
Minor 0.001–0.005
Moderate 0.006–0.010
Severe 0.011–0.020

Cross-Section Irregularity n2

Gradual 0.000
Alternating occasionally 0.001–0.005
Alternating frequently 0.010–0.015

Obstructions n3

Negligible 0.000–0.004
Minor 0.005–0.015
Appreciable 0.020–0.030
Severe 0.040–0.050

Amount of Vegetation n4

Small 0.002–0.010
Medium 0.010–0.025
Large 0.025–0.050
Very large 0.050–0.100

Sinuosity, � m�

1.0 ≤ � ≤ 1.2 1.00
1.2 ≤ � ≤ 1.5 1.15
1.5 ≤ � 1.30

6.8.2.4 Formulas That Relate nM to Bed-Sediment
Size and Relative Smoothness

From a study of flows over uniform sands and gravels, Strickler (1923) proposed that
nM is related to bed-sediment size as

nM = 0.0150·d50(mm)1/6, (6.43a)
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250 FLUVIAL HYDRAULICS

where d50 is median grain diameter in mm, or

nM = 0.0474·d50(m)1/6, (6.43b)

where d50 is median grain diameter in m. Formulas of this form are called Strickler
formulas, and several versions have been proffered by various researchers (see
table 6.7). Although Strickler-type formulas are often invoked, experience shows
that nM values computed for natural channels from bed sediment alone are usually
smaller than actual values.

It is interesting to note that, using equation 6.43b, the Manning equation (equa-
tion 6.40c) can be written as

U = 6.74·
(

R

d50

)1/6

·u∗ = 6.74·
(

R

d50

)0.167

·(g·Y ·SS)1/2; (6.44)

which can be interpreted as an integrated 1/6-power-law velocity profile (see
equation 5.46 with mPL = 1/6). This equation is of the same form as equation 4.74,
which was developed from dimensional analysis and measured values, but has
a considerably different coefficient (1.84) and exponent (0.704).

We have seen several formulas (equations 6.25, 6.27, 6.28, 6.30, and 6.32) that
relate resistance in fully rough flows to relative roughness in the form

� = �·
[
− ln

(
yr

Kr ·R
)]−1

, (6.45)

Table 6.7 Formulas relating Manning’s nM to bed-sediment size and relative smoothness
(grain diameters dp, in mm; hydraulic radius, R, in m).

Formula Remarks Source

nM or n0 = 0.015·d1/6 Original “Strickler formula”
for uniform sand

Strickler (1923) as reported
by Chang (1988)

nM or n0 = 0.0079·d1/6
90 Keulegan (1938) as reported

by Marcus et al. (1992)

nM or n0 = 0.0122·d1/6
90 Sand mixtures Meyer-Peter and Muller

(1948)

nM or n0 = 0.015·d1/6
75 Gravel lined canals Lane and Carlson (1938) as

reported by Chang (1988)

nM or n0 = R1/6

[7.69· ln(R/d84) + 63.4] Limerinos (1970)

nM or n0 = R1/6

[7.64· ln(R/d84) + 65.3] Gravel streams with slope
> 0.004

Bathurst (1985)

nM or n0 = R1/6

[7.83· ln(R/d84) + 72.9] Derived from P-vK law for
wide channels

Dingman (1984)
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UNIFORM FLOW AND FLOW RESISTANCE 251
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Figure 6.23 Variation of Manning’s nM (or n0 in equation 6.42) with hydraulic radius, R,
and bed grain diameter d84 as predicted by the Dingman (1984) version of equation 6.46 (see
table 6.7). Manning’s nM is effectively independent of depth for R/d84 > 10.

where the values of �, Kr , and yr take different values in different contexts. If
equation 6.45 is substituted into equation 6.41, we find that

nM = uM ·�·R1/6

g1/2· ln
(

Kr ·R
yr

) . (6.46)

Thus, equation 6.46 can be used to provide estimates of nM (or n0 in equation 6.42)
in those contexts. Table 6.7 lists versions of equation 6.46 derived by various authors,
and figure 6.23 shows the relation of nM to relative smoothness for various bed-
sediment sizes in gravel-bed streams as given by the Dingman (1984) version of
that equation. Note that the formula predicts little dependence of nM on R/d84 when
R/d84 > 10.

6.8.2.5 Statistically Derived Formulas That Relate nM
to Hydraulic Variables

A number of researchers have used statistical analysis (regression analysis, as
described in section 4.8.3.1) to develop equations to predict nM based on measurable
flow variables. Three of these equations are listed in table 6.8. There is considerable
uncertainty associated with estimates from such equations: The equation of Dingman
and Sharma (1997), which is based on the most extensive data set, was found to give
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252 FLUVIAL HYDRAULICS

Table 6.8 Statistically derived formulas for estimating Manning’s nM [A = cross-sectional
area (m2); R = hydraulic radius (m); S =slope].

Formula Remarks Source

nM = 0.210·A−0.33·R0.667·S0.095 Based on 62 flows in Barnes (1967);
0.024 ≤ nM ≤ 0.075

Riggs (1976)

nM = 0.32·R−0.16·S0.38 Mountain streams with 0.17 m ≤ R ≤ 2.13 m
and 0.002 ≤ S ≤ 0.052

Jarrett (1984)

nM = 0.217·A−0.173·R0.267·S0.156 Based on 520 flows from Hicks and Mason
(1991); 0.015 ≤ nM ≤ 0.290

Dingman and
Sharma (1997)

discharge estimates within ±50% of the true value 77% of the time. This topic is
addressed further in section 6.9.

6.8.2.6 Field Measurement of Discharge and
Hydraulic Variables

The only way that the value of Manning’s nM can be established with certainty
is by measuring the discharge and hydraulic variables at a given time in a given
reach, determining the prevailing reach-average velocity, and solving the Manning
equation for nM . Ideally, one would repeat the calculations over a range of discharges
in a particular reach and use the nM values so determined in future a priori estimates
of velocity or discharge for that reach.

Barnes (1967) and Hicks and Mason (1991) give equations for direct computation
of nM from measured values of discharge and surveyed values of cross-sectional area,
hydraulic radius, reach length, and water-surface slope at several cross sections within
a reach. However, their methodology is based on energy considerations (sections 4.5
and 8.1), whereas the Manning equation is a modification of the Chézy equation,
which was derived from momentum considerations (sections 4.4 and 8.2).9 Thus,
it is preferable to compute resistance via the method described in section 6.7 for
computing � (equation 6.39c); if desired, the corresponding nM value can then be
determined via equation 6.41. In most cases, the two methods give very similar nM

values (within ±0.002).

6.8.3 Summary

As noted above, the Manning equation has been the most commonly used resistance
relation for most engineering and many scientific purposes. It is common to use
the expedient methods described in approaches 1–3 of table 6.3 to estimate nM in
these applications. However, it has been shown that even engineers with extensive
field experience generate a wide range of nM estimates for a given reach using
these methods (Hydrologic Engineering Center 1986). Approach 4 is not usually
appropriate for natural rivers because, as we have seen, resistance depends on many
factors in addition to bed material. The various equations developed for approach
5 can be used for conditions similar to those for which the particular equation was
established. Approach 6 can be useful, especially when trying to estimate discharge

Co
py
ri
gh
t 
©
 2
00
9.
 O
xf
or
d 
Un
iv
er
si
ty
 P
re
ss
. 
Al
l 
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e 
re
pr
od
uc
ed
 i
n 
an
y 
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n 
fr
om
 t
he
 p
ub
li
sh
er
, 
ex
ce
pt
 f
ai
r 
us
es
 p
er
mi
tt
ed
 u
nd
er

U.
S.
 o
r 
ap
pl
ic
ab
le
 c
op
yr
ig
ht
 l
aw
.

EBSCO Publishing : eBook Academic Collection (EBSCOhost) - printed on 2/19/2017 4:55 PM via
UNIV OF CHICAGO
AN: 271150 ; Dingman, S. L..; Fluvial Hydraulics
Account: s8989984



UNIFORM FLOW AND FLOW RESISTANCE 253

via remote sensing (Bjerklie et al. 2003), but may produce errors of ±50% or more
(see section 6.9). As noted above, the only way to determine resistance (� or nM )
with certainty for a given reach is to measure discharge and reach-average values
of hydraulic variables at a given discharge and use equation 6.39c and, if desired,
equation 6.41.

The questionable theoretical basis for the Manning equation—reflected in its
dimensional inhomogeneity—and the common reliance on expedient methods for
estimating nM significantly limit the confidence one can have in many applications
of the Manning equation. As explained in section 6.3, the Chézy equation has
a theoretical basis and, coupled with 1) the theoretical and empirical studies of
resistance summarized in the Moody diagram (figure 6.8) and 2) the various studies
described in sections 6.5 and 6.6, provides a sound and useful framework for
understanding and estimating reach resistance. Thus, there seems to be no well-
founded theoretical or empirical basis for preferring the Manning equation to the
Chézy equation. However, as we will see in the following section, the theoretical
basis for the Chézy equation may itself need reexamination.

6.9 Statistically Derived Resistance Equations

Because of the theoretical uncertainty associated with the Manning equation and
the difficulty of formulating physically based approaches for characterizing resis-
tance, some researchers have applied statistical techniques (regression analysis,
section 4.8.3.1) to identify relations between discharge or velocity and other
measurable hydraulic variables (Golubtsev 1969; Riggs 1976; Jarrett 1984; Dingman
and Sharma 1997).

Box 6.5 describes a study that compares the performance of five statistically
established resistance/conductance models for a large set of flow data. Overall, the
study found that the best predictor was the “modified Manning” model:

Q = 7.14·W ·Y5/3·S1/3
0 , (6.47)

where Q is discharge (m3/s), W is width (m), Y is average depth (m), and S0 is channel
slope.

Interestingly, that study found that resistance models incorporating a slope
exponent q = 1/3 (the “modified Manning” and “modified Chézy,” as well as the pure
regression relation) had greater predictive accuracy than those using the generally
accepted theoretical value q = 1/2. A possible interpretation of this result is that
the assumption that resistance (shear stress) is proportional to the square of velocity
(equation 6.8), which is the basis of the derivation of the Chézy resistance relation,
is not completely valid.

Measurements of resistance/conductance (e.g., Barnes 1967; Hicks and Mason
1991) clearly demonstrate that resistance varies strongly from reach to reach and
with varying discharge in a given reach. The Bjerklie et al. (2005b) study in fact
found that values of K2 (equation 6B5.2a) for individual flows varied from about
1.0 to as high as 18, with about two-thirds of the values Between 4.6 and 9.6.
Thus, the use of a universal conductance coefficient as in 6.47 is not correct.
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BOX 6.5 Statistically Determined Resistance/Conductance Equations

Bjerklie et al. (2005b) used data for 1037 flows at 103 reaches to compare
four resistance/conductance models incorporating various combinations of
depth exponents and slope exponents.

Manning model:

Q = K1·W ·Y 5/3·S1/2
0 (6B5.1a)

Modified Manning model:

Q = K2·W ·Y 5/3·S1/3
0 (6B5.2a)

Chézy model:

Q = K3·W ·Y 3/2·S1/2
0 (6B5.3a)

Modified Chézy model

Q = K4·W ·Y 3/2·S1/3
0 (6B5.4a)

In these models, Q is discharge, K1 − K4 are conductance coefficients, W is
width, Y is average depth, and S0 is channel slope. These models can also
be written as velocity predictors by dividing both sides by W ·Y .

The best-fit values of K1 −K4 were determined by statistical analysis of 680
of the flows.

Manning model:

Q = 23.3·W ·Y 2/3·S1/2
0 (6B5.1b)

Modified Manning model:

Q = 7.14·W ·Y 5/3·S1/3
0 (6B5.2b)

Chézy model:

Q = 25.2·W ·Y 3/2·S1/2
0 (6B5.3b)

Modified Chézy model:

Q = 7.73·W ·Y 3/2·S1/3
0 (6B5.4b)

SI units were used for all quantities. A fifth resistance model was determined
by log-regression analysis (section 4.8.3.1) of the 680 flows.

Regression model:

Q = 4.84·W1.10·Y 1.63·S0.330
0 (6B5.5)
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UNIFORM FLOW AND FLOW RESISTANCE 255

Note that the statistically determined exponent values in equation 6B5.5 are
close to those of the “modified Manning” model (equation 6B5.2).

The predictive ability of these five equations was then compared for
the 357 flows not used to establish the numerical values of K1 − K4 and
equation 6B5.5 using several criteria. Overall, the “modified Manning”
relation performed best, and the study found that resistance models
incorporating a slope exponent q = 1/3 (the modified Manning and
modified Chézy, as well as the pure regression relation) had greater
predictive accuracy than those using the generally accepted theoretical value
q = 1/2. For all models, there was a strong relation between prediction error
and Froude number, Fr : The models tended to overestimate discharge for
Fr <∼ 0.15, and underestimate for Fr > 0.4. Unfortunately, this information
cannot be used to improve the predictions, because one needs to know
velocity to compute Fr.

However, given the theoretical difficulties in characterizing resistance/conductance
and the need to estimate discharge for cases where there is little or no reach-specific
information available, “universal” equations such as 6.47 may be useful. This is
particularly true attempting to estimate discharge from satellite or airborne remote-
sensing information (Bjerklie et al. 2003). The statistical results (i.e., the suggestion
that q = 1/3 rather than 1/2) may also point to a reexamination of some of the
theoretical assumptions underlying the phenomenon of reach resistance—or to the
fact that many natural flows are far from uniform.

6.10 Applications of Resistance Equations

As stated at the beginning of this chapter, the central problem of open-channel-
flow hydraulics can be stated as that of determining the average velocity (or depth)
associated with a specified discharge in a reach with a specified geometry and bed
material. Two practical versions of that problem that commonly arise are:

1. Given a range of discharges due to hydrological processes upstream of the reach,
what average velocity and depth will be associated with each discharge?Answers
to this question provide information about the elevation and areal extent of flood-
ing to be expected at future high discharges, the ability of the river to assimilate
wastes, the amount of erosion to be expected at various discharges, and the suit-
ability of riverine habitats at various discharges. These answers are in the form
of reach-specific functions U = fU (Q) and/or Y = fY (Q), where Q is discharge.

2. Given evidence of the water-surface elevation for a recent flood, what was
the flood discharge? Answers to this question are important in determining
regional flood magnitude–frequency relations. The answers may be expressed
functionally as Q = fQ(Y ).

This section shows how these problems are approached for a reach in which concurrent
measurements of discharge and hydraulic parameters are not available, but where it
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256 FLUVIAL HYDRAULICS

is possible to obtain measurements of channel geometry, channel slope, and bed
material.

Although both types of problems commonly arise in situations involving overbank
flow on floodplains, the discussion here applies when flow is contained within the
channel banks. When flow extends onto the floodplain, the channel and the floodplain
usually have very different resistances, and the cross section is compound. Methods
for treating flows in reaches with compound sections are discussed in Chow (1959),
French (1985), and Yen (2002).

6.10.1 Determining the Velocity–Discharge and
Depth–Discharge Relations

Box 6.6 summarizes the steps involved in determining velocity–discharge and depth–
discharge relations for an ungaged reach. The process begins with a survey of channel
geometry (boxes 2.1 and 2.2); this is demonstrated in box 6.7 for the Hutt River

BOX 6.6 Steps for Estimating Velocity–Discharge and Depth–
Discharge Relations for an Ungaged Reach

1. Using the techniques of box 2.1, identify the bankfull elevation
through the reach.

2. Using the techniques of box 2.2 [1. Channel (Bankfull) Geometry],
survey a typical cross section to determine the channel geometry.

3. Determine the size distribution of bed sediment, dp. [See
section 2.3.2.1. Refer to Bunte and Abt (2001) for detailed field
procedures.]

4. Survey water-surface elevation through the reach to determine
water-surface slope, SS . [Refer to Harrelson et al. (1994) for detailed
survey procedures.]

5. Select a range of elevations up to bankfull.
6. Using the techniques of box 2.2 (2. Geometry at a Subbankfull

Flow), determine water-surface width W , cross-sectional area
A, and average depth Y ≡ A/W associated with each selected
elevation.

7. Estimate reach resistance: (a) If using the Chézy equation, use
results of steps 3–6 to estimate �∗ via equation 6.25 for each
selected elevation and adjust to give � based on considerations
of section 6.6. (b) If using the Manning equation, use one of the
methods of section 6.8.2 to estimate Manning’s nM .

8. Assume hydraulic radius R = Y and estimate average velocity
U for each selected elevation via either the Chézy equation
(equation 6.15a) or the Manning equation (equation 6.40).

9. Estimate discharge as Q = U·A for each selected elevation.
10.Use results to generate plots of U versus Q and Y versus Q.
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BOX 6.7 Example Computation of Channel Geometry: Hutt River at
Kaitoke, New Zealand

The line of a cross section is oriented at right angles to the general flow
direction. An arbitrary zero point is established at one end of the line; by
convention, this is usually on the left bank (facing downstream), but it can
be on either bank. Points are selected along the line to define the cross-
section shape; these are typically “slope breaks”—points where the ground-
surface slope changes. An arbitrary elevation datum is established, and the
elevations of these points above this datum are determined by surveying
(see Harrelson et al. 1994). To illustrate the computations, we use data for
a cross section of the Hutt River in New Zealand (figure 6.24). Section survey
results are recorded as elevations, zi , at distances along the section line, wi .
At each point, the local bankfull depth YBFi can be calculated as

YBFi = �BF − zi , (6B7.1)

where �BF is the bankfull maximum depth. The data for the Hutt River
section are given in table 6B7.1 and are plotted in figure 6.25.

Table 6B7.1

wi (m) 0.0 1.0 5.5 7.5 9.0 10.0 11.2 13.3 13.4 14.5
zi (m) 3.78 3.71 2.72 2.18 1.92 1.50 0.96 0.86 0.85 0.54
YBFi (m) 0.00 0.07 1.06 1.60 1.86 2.28 2.82 2.92 3.13 3.24

wi (m) 17.5 19.8 19.9 20.6 21.3 24.0 25.8 27.7 28.8 30.0
zi (m) 0.53 0.58 0.32 0.28 0.41 0.30 0.44 0.12 0.00 0.24
YBFi (m) 3.25 3.20 3.46 3.50 3.37 3.49 3.34 3.66 3.78 3.54

wi (m) 32.3 34.3 35.1 38.4 39.9 41.2 42.5 43.5 44.8 45.0
zi (m) 0.23 0.29 0.50 0.64 0.80 1.84 2.41 2.90 3.71 3.78
YBFi (m) 3.55 3.49 3.28 3.14 2.98 1.94 1.37 0.88 0.07 0.00

Once the section is plotted, several arbitrary elevations are identified to
represent water-surface elevations (the horizontal lines in figure 6.25). For
each level, the horizontal positions of the left- and right-bank intersections
of the level line with the channel bottom are determined and identified
as wL and wR, respectively. For each selected elevation, the water-surface
width W is

W = |wR − wL|. (6B7.2)

Selecting the level � = 2 m in the Hutt River cross section for example
calculations, we see from figure 6.25 that

W = |41.5 − 8.5| = 33.0 m.
(Continued)
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BOX 6.7 Continued

The cross-sectional area A associated with a given level is found as

A =
N∑

i = 1

Ai =
N∑

i = 1

Wi ·Yi , (6B7.3)

where Wi is the incremental width associated with each surveyed depth Yi , N
is the number of points for which we have observations, and i = 1,2, . . .,N. If
we start from the left bank, W1 = wL, WN = wR, and Y1 = 0, YN = 0 in all cases.
The values of the incremental widths are determined as

W1 = |w2 − w1|
2

; (6B7.4a)

Wi = |wi + 1 − wi − 1|
2

, i = 2,3, . . .,N −1; (6B7.4b)

WN = |wN − wN − 1|
2

. (6B7.6c)

Note that �Wi = W .
Table 6B7.2 gives the data for the � = 2 m elevation in the Hutt River cross

section.

Table 6B7.2

i wi (m) Yi (m) Wi (m) Ai (m2)

1 8.5 0.00 0.25 0.000
2 9.0 0.08 0.75 0.063
3 10.0 0.50 1.10 0.553
4 11.2 1.04 1.65 1.721
5 13.3 1.14 1.10 1.253
6 13.4 1.35 0.60 0.809
7 14.5 1.46 2.05 2.999
8 17.5 1.47 2.65 3.903
9 19.8 1.42 1.20 1.708

10 19.9 1.68 0.40 0.671
11 20.6 1.72 0.70 1.206
12 21.3 1.59 1.70 2.701
13 24.0 1.71 2.25 3.836
14 25.8 1.56 1.85 2.882
15 27.7 1.88 1.50 2.817
16 28.8 2.00 1.15 2.300
17 30.0 1.76 1.75 3.080
18 32.3 1.77 2.15 3.812
19 34.3 1.71 1.40 2.395
20 35.1 1.50 2.05 3.073
21 38.4 1.36 2.40 3.257
22 39.9 1.20 1.40 1.680
23 41.2 0.16 0.80 0.130
24 41.5 0.00 0.15 0.000
Sum 33.00 = W 46.851 = A
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UNIFORM FLOW AND FLOW RESISTANCE 259

The average depth, Y , associated with this elevation is

Y ≡ A
W

, (6B7.5)

so for the example calculation,

Y = 46.851
33.0

= 1.42 m.

These computations are repeated for each of the selected elevations.

in New Zealand (figures 6.24 and 6.25). The construction of the velocity–discharge
and depth–discharge relations is demonstrated for the Hutt River in box 6.8; the results
are shown in figure 6.26.

6.10.2 Determining Past Flood Discharge (Slope-Area
Measurements)

As noted above, knowledge of past flood discharges in reaches where discharge is
not measured is helpful in understanding regional flood-frequency relations. A flood
wave passing through a reach typically leaves evidence of the maximum water level
in the form of scour marks, removal of leaves and other vegetative material, and/or
deposition of silt. Where such evidence is present one can survey the flow cross
sections at locations through the reach and estimate the peak flood discharge by
inverting equation 6.39c:

Q =
g1/2·

[
N∑

i = 1
Ai·Si·�Xi

]1/2

·
N∑

i = 1
Ai·�Xi

�·�X·
[

N∑
i = 1

Pwi·�Xi

]1/2
(6.48)

This a posteriori application of the resistance relation is called a slope-area
computation.

The critical practical issue in slope-area computations is in determining the
appropriate value of �. The standard approach is to use the Manning equation after
determining nM via one of the methods described in section 6.8.2; one can
then compute � via equation 6.41 or compute Q directly via the Manning
equation.

Box 6.9 illustrates the application of equation 6.48 in a slope-area computation,
first using a resistance estimated using one of the formulas based on grain size and
relative smoothness, and then using a resistance measured in the reach at a lower
flow. In this case, the discharge using the estimated resistance was several times too
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260 FLUVIAL HYDRAULICS

Figure 6.24 The Hutt River at Kaitoke, New Zealand. (a) View downstream at middle of
reach. (b) View upstream at middle of reach. From Hicks and Mason (1991); reproduced with
permission of New Zealand National Institute of Water and Atmospheric Research Ltd.

large (i.e., resistance was severely underestimated), while the discharge using the
measured resistance was within 2% of the actual value. However, such good results
may not always be obtained even with resistance values measured in the reach of
interest, because one or more of the factors discussed in section 6.6 may have been
significantly different at the time of the peak flow than at the time of measurement
(Kirby 1987):

Cross-section geometry: The peak flow may have scoured the channel bed and
subsequent lower flows deposited bed sediment. If this happened, the cross-
sectional area that existed at the time of the peak flow was larger than the surveyed
values and the peak discharge will be underestimated.

Plan-view irregularity: In meandering streams, high flows may “short-circuit” the
bends, leading to lower resistance at the high flow than when measured at lower
flows.
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Figure 6.25 Surveyed cross section in the center of the Hutt River reach shown in figure 6.24.
Elevations are relative to the lowest elevation in the cross section. The dashed lines are the
water levels at the maximum depths (�) indicated; �BF is the bankfull maximum depth. Note
approximately 10-fold vertical exaggeration.

BOX 6.8 Example Computation of Velocity–Discharge and Depth–
Discharge Relations for an Ungaged Reach: Hutt River at Kaitoke,
New Zealand

Using the procedure described in boxes 6.6 and 6.7, the following values of
average depth Y have been computed for selected maximum-depth levels �

for the cross section of the Hutt River at Kaitoke, New Zealand, shown in
figure 6.25:

Ψ (m) 0.50 1.00 1.50 2.00 2.50 3.00 3.50 3.78
Y (m) 0.22 0.55 1.01 1.42 1.77 2.11 2.44 2.57

The bed-sediment material consists of gravel, cobbles, and boulders; d84 =
212 mm. The average channel slope through the reach is S = 0.00539. We
estimate the velocity–discharge and depth–discharge relations for this cross
section via 1) the Chézy equation and 2) the Manning equation.

Chézy Equation

There is a range of bed-material sizes; we select the resistance relation
for gravel-bed streams suggested by Bathurst (1993) (equation 6.27).

(Continued)
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BOX 6.8 Continued

We assume R = Y and estimate � as

� = 0.400·
[
− ln

(
0.212
3.60·R

)]−1
.

Values of u∗ are determined via equation 6.16:

u∗ = (9.81·R·0.00539)1/2

Average velocity U is then computed via equation 6.19 and discharge Q via
equation 6.3. The results are tabulated in table 6B8.1.

Table 6B8.1

� (m) 0.50 1.00 1.50 2.00 2.50 3.00 3.50 3.78
R (m) 0.22 0.55 1.01 1.42 1.77 2.11 2.44 2.57
� 0.301 0.179 0.141 0.126 0.118 0.112 0.107 0.106
U (m/s) 0.359 0.956 1.642 2.180 2.603 2.988 3.344 3.480
Q (m3/s) 1.19 15.3 50.9 102 167 249 348 404

Manning Equation

In practice, one would use one of the approaches listed in table 6.3 and
discussed in section 6.8.2 to estimate the appropriate nM for this reach. In
this example, we will use the value determined for the reach by measurement
and reported in Hicks and Mason (1991): nM = 0.037. Using this value and
the measured slope in the Manning equation (equation 6.40c), we compute
the values in table 6B8.2.

Table 6B8.2

� (m) 0.50 1.00 1.50 2.00 2.50 3.00 3.50 3.78
R (m) 0.22 0.55 1.01 1.42 1.77 2.11 2.44 2.57
U (m/s) 0.727 1.335 2.000 2.507 2.903 3.264 3.596 3.723
Q (m3/s) 2.42 21.4 61.9 118 187 272 374 432

Comparison of Estimates with Measured Values

Hicks and Mason (1991) provided measured values of R, U, and Q for this
reach, so we can compare the two estimates with actual values, as shown in
figure 6.26. The Chézy estimate, which uses only measured quantities (R, S,
d84) fits the measured values very closely except at the highest flow, while
the Manning estimate of velocity is slightly too high (and depth too low)
over most of the range. Recall though that the Manning estimate is based
on a value of nM determined by measurement in the reach; in many actual
applications, such measurements would not be available, and we would be
forced to estimate nM by other means (section 6.8.2), probably leading to
greater error.

In this example, the Chézy relation appears to give better results than the
Manning relation.
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Figure 6.26 Comparison of estimated and actual hydraulic relations for the Hutt River cross
section shown in figures 6.24 and 6.25. (a) Velocity–discharge relation. (b) Hydraulic radius
(depth)–discharge relation. Heavy lines are measured; lighter solid line is calculated via Chézy
equation with Bathurst (1993) resistance relation for gravel-bed streams (equation 6.27); dashed
line is calculated via Manning equation using measured value of nM = 0.037.
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BOX 6.9 Slope-Area Computations, South Beaverdam Creek Near
Dewy Rose, Georgia

A peak flood on 26 November 1957 left high water marks in a reach of South
Beaverdam Creek near Dewy Rose, Georgia. The peak flood discharge was
measured at Q = 23.2 m3/s. The cross-sectional area, width, average depth,
hydraulic radius, wetted perimeter, and water-surface slope defined by these
high-water marks were surveyed by Barnes (1967) at five cross sections and
are summarized in table 6B9.1.

Table 6B9.1

Section, i Ai (m2) Wi (m) Yi (m) Ri (m) Pwi (m) �Xi (m) �Zi (m) SSi = |�Zi |/�Xi

0 24.9 21.6 1.16 1.10 22.6
1 26.8 17.1 1.55 1.52 17.7 21.6 0.043 0.00197
2 25.8 18.0 1.43 1.32 19.5 20.1 0.037 0.00182
3 26.1 18.0 1.46 1.34 19.4 24.7 0.040 0.00161
4 24.2 17.7 1.37 1.26 19.2 19.5 0.018 0.00094

Average
or sum

A =
25.6

W =
18.5

Y =
1.40

R =
1.31

Pw =
19.7

�X =
85.9

�Z =
0.137

SS = 0.00160

To illustrate slope-area computations, we assume the discharge is unknown
and apply three approaches that could be used to estimate a past flood
discharge from high-water marks.

Standard Approach

This is the method described in section 6.8.2. We first assume we do not
have a resistance determined by measurement in the reach. Table 6B9.2
gives the values of the quantities that are summed in equation 6.39c.

Table 6B9.2

Section, i Ai ·SSi ·�Xi (m3) Ai ·�Xi (m3) Pwi ·�Xi (m3)

1 1.143 579 382
2 0.945 520 393
3 1.035 645 480
4 0.442 472 375
Sum 3.465 2216 1630

The channel bed “consists of sand about 1 ft deep over clay and rock. Banks
are irregular with trees and bushes growing down to the low water line”
Barnes (1967, p. 142). Because this is a sand-bed reach, we estimate � via
equation 6.25 assuming Y = R and yr = d84 = 0.002 m (the upper limit for
sand), and compute

� = 0.400·
[
− ln

(
0.002

11·1.31

)]−1
= 0.045.
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Substituting the appropriate values into equation 6.48 gives

Q = 9.811/2· [3.465]1/2 ·2216

0.045·85.9· [1630]1/2 = 82.8 m3/s

as our estimate of peak discharge.
This estimate is several times too high. Thus, it appears that we severely

underestimated the resistance using equation 6.25. Some of the “excess”
resistance probably comes from the bank vegetation that extended into the
flow, and some may be due to the development of ripples or dunes on the sand
bed. Perhaps we could have come up with a better estimate using another of
the approaches of section 6.8.2, or had accounted for effects of bedforms on
the resistance (see section 6.6.4.2).

A better approach would be to determine the reach resistance via
measurement before applying equation 6.48. On the day after the 26
November flood, when the flow was Q = 6.26 m3/s, Barnes (1967) surveyed
the same cross sections and obtained the values in table 6B9.3.

Table 6B9.3

Section, i Ai (m2) Ri (m) Pwi (m) �Xi (m) |�Zi |(m) SSi = |�Zi |/�Xi

0 8.5 0.62 13.7
1 11.9 0.82 14.5 21.6 0.034 0.00155
2 10.0 0.61 16.5 20.1 0.030 0.00152
3 10.0 0.60 16.6 24.7 0.024 0.00099
4 9.4 0.62 15.1 19.5 0.043 0.00219
Average
or sum

A = 9.96 R = 0.65 Pw = 15.3 �X = 85.9 |�Z| = 0.131 SS = 0.00153

We want to determine the value of � for this flow and use that value to estimate
the flood peak on 26 November 1957. Table 6B9.4 gives the values of the
quantities that are summed in equation 6.39c.

Table 6B9.4

Section, i Ai ·SSi ·�Xi (m3) Ai ·�Xi (m3) Pwi ·�Xi (m3)

1 0.399 258 314
2 0.306 202 331
3 0.245 248 411
4 0.401 183 295

Sum 1.351 891 1351

Substituting the appropriate values into equation 6.39c yields

� = 9.811/2· [1.351]1/2 ·891

6.26·85.9· [1351]1/2 = 0.164.

(Continued)
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BOX 6.9 Continued

Thus, the measured reach resistance is several times higher than that based
on equation 6.25. Finally, we use this measured value of � to estimate the
peak discharge of 26 November 1957 via equation 6.48:

Q = 9.811/2· [3.465]1/2 ·2216

0.164·85.9· [1630]1/2 = 22.7 m3/s

The value of Q estimated using the � value measured in the reach is within
2% of the actual value.

Application of General Statistically Derived Relation

It is of interest to see how well the statistically developed “modified
Manning” equation (equation 6.47) does in estimating the peak flood
discharge from the high-water marks. Using values from table 6B9.1, that
equation gives

Q = 7.14·18.5·1.405/3·0.001601/3 = 27.1 m3/s.

The estimate for this case is quite good, about 17% higher than actual. The
Froude number for this flow can be calculated from data in table 6B9.1:

Fr = U
(g·Y )1/2 = Q/A

(g·Y )1/2 = 23.2/25.6
(9.81·1.40)1/2 = 0.24

This value is in the range where equation 6.47 was found to give generally
good predictions.

Application of Relation Developed from Dimensional Analysis

It is also of interest to see how well equation 4.74, developed by dimensional
analysis and measurement data from New Zealand rivers, does in predicting
the flood-peak discharge. Recall that that relation, written in terms of
discharge, is

Q = 1.84·
(

Y
yr

)0.704
·g1/2·W ·Y 3/2·S1/2

0 ,Y/yr ≤ 10; (6B9.1a)

Q = 9.51·g1/2·W ·Y 3/2·S1/2
0 ,Y/yr > 10. (6B9.1b)

Since yr = 0.002 m, Y/yr > 10, and we use equation 6B9.1b with data from
table 6B9.1:

Q = 9.51·9.811/2·18.5·1.403/2·0.001601/2 = 36.5 m3/s

This estimate is 57% greater than actual, suggesting that equation 4.74 is
not sufficiently precise to use for prediction (note the scatter in figure 4.14).
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UNIFORM FLOW AND FLOW RESISTANCE 267

Longitudinal-profile irregularity: At high flows, the pool/riffle alteration tends to
become submerged, tending to decrease resistance at higher flows (figure 6.11c).

Vegetation: Resistance may decrease at higher flows because flexible vegetation
is bent further or because low vegetation becomes more submerged, or increase
because more of the flow encounters bank and floodplain vegetation.

Surface stability: Resistance may increase at higher flows due to surface
irregularities, particularly at bends or abrupt obstructions.

Sediment: In sand-bed streams, bedforms may be different at high flows than when
flow is measured, leading to higher or lower resistance (figure 6.20).

Ice: During breakup of an ice cover, there may be large and unknown differences
in resistance between the time of a high flow and when reach resistance is
measured.

6.11 Summary

The standard approach to open-channel flow resistance is usually presented in terms
of the Manning equation, with focus on determining appropriate values of Manning’s
nM in various applications. However, the Manning equation was not derived from first
principles, nor was it established by rigorous statistical analysis. Thus, this chapter has
explored the fundamentals and practical aspects of resistance via the Chézy equation,
which is derived from straightforward macroscopic force-balance considerations.
This approach is consistent with fundamental fluid-mechanics principles:

• The Chézy derivation incorporates assumptions consistent with the models of
turbulence presented in section 3.3.4 .

• Formulating the resistance as the dimensionless quantity � allows us to consider
the subject in a way that is consistent with theoretical and observational
approaches that are applicable in a wide range of fluid-mechanics contexts
(summarized by the Moody diagram, figure 6.8).

• At least for the simplest flow situations, resistance can be related to measurable
variables via physically based expressions for the velocity profile discussed in
chapter 5 (equation 6.25).

As noted at the beginning of this chapter, our goal has been to develop relations
for computing the average velocity U in a channel reach given the reach geometry,
material, and slope and the depth or discharge. We expressed this relation as

U = �−1·u∗ = �−1·(g·R·S)1/2 ≈ �−1·(g·Y ·S)1/2 (6.49)

and explored the factors that control �. Following Rouse (1965) and Yen (2002), we
can summarize these factors for quasi-uniform flows in natural channels:

� = f�(Y/yr,Re,Y/W ,�,ζ,�,V,Fr,�,I), (6.50a)

where � represents the effects of cross-section irregularities, ζ the effects of
planform irregularities, � the effects of longitudinal-profile irregularities, V the
effects of vegetation, � the effects of sediment transport, and I the effects of ice.
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268 FLUVIAL HYDRAULICS

Considering only ice-free channels and noting that the effects of Y/W are generally
minor in natural channels (figure 6.10), we can write

� ≈ f�(Y/yr,Re,�,ζ,�,V,Fr,�). (6.50b)

Further simplification may be possible if we recall that the effects of cross-sectional
variability � and longitudinal variability � are at least in part captured by the relative
submergence Y/yr , so that

� ≈ f�(Y/yr,Re,ζ,V,Fr,�). (6.50c)

One barrier to using 6.50c to determine velocity via 6.49 is that Re, ζ, Fr, �, and
to some extent V all depend on velocity—so we are faced with a logical circularity.
However, if we confine ourselves to fully rough flows in wide, reasonably straight
channels at low to moderate Froude numbers and insignificant sediment transport,
the problem becomes more tractable:

� ≈ f�(Y/yr). (6.50d)

Based on the P-vK law and the analyses in section 6.6, we can be reasonably confident
that the form of this relation is given by

� ≈ �·
[

ln

(
Kr ·Y

yr

)]−1

. (6.51)

The standard form of this relation is the C-K equation, in which �= 0.400 and Kr = 11.
However, as we have seen in equations 6.27, 6.28, 6.30, and 6.32, the values of � and
Kr may vary from reach to reach—and maybe even for different flows in the same
reach.

We saw in box 6.7 that the Chézy approach incorporating an appropriate resistance
relation can provide good estimates of velocity-discharge and depth-discharge
relations that can be used to solve practical problems.

Approaching resistance via the Chézy equation also provides a straightforward
formula for computing reach resistance from field data (equation 6.39). This formula
can be inverted to give a relation for estimating past flood discharges in slope-area
computations (equation 6.48). However, we saw in box 6.9 that such estimates can
be erroneous in the absence of appropriate resistance estimates.

Clearly, although we have learned much about the factors that determine reach
resistance, there are still many uncertainties to be faced in obtaining reliable a priori
and a posteriori resistance estimates for practical use and much need for additional
research in this area.
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7

Forces and Flow Classification

7.0 Introduction and Overview

The forces involved in open-channel flow are introduced in section 4.2.2.1. The
goals of this chapter are 1) to develop expressions to evaluate the magnitudes of
those forces at the macroscopic scale, 2) to examine the relative magnitudes of the
various forces in natural channels and show how they change with the flow scale, and
3) to show that the Reynolds number (introduced in section 3.4.2) and the Froude
number (introduced in section 6.2.2.2) can be interpreted in terms of force ratios.
Understanding the relative magnitudes of forces provides a helpful perspective for
developing quantitative solutions to practical problems.

Open-channel flows are induced by gradients of potential energy proportional to the
sine of the water-surface slope (section 4.7). This chapter shows that the water-surface
slope reflects the magnitude of the driving forces due to gravity and pressure. Once
motion begins, frictional forces resisting the flow arise due to molecular viscosity and,
usually, turbulence; these forces are increasing functions of velocity. In steady uniform
flow, which was assumed in the developments of chapters 5 and 6, the gravitational
driving force is balanced by the frictional forces, so there is no acceleration and no
other forces are involved. However, in general, the forces affecting open-channel
flows are not in balance, so the flow experiences convective acceleration (spatial
change in velocity) and/or local acceleration (temporal change in velocity)—concepts
introduced in section 4.2.1.2 at the “microscopic” scale (fluid elements).

In this chapter, as in chapters 5 and 6, we continue to analyze the flow on a
macroscopic scale; that is, the physical relations are developed for the entire flow in
a reach in an idealized channel rather than for a fluid element. We consider changes
only in time and in one spatial dimension (the downstream direction), so the resulting
equations are characterized as “one-dimensional.”
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The chapter begins by reviewing the forces that induce and oppose fluid motion
in open channels and presenting the basic force-balance equations for various flow
categories. Next we lay out the basic geometry of an idealized reach and then formulate
quantitative expressions for the magnitudes of the various forces as functions of fluid
properties and flow parameters. We also develop expressions for the convective and
local accelerations so that we can ultimately formulate the complete macroscopic
force-balance equation for one-dimensional open-channel flow.

Using data for a range of flows, we examine the typical values of each of the
forces in natural streams and compare their magnitudes. We also compare the relative
magnitudes of the forces as a function of scale, from small laboratory flumes to the
Gulf Stream. This comparison provides guidance for identifying conditions under
which the force balance may be simplified by omitting particular forces due to their
relative insignificance. The chapter concludes by showing how the Reynolds and
Froude numbers can be interpreted in terms of force ratios.

7.1 Force Classification and the Overall Force Balance

In this section we formulate the overall force-balance relations for flows of various
categories. To simplify the development, these relations are formulated for the simple
open-channel flow shown in figure 7.1: a wide rectangular channel (Y = R) with
constant width (W1 = W2 = W ) but spatially varying depth. At any instant, the reach
contains a spatially constant discharge Q, so

Q = W · Y1 · U1 = W · Y2 · U2, (7.1)

where Yi is the average depth and Ui is the average velocity at section i.

Y1

Y2

U1

U2

Z1

Z2

θS

ΔX

θ0

Datum

Figure 7.1 Definition diagram for deriving expressions to calculate force magnitudes for a
nonuniform flow in a prismatic channel. Width and discharge are assumed constant.
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