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CRITICAL TAPER MODEL OF 
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F. A. Dahlen 

Department of Geological and Geophysical Sciences, 
Princeton University, Princeton, New Jersey 08544 

INTRODUCTION 

The fold-and-thrust belts and submarine accretionary wedges that lie along 
compressive plate boundaries are one of the best understood deformational 
features of the Earth's upper crust. Although there is considerable natural 
variation among the many fold-and-thrust belts and accretionary wedges 
that have been recognized and explored, several features appear to be 
universal . In cross section, fold-and-thrust belts and accretionary wedges 
occupy a wedge-shaped deformed region overlying a basal detachment or 
decollement fault; the rocks or sediments beneath this fault show very 
little deformation. The decollement fault characteristically dips toward the 
interior of the mountain belt or, in the case of a submarine wedge, toward 
the island arc; the topography, in contrast, slopes toward the toe or 
deformation front of the wedge. Deformation within the wedge is generally 
dominated by imbricate thrust faults verging toward the toe and related 
fault-bend folding. 

Two North American fold-and-thrust belts that exhibit these features 
are shown in Figure 1. Neither of these two examples is tectonically active 
today; the southern Canadian fold-and-thrust belt was active during the 
late Jurassic and Cretaceous (150-100 Ma), whereas the southern Appa
lachians were deformed during the late Carboniferous to Permian Alle
ghenian orogeny (300-250 Ma). Figure 2 shows two examples that are 
currently active: the Taiwan fold-and-thrust belt, produced by the sub
duction of the Eurasian plate beneath the Philippine Sea plate (Suppe 
1981 ,  1987); and the Barbados accretionary wedge, produced by the sub-
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E 

Canadian Rockies 

Southern Appalachians 

Figure J Cross sections of two foreland fold-and-thrust belts, (Top) Canadian Rockies 
(Bally et al 1966), (Bottom) Southern Appalachians (Roeder et al 1978). No vertical exag
geration. 

duction of the North American plate beneath the Caribbean plate 
(Westbrook 1975, 1982). These are in a sense two end members of a 
spectrum, since Taiwan is moderately tapered and rapidly accreting and 
eroding, whereas Barbados is narrowly tapered, slowly accreting, and 
noneroding. Evidence that thin-skinned folding and thrusting was a com
mon phenomenon'much farther back in the Earth's history is shown in 
Figure 3. This cross section of the 1900-Ma Asiak fold-and-thrust belt in 
the northwest Canadian shield was constructed without benefit of seismic 
or drilling data, by downplunge projection of geological maps (Hoffman 
et aI1988). Every structural detail has been trod upon by a field geologist's 
boot. 

Mechanically, a fold-and-thrust belt or accretionary wedge is analogous 
to a wedge of sand in front of a moving bulldozer. The sand, rock, or 

sediment deforms until it develops a constant critical taper; if no fresh 
material is encountered at the toe, the wedge then slides stably without 
further deformation as it is pushed. The magnitude of the critical taper is 
governed by the relative magnitudes of the frictional resistance along the 
base and the compressive strength of the wedge material. An increase in 
the sliding resistance increases the critical taper, since it is the drag on the 
base that is fundamentally responsible for the deformation. An increase 
in the wedge strength, on the other hand, decreases the critical taper, since 
a stronger wedge can be thinner and still slide stably over a rough base 
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Figure 2 (Top) Cross section of the active fold-and-thrust belt in northern Taiwan (Suppe 

1980). (Bottom) Cross section of the frontal region of the Barbados accretionary wedge near 

15°30'N latitude (Behrmann et al 1988). Locations of Deep Sea Drilling Project and Ocean 

Drilling Program drill sites are indicated. No vertical exaggeration. 

without deforming. The state of stress within a critically tapered wedge in 
the upper crust is everywhere on the verge of Coulomb failure, since the 
taper is attained by a process of continued brittle frictional deformation. 

This paper describes an idealized mechanical model of a fold-and-thrust 
belt or accretionary wedge, based on this bulldozer analogy. The first 
analyses in this spirit were developed by Elliott (1976) and Chapple (1978); 
their ideas were later refined and extended to incorporate a brittle frictional 
rheology by Davis et al (1983). For the most part, we consider only the 
simplest possible version of the model, which ignores cohesion and assumes 
that the material properties within the wedge and on the basal decollement 
fault are spatially uniform (Dahlen 1984). A more general approximate 
analysis is, however, also discussed. Special attention is paid to the effects 
of pore fluids, since elevated pore-fluid pressures play such an important 
role in the mechanics of overthrust faulting (Hubbert & Rubey 1959)_ 
Pore-fluid pressure effects were accounted for by Davis et al (1983) and 
Dahlen (1984); however, a significant point was not spelled out clearly, 
and that is rectified here. 
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Figure 3 Cross section of the Asiak fold-and-thrust belt, eastern Wopmay orogen, in the northwest Canadian shield (Hoffman et al 1988). No 
vertical exaggeration. 
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CRITICAL TAPER MODEL 59 
MECHANICS OF A BULLDOZER WEDGE 

Kinematics 
We begin with a simplified discussion of the mechanics of a bulldozer 
wedge. Suppose a rigid hillside of slope {3 is covered with a uniform layer 
of dry sand of thickness h (Figure 4). If at time t = 0 a bulldozer begins 
moving uphill at a uniform velocity V, scraping up sand, a critically tapered 
wedge of deformed sand will form in front of the moving bulldozer. Let rt. 
denote the surface slope of this deformed wedge; the critical taper is the 
angle at the toe, rt. + {3. The mass flux per unit length along strike into the 
toe of the wedge is ph V, where p is the sand density. We ignore compaction 
and assume that p is a constant. The growth of the wedge with time is 
described by the mass conservation law 

:t[�pW2tan(rt.+{3)J = ph V, (1) 

where W is the wedge width. Since rt. + {3 does not change with time, 
Equation ( 1) reduces to 

timet 

time2t 

Figure 4 Cartoon depicting the self-similar growth of a bulldozer wedge. 
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60 DAHLEN 

dW hV 
W- = -----:--:::_ 

dt tan (IX + Pf 
This has the solution 

W 
= [ 2hVt JI/2 � [2hVtJI/2. 

tan (IX + p) IX+ P 

(2) 

(3) 

The final approximation is valid for a wedge of narrow taper, IX + P « I, 
where IX and P are measured in radians. Because the critical taper is 
governed only by the unvarying strength of the sand and the basal friction, 
both the width and the height of a bulldozer wedge grow like t1/2• The 
growth is self-similar in the sense that the wedge at time 2t is indis
tinguishable from the wedge at time t, magnified 21/2 times. 

An eroding wedge will attain a dynamic steady state when the accre
tionary influx rate of fresh material into the toe is balanced by the erosive 
efflux (Figure 5). The steady-state width of a uniformly eroding wedge is 
given by the flux balance condition 

eWsec(lX+p) � eW = hV, (4) 

where e is the rate of erosion. A steady-state wedge must continually 
deform both to accommodate the influx of fresh material into its toe and 
to maintain its critical taper against erosion. 

Critical Taper 

Let (x, z) be a system of Cartesian coordinates with x aligned along the 
top of the wedge and z pointing down (Figure 6). To determine the critical 

�( _---7 

Figure 5 An eroding wedge attains a dynamic steady-state width given hy e W = h V. 
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CRITICAL TAPER MODEL 61 

Figure 6 Schematic diagram illustrating the horizontal balance of forces on an element of 
a bulldozer wedge. 

taper, we consider the balance of forces on an infinitesimal segment of the 
wedge lying between x and x+dx; it suffices to consider the forces acting 
in the ± x direction. First, there is a gravitational body force whose x 
component, per unit length along strike, is 

Fg = - pgH sin rx dx, (5) 

where 9 is the acceleration of gravity, and H is the local wedge thickness. 
Second, there is the net force exerted by the compressive tractions (Jxx 
acting on the sidewalls at x and x + dx; if we adopt the convention that 
a compressive stress is negative, this force is given by 

(6) 

Third, and finally, there is the surface force exerted on the base; this is 
given in terms of the local shear and normal tractions 'b and (J n by 

(7) 
We assume that the base is governed by a frictional sliding condition 

(8) 

where /lb is the coefficient of basal friction; the basal traction then reduces 
to 
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62 DAHLEN 

The balance condition is 

(9) 

(10) 

The first two forces, Fg and F" act in the -x direction, whereas Fb acts in 
the +x direction. Upon taking the limit as dx ---+ 0, Equation (10) reduces 
to the exact result 

For IX« 1 and {J« 1 we employ the approximations sin IX � el, sin (IX + (J) 
� IX + {J, cos (ex.+p) � 1, and O"n � -pgH. This reduces Equation (11) 
to 

(12) 

The failure criterion for noncohesive dry sand can be written in the form 

0", 1 + sin cf> 
0"3 1 - sin cf>. (13) 

Here 0", and 0"3 are the greatest and least principal compressive stresses, 
respectively, and cf> is the angle of internal friction (Jaeger & Cook 1969, 
pp. 87-91). In a narrow taper (ex.« 1 and (J« 1), the principal stresses are 
approximately horizontal and vertical, that is 

( l4a) 

(1 +sincf» 
0" xx � O"} � - 1 _ sin cf> pgz. (14b) 

The sidewall traction term in Equation (12) reduces in this approximation 
to 

d rH . (l+sincf» 
dx Jo (Jxxdz � - I - sincf> pgH(ex. + (J), (15) 

where we have used the relation dH/dx � ex. + {J. Upon inserting Equation 
(15) into (12), we obtain the approximate critical taper equation for a dry 
sand wedge in front of a bulldozer: 
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CRITICAL TAPER MODEL 63 

( 16) 

Discussion 

Equation (16) shows that the critical taper a+ 13 is increased by an increase 
in the coefficient of basal friction Jlb, whereas it is decreased by an increase 
in the internal friction angle 4>. For 4> = 30°, a typical value for dry sand, 
the critical surface slope is given by a ;:;:: -!(Jlb - 213). Idle conjecture might 
have led to the conclusion that the surface slope a of a bulldozer wedge is 
at the angle of repose (4) = 30°), but in fact the state of stress and therefore 
the slope are completely different. 
Equation (12) describes the quasi-static balance of forces in any thin

skinned wedge being pushed up a frictional incline. To make use of this 
result, it is necessary to relate the horizontal compressive stress (J xx to the 
stress due to the litho static overburden, (Jzz � - pgz. In a critically tapered 
wedge, (Jxx is related to (Jzz by the Coulomb failure law: 

failure � 
(I + sin 4» (Jxx � 

- l - sin4> pgz. (17) 

A thinner (subcritical) wedge being pushed up the same incline has (J xx 

greater than (J��lure; such a wedge fails and increases its taper until it 
becomes critical. A thicker (supercritical) wedge has (J xx less than (J��lur\ 
so it can be pushed up the incline without deforming if no fresh material 
is encountered at the toe. In determining the critical taper, we have solved 
a stability problem, since a subcritical wedge is unstable, and a supercritical 
wedge stable, when pushed up the same incline. Any wedge that is formed 
by offscraping and the progressive failure of the material within it should 
have (Jxx;:;:: (J��lure_this is the essential premise of the critical taper model. 

BALANCE OF FORCES IN A POROUS MEDIUM 

The brittle frictional strength of rocks in the upper crust is significantly 
affected by the presence of water and other interstitial pore fluids. The 
important role played by pore-fluid pressure in overthrust faulting was 
first pointed out in the classic and influential paper of Hubbert & Rubey 
(1959). Their discussion is extremely lucid and well worth reading over 30 
years later. One aspect that led to some controversy following the original 
publication is their calculation of the force exerted by a pore fluid on a 
porous solid (Laubscher 1 960, Moore 1 96 1 ,  Hubbert & Rubey 1 960, 1 96 1 ). 
This is a subtle issue that has been overlooked in previous critical taper 
analyses, and we address it in some detail here. 
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64 DAHLEN 

Microscopic Equations 

We model a porous medium as a solid skeleton or matrix whose pore 
spaces are completely filled by a homogeneous incompressible fluid of 
constant density Pr and constant viscosity v. The density Ps(x) of the solid 
is regarded as a function of position x to allow for density variations from 
grain to grain. We denote the stress tensors within the fluid and solid, 
respectively, by oAx) and 1'1,(x) . The fluid stress is related to the fluid 
velocity u(x) within the pore spaces by the Newtonian constitutive equation 

( 18) 

where I is the identity tensor, and T denotes the transpose. We affix a 
subscript x to the gradient operator V to emphasize that it describes the 
change in a quantity due to a change in the microscopic position variable 
x. The quantity Pr(x) is the microscopic pore-fluid pressure. The pointwise 
momentum balance equations within the solid and fluid are 

Vx °l'1s+Psg = 0, 
Vx°l'1r+Prg = 0, 

( l9a) 

(19b) 

where g is the acceleration of gravity. Inertial forces Pr(o,u+u ° Vxu) have 
been ignored in writing Equation (19b), since the flow is assumed to be i n  
the creeping (low-Reynolds-number) regime. Equations ( 18) and (l9b) 
together can be written in the form 

(20) 

This is the well-known Navier-Stokes equation, with inertial forces ignored 
(Batchelor 1967, pp. 2 1 6- 17). 

Volume Averaging 

Equations ( 19) and (20) are far too complicated to use directly because of 
the rapid variation from fluid to solid on the microscopic scale. We seek 
instead a system of averaged equations that are valid on the macroscopic 
scale. The procedure of averaging a system of microscopic equations to 
obtain a simpler system of macroscopic equations is a common one; in  
electromagnetism it is the basis for extending Maxwell's equations to 
dielectric and magnetic materials (Jackson 1 962, pp. 1 03-8, 1 50-54). Aver
aging has been used to obtain the macroscopic equations governing a 
porous medium by several authors, including Whitaker ( 1969), Saffman 
(1971 ), Slattery ( 1972, pp. 19 1-215), Gray & O'Neill ( 1 976), and Lehner 
(1979). 

Consider an averaging volume V centered on an arbitrary point i, as 
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CRITICAL TAPER MODEL 65 

shown in Figure 7 (left). Let Vs and Vr be the volumes within V occupied 
by the solid and fluid, respectively. The porosity f/(x) is defined by 

f/ = Vr/v. (21) 

In order for the averaging to be meaningful, the size of the averaging 
volume must be much smaller than a typical macroscopic scale length but 
large enough to average over many solid grains and many pore spaces. In 
this limit, it is immaterial whether we regard x as the centroid of the whole 
volume V, or as the centroid of the solid matter contained within V" or 
as the centroid of the pore space Vr. We regard the porosity 1'/ and all other 
macroscopic variables as continuous functions of the macroscopic position 
variable x. 

Upon averaging Equation (19a) over Vs and Equation (19b) over Vf, we 
obtain 

The quantity Ps(x) is the macroscopic solid density, given by 

averaging volume V 

(22a) 

(22b) 

pore fluid 
pressure PI 

Figure 7 (Left) Schematic diagram of a portion of a porous medium within a representative 
averaging volume V. The interface between the solid grains and the pore spaces is denoted 
by Sf,' (Right) Schematic diagram of a typical rock-mechanics laboratory friction or fracture 
experiment. 
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66 DAHLEN 

Ps = � r Psd V. s Jvs 
Equations (22) can alternatively be written in the form 

(23) 

(24a) 

(24b) 

We define the macroscopic solid and fluid stresses us(i) and 
ur(x) = -Pr(x)I by 

iis = V
I r O's d V, s Jvs (2Sa) 

(2Sb) 

Note that the macroscopic fluid stress is considered to be isotropic, even 
though viscous shear stresses may be comparable to the dynamical pressure 
fluctuations on the microscopic scale. 

The boundary of the averaging volume V has portions Sss in the solid 
grains and portions Sf[ in the fluid-filled pore spaces, as shown in Figure 
7 (left). We denote the fluid-solid interface situated within the volume V 
by Srs and use fi to denote the unit normal that points out of the averaging 
volume on Sss and Srr and out of the solid grains on Sfs' Consider the 
quantity 

(26) 

Physically, Vi describes the change in an averaged quantity due to an 
infinitesimal shift in the centroid x of the averaging volume. Only the 
variation in the position of the boundary of V contributes to this change, 
hence 

(27) 

By Gauss' theorem, the right side of Equation (27) can be written in the 
form 
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Thus, it follows that 

CRITICAL TAPER MODEL 67 

(29) 

Equation (29), which relates the average of a divergence to the divergence 
of an average, is known as the Slattery-Whitaker averaging theorem. A 
similar result applies to the fluid stress, namely 

(30) 

The sign in front of the surface integral over Sf, differs from that in 
Equation (29) because of the convention that n points out of the solid 
grains into the pore spaces. 

The final macroscopic solid and fluid equations, obtained by inserting 
Equations (29) and (30) into (24), are 

(3Ia) 

(3Ib) 

On the fluid-solid interface Sfs there is continuity of traction (0' (f s = 0 . (fe), 
so we have just written 0 . (f in the surface integrals. By adding Equations 
(31) we obtain the simple result 

The quantities 

(32) 

(33a) 

(33b) 

are the aggregate stress and density, respectively, of the fluid-filled porous 
medium; these macroscopic aggregate variables satisfy the same static 
equilibrium equation as the microscopic solid and fluid variables. 
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68 DAHLEN 

Force Exerted by the Fluid on the Solid 

The quantity F(x), defined by 

1 

1 ' F = - "O u dA V Sr, 
' (34) 

appears explicitly as an additional apparent body force in the macroscopic 
solid balance equation (31 a). Physically, F is the macroscopic force per 
unit volume exerted by the pore fluid on the solid matrix; the solid exerts 
an equal and opposite force on the fluid, and this appears in Equation 
(3 1 b). It is straightforward to evaluate F if the fluid is in a hydrostatic rest 
state: 

u = 0, (35a) 

(35b) 

where Po is a constant reference pressure. By Gauss' theorem, we have 

(36) 

Upon evaluating the first surface integral in Equation (36) using the 
Slattery-Whitaker averaging theorem, we obtain 

A similar manipulation of the second surface integral gives 

� LrD(PrgoX)dA = Vi[� tXdV}prg = Vi (t/x)° Prg 

= 1](Prg)+(Prg ° x)Vxl], 

(37) 

(38) 

by definition of the centroid x. Combining Equations (36)-(38), we find 
that 

(39) 
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CRITICAL TAPER MODEL 69 

A hydrostatic pore fluid thus exerts no net force on a constant-porosity 
solid; more generally, Fhydro is in the direction of decreasing porosity. 
The above analysis shows that there is no Archimedean buoyancy force 
- (l - rJ)P rg on a constant-porosity solid; this point is obscured in the 
discussion of Hubbert & Rubey (1 959) because they do not calculate the 
physically relevant quantity Fhydro-

The macroscopic moment balance equation (31 b) in the fluid can be 
rewritten in the form 

(40) 

The quantity -ry(V xftr-Prg) is thus the additional force per unit volume 
on the solid due to the motion of the fluid. It is customary to write this 
so-called seepage force in the form (Bear 1 972, pp. 1 84-89) 

F - Fhydro = I1vK- 1 • ii, (41) 

where K(i) is the permeability tensor, and K . K- 1 
= K- 1 • K = I. The 

quantity u(x) is the macroscopic fluid velocity or averaged fluid flux per 
unit area (note the division by V instead of Vr): 

ii=� r udV. 
V JVr (42) 

Equation (41 ) is a constitutive relation governing the macroscopic flow; 
the linear relation between F -Fhydro and ii is a consequence of the linearity 
of the Navier-Stokes equation (20), which governs the flow on the micro
scopic scale (Neumann 1 977). Inserting Equation (41) into Equation (40) 
reduces the macroscopic fluid equation to 

(43) 

This is the usual form of Darcy's law (Batchelor 1 967, pp. 223-24; Bear 
1 972, pp. 1 19-25). 

Simplified Notation 

Once the macroscopic equations have been derived, it is convenient to 
simplify the notation by dispensing with the subscripts on V and the 
overbars used to denote averaged quantities. Accordingly, we rewrite 
Equation (43) in the form 

(44) 

Fluid flow within a noncompacting porous medium is determined 
by solving Equation (44) together with the macroscopic incompressi
bility condition V' u = O. In ground-water hydrology, it is common to 
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70 DAHLEN 

rewrite Equation (44) in the form u = -v-1prgK -V<I>, where 
<I> = (Prg)-'(Pr-Prg-x) is the piezometric head (Bear 1972, pp_ 122-23)_ 
The stress lis in the solid is related to that in the fluid by 

(45) 

whereas the aggregate or porous medium strcss 1I satisfies 

V -lI+pg = o. (46) 

Equations (44)-(46) are valid at every point x in the macroscopic medium. 

Effective Stress 

The Coulomb failure criterion, which we consider next, depends on the 
effective stress in the porous medium, defined by 

1I* 
= lI+PrI = (I-I',) (lIs+PrI). 

Equations (44)-(46) are readily combined to yield 

V -1I* +(I-1J)(Ps-Pr)g+vK- 1 
- u = 0, 

or, alternatively, 

(47) 

(48) 

(49) 

These equations involving the effective stress 1I* are commonly employed 
in soil mechanics and slope stability problems (e.g. Iverson & Major 1986). 
The second term [(I-1J)Psg] in Equation (49) is the gravitational attraction 
on the solid matrix, and the final term [1JvK-t - u] is the seepage force due 
to the motion of the fluid through the porous medium. The third term 
[-(1-1J)Vprl is frequently interpreted as an Archimedean buoyancy force 
acting on the solid matrix (Bear 1972, pp. 184-89), since that is what it 
reduces to if the fluid is in a hydrostatic rest state. 

Discussion 

In enumerating the body forces acting on a porous medium, it is necessary 
to distinguish which of the three stresses 1I, 1I" or 1I* is being considered
failure to do this was the cause of much of the controversy initiated by 
Hubbert & Rubey ( 1959). The aggregate stress 1I satisfies Equation (46); 
the only body force in this case is the direct attraction of gravity on the 
porous medium, pg. Equation (46) is valid even if the porosity is spatially 
variable and if there are nonhydrostatic pressure gradients causing fluid 
to percolate through the medium. If, instead, we wish to solve directly for 
the solid stress 1I" we must employ Equation (45). If the posority is uniform, 
(45) reduces to 
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CRITICAL TAPER MODEL 71 

V'. O's + Psg -'1(1- '1)-1 (V'Pr-Prg) = O. (50) 

This has the same form as (46) if the pore-fluid pressure is hydrostatic; 
more generally, however, we must add (1-'1)-1 times the seepage force 
'1VK-1 . u. Finally, if we wish to solve directly for the effective stress 0'*, we 
must employ Equation (49); in this case it is necessary to account for the 
Archimedean term - (1- rJ)V'Pr as well as for the seepage force . Once any 
of the three stresses (1, (1" or (1* has been determined, the others may be 
found subsequently; we are free to adopt the most convenient strategy. 

COULOMB FAILURE CRITERION 

There are a number of equivalent prescriptions of the Coulomb criterion; 
in reviewing these here, we account for cohesion as well as pore-fluid 
pressure. From a fundamental point of view, the strength of brittle 
materials is not well understood; in particular, there is no satisfactory 
explanation for the dependence on effective stress (1*. The Coulomb law 
is regarded here as a strictly empirical relation; laboratory data supporting 
its validity for rocks are reviewed by Jaeger & Cook (1969, pp. 136-82,210-
12) and Paterson (1978, pp. 16-50,71-87). The effective stress principle was 
first stated for soils by Terzaghi (1923); a historical review is given by 
Skempton (1960). 

Formulation in Terms of Principal Stresses 

The right side of Figure 7 shows a sketch of an idealized laboratory 
rock mechanics fracture experiment. Three variables can be controlled 
independently: the applied axial stress CT l> the confining stress CT 3, and 
the pore-fluid pressure Pr. The observed relationship between these three 
quantities at failure is 

CTI + Pr = B(CT3 + pc) - C. 
The constant B is related to the internal frictional angle 4> by 

1 +sin <P 
B= 

1 ' ,J,. ' -Sill ,/, 

The constant C is called the uniaxial compressive strength. 

(51) 

(52) 

The tractions exerted by the pistons and confining walls are transmitted 
to both the solid grains and the pore spaces, as shown in Figure 7 (right). 
The extent to which the fluid shares the load depends on the ratio AriA, 
where A is the total area of the boundary and Af is the fraction of that 
area lying within the pore spaces. This so-called areal porosity is equal to 
the volumetric porosity '1 if the sample is homogeneous and isotropic . 
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72 DAHLEN 

With that proviso, the experimentally applied tractions may be interpreted 
as the macroscopic principal stresses in the porous aggregate: 

0"1 = (l -tl)O"IS -tlPr, 

0"3 = (l-tl)0"3s- tlPr· 

The Coulomb law (51) can be rewritten in the form 

(1 +sin ¢) 
0" f = 1 _ sin ¢ 0" f - C, 

where the quantities 

(Jf = (Jl +Pf = (1-1])((Jls+Pr), 
(Jj = (J3+Pf = (l-I])((J3s+Pr) 

(53a) 

(53b) 

(54) 

(55a) 

(55b) 

are the effective principal stresses in the porous aggregate. With the sign 
convention adopted here, both O"f and O"I are negative in a typical experi
ment or in an active fold-and-thrust belt or accretionary wedge; failure 
occurs in the shaded region shown on the left in Figure 8 .  

Alternative Formulations 

Let tf; be the counterclockwise angle from the x-axis to the local axis of 
greatest principal stress in a material, as shown in the center of Figure 8. 
Any two-dimensional state of stress can be written in the form 

O"xx = -p-Rcos2tf;, 

O"zz = -p+Rcos2tf;, 

O"xz = R sin 2tf;, 

where 

R = [�(O"zz - 0" xx) 2 + O";z] 1/2, 

P = -!(O"xx+O"zz). 

(56a) 

(56b) 

(56c) 

(57a) 

(57b) 

The quantity R is the radius of the Mohr circle, and P is called the mean 
aggregate stress. The aggregate principal stresses 0" 1 and 0" 3 are given in 
terms of P and R by 

0"1 = -p-R, 

(J3 = -p+R. 

(58a) 

(58b) 

Alternatively, they may be written in terms of O"m (Jm and tf; in the form 

(59a) 

A
nn

u.
 R

ev
. E

ar
th

 P
la

ne
t. 

Sc
i. 

19
90

.1
8:

55
-9

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
C

hi
ca

go
 L

ib
ra

ri
es

 o
n 

01
/1

1/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



CT", 

CT"3 

uniaxial compressive 
strength C z 

CT, 

x 

CT"n 

�(CT·zz+CT·vvl-1 

Figure 8 (Left) Relation between the effective principal stresses crt and crt in a noncohesive Coulomb material. (Middle) Orientation of the 
principal stresses cr I and crJ with respect to the coordinate axes x, z. (Right) Mohr diagram depicting the state of effective stress within a noncohesive 
Coulomb wedge. 
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74 DAHLEN 

0"3 = O"zz-1 (O"zz-O"xx) ( 1 -sec2tjJ). (59b) 

The Coulomb criterion (54) can be written in terms of R, P, and Pr in the 
form 

R = S cos <p + (p -Pr) sin <p = S cos <p + P
* 

sin <p. 

The quantity S is the cohesion, given by 

S = 1C( 1 -sin <p) = 1C( 1 -s�n <p)1/2
. 

cos <p 1 + sm <p 

(60) 

(61) 

Shear failure within an idealized Coulomb material occurs on conjugate 
surfaces oriented at angles ± 1 (90° -<p) with respect to the axis of greatest 
principal stress 0" I. The shear traction I .. I on these planes is related to the 
effective normal traction 0": = O"n+Pr = (l-IJ)(O"ns+Pr) by 

(62) 

where J.l = tan <p is the coefficient of internal friction. The right side of 
Figure 8 shows a Mohr circle representation of the state of stress in a 
porous medium at failure. The quantities 1(O"zz-O"xJ = 1(0";-(J"�J and 
O"xz = O":z can be written in terms of 0"; = O"zz+ Pr and tjJ in the form 

I( * * 
) _ Scot <p - O"':z 

2 0" zz -0" xx -
csc <p sec 2tjJ -1 ' 

* _ tan 2tjJ [S cot <p -(J"':z] 
0" xz - csc <p sec 2tjJ -1 

. 

(63a) 

(63b) 

Equations (63) are the most convenient form of the Coulomb failure 
criterion to use in the critical taper analysis that follows. 

Noncohesive Approximation 

Coefficients of internal friction measured in laboratory fracture experi
ments are in the range J.l = 0.6-1.0 for virtually all rocks; the corresponding 
internal friction angles are in the range <p = 30-45° .  Cohesion S varies 
much more widely, from nearly zero up to 1 50 MPa, with a strong depen
dence on porosity, cementation, mineralogy, and other factors. The shale 
and sandstone sedimentary rocks that are the predominant constituents 
of fold-and-thrust belts and accretionary wedges generally have S = 5-10 
MPa (Hoshino et al 1972). Equations (62) and (63) show that such low 
values of cohesion are only important at shallow depths or where the pore
fluid pressure is very high; this suggests that a noncohesive critical taper 
model should be a reasonably good approximation for many geological 
applications. Equations (63) reduce, in the absence of cohesion, to 
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CRITICAL TAPER MODEL 75  

* l( * * ) 
_ - azz (6 ) 2 (J zz - (J xx -

.J.. 2.1• 1 ' 
4a 

esc'l'sec '1' -

a* = 
-tan2IjJa; 

(64b) xz ese ¢ sec 21jJ - 1 . 
It is noteworthy that these equations are satisfied by O's + Prl as well as by 
0'*, since a multiplicative factor of 1 - 1]  can be canceled on both sides. 

Friction 

Cohesion is also negligible in the case of frictional sliding on preexisting 
faults. Byerlee (1978) has shown that the laboratory coefficient of friction 
is remarkably uniform for a wide variety of rock types: ITI = -0.85a: 
for I (j� I < 200 MPa. Clay-rich fault gouges are characterized by lower 
coefficients, in the range 0.3-0.5 (Morrow et a1 198 1, Logan & Rauenzahn 
1987). 

NONCOHESIVE COULOMB WEDGE 

Theory 

Consider a submarine wedge with a planar upper surface, as shown in 
Figure 9; the results for a subaerial wedge can be recovered by setting the 
fluid density Pr equal to zero wherever it appears in a numbered equation 
below. We adopt a system of Cartesian coordinates, with x lying along 
the top of the wedge and z pointing obliquely down. Equation (46), the 
static equilibrium equation in terms of the aggregate stress 0', becomes 

aa xx aa xz . -- + -- -pgzsmrx = 0, ax az (65a) 

Figure 9 Idealized cross section of a submarine noncohesive critical wedge, showing the 

coordinate axes x, z and the angles 0:, p, 1/10, and 1/Ib' Strength in the wedge is proportional 

to the effective stress a:'z = a,,+p(, shown schematically by the shaded area on the right. 
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76 DAHLEN 

(65b) 

The boundary conditions on the upper surface of the wedge, z = 0, are 

(66) 

where D is the water depth. It is convenient to define the generalized 
Hubbert & Rubey (1959) pore-fluid to lithostatic pressure ratio by 

A = Pr-PrgD 
. 

-(Jzz-PrgD 
(67) 

We assume that A, P, and the coefficient of internal friction /l are constant. 
Recall that p is the macroscopic density of the porous aggregate, given by 
P = ( 1-11)Ps+I1Pr; if the wedge material is homogeneous, so that Ps is 
constant, then constancy of P implies constancy of the porosity IJ· Let 1/1 0 
be the angle between the x-axis and the axis of greatest principal stress (J 1> 
as shown in Figure 9. Equations (64)-(66) are then satisfied by 

[csc ¢ sec 21/10-2A+ IJ 
(Jxx = -PrgD-pgz coslY. A. 2'/' 1 ' csc'f'sec '1'0-

provided that 

tan 21/10 (1-PdP) 
--;---::-:----,- = tan (I.. 
csc ¢ sec2I/1o-1 I-A 

(68a) 

(68b) 

(68c) 

(69) 

Equation (69) relates the stress orientation angle 1/1 0 to the surface slope 
IY.; we have assumed that 1/1 0 is constant and have made use of the relation 
dDjdx = -sin IY.. 

Equations (68) are an exact solution for the state of stress in a sloping 
half-space on the verge of Coulomb failure. All that remains is to satisfy 
the basal boundary condition. We allow for the possibility of a different 
pore-fluid regime on the decollement fault by writing the basal sliding 
condition in the form 

(70) 

The quantity Pfb is the pore-fluid pressure on the base, and /lh is the 
basal coefficient of friction. Both /lb and the basal pore-fluid to lithostatic 
pressure ratio defined by 
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CRITICAL TAPER MODEL 77 

(71) 

are assumed to be constant. In reality, the pore-fluid pressure cannot 
exhibit a jump discontinuity such as that shown in Figure 9, but the 
introduction of two constant Hubbert-Rubey ratios A and Ab provides a 
simple means of allowing for elevated pore-fluid pressures in the decolle
ment zone. In order for a critical wedge to exist, its base must be a zone 
of weakness, i.e. 

(72) 

The shear stress and normal stress on a surface whose dip is {3 are given 
as usual by (Malvern 1969, pp. 102-11) 

'b = -!(O'zz- O"x,,) sin 2(a+{3)+ O'xzcos 2(a+{3), 

O"n = O"zz - 0" xz sin 2(a + {3) - -!(O'zz - 0" xzHl-cos 2(a + {3)]. 

(73a) 

(73b) 

Equations (68) and (73) are used to determine the dip of the surface on 
which the frictional sliding condition (70) is satisfied. We find, after some 
algebra, that {3 is given by 

(74) 

where 

(75) 

Equation (74) is the exact critical taper equation for a homogeneous 
noncohesive Coulomb wedge. It can be regarded as an equation of the 
form a + {3 = t/lb - t/I o( a), which implicitly gives the surface slope a in terms 
of the basal dip {3, the density ratio pr/ p, and the strength parameters /1, A ,  
/1b, and Ab' The quantity t/lb is the angle between the axis of greatest 
principal stress 0" I and the base of the wedge; thus, Equation (74) expresses 
an elementary relation between two internal angles and the opposite exter
nal angle of a triangle, as shown in Figure 9. Since the orientation of the 
principal stresses is everywhere the same, a noncohesive critical wedge is 
self-similar in the sense that a magnified version of any portion of it near 
the toe is indistinguishable from the wedge as a whole; this is a consequence 
of the absence of an inherent length scale in the equations of equilibrium 
and in the boundary and failure conditions. The exact critical taper equa
tion involves only the angles a and {3 and the dimensionless parameters 
Prj p, /1, A, /1b, and Ab' 

Equations (69) and (75) may be rewritten in the explicit form 
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78 DAHLEN 

1 • (Sin al) 1 
I rjJ 0 = "2 arCSlll sin ¢ -"2(X, 

The quantity a' is a modified surface slope angle defined by 
[(1-PdP) ] 

(x' = arctan I _ A 
tan (X , 

and ¢t, is an effective basal friction angle defined by 

I [ (I-Ab)] ¢b = arctan /lb I-A 
. 

(76a) 

(76b) 

(77) 

(78) 

The multivalued nature of the arcsin functions in Equations (76) gives rise 
to a multiplicity of solutions with both compressional and extensional 
states of stress within the wedge and both possible orientations of the 
shear stress tb on the basal decollement fault (Dahlen 1984). The solution 
applicable to an active fold-and-thrust belt or accretionary wedge is 
obtained by choosing both rjJ 0 and rjJb to be positive acute angles, as shown 
in Figure 9. A different but equivalent form of the general solution (for 
the special case of a noncohesive dry subaerial wedge) dates back to 
Coulomb's (1773) analysis of the load exerted on a rough retaining wall. 
Dahlen (1984) was unaware of this venerable result and rediscovered it in 
the present context. A more systematic derivation, which exploits the 
observed scale invariance, is given by Barcilon (1987). Lehner (1986) has 
shown how the various multiple solutions can be obtained by a graphical 
construction method on the Mohr diagram. 

Step-Up of Thrusts From the Basal Decollement Fault 

Because of the self-similarity of a homogeneous noncohesive wedge, the 
failure surfaces oriented at ± �(90° -¢) with respect to the axis of greatest 
compressive stress (J 1 have the same dip everywhere. Forward-verging 
thrusts step up from the basal decollement fault at an angle 

whereas the conjugate back-thrusts step up at a steeper angle 
01, = !(900-¢)+t/!b. 

(79) 

(80) 
The idealized geometry of these thrust faults and a Mohr diagram illus
trating the basal state of effective stress in a noncohesive Coulomb wedge 
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CRITICAL TAPER MODEL 79 

are shown in Figure 10. The failure stress Irion both the forward and 
backward thrusts at the point where they step up into the wedge is given 
by 

. ( cos¢ ) 
Irl = (P-Pr)gZSlllex sin2I/Jo 

. (81) 

The frictional resistance on the basal decollement fault at the same point 
IS 

(82) 

The quantity rb/lrl = sin 2I/Jb/cos ¢ is a depth-independent measure of the 
ratio of decollement fault strength to wedge strength that must be in the 
range 0 :s; rb/l r I :s; 1 for every active fold-and-thrust belt or accretionary 
wedge. The quantity pgz sin ex has been employed in glaciology for at least 
40 years to estimate the traction acting on the bed of a glacier (Orowan 
1949). It has also been used by Elliott (1976) and others to estimate the 
traction at the base of a subaerial thrust sheet. For a noncohesive wedge 
on the verge of Coulomb failure everywhere, this glacial rule-of-thumb is 
biased low by a factor sin 2I/Jb/sin 21/1 0, as shown by Equation (82). 

Figure 10 (Left) Geometry of self-similar thrust fault orientation within a critical non
cohesive Coulomb wedge. Forward-verging thrusts exhibit a shallower dip due to the inclina
tion between (J 1 and the base. (Right) Mohr diagram illustrating the basal state of effective 
stress. 
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80 DAHLEN 

Fluid Pressure Distribution and Fluid Flow 

The pore-fluid pressure distribution within a noncohesive critical wedge is 
given by 

Pr = Apgz cos IX. (83) 

In general , active fold-and-thrust belts and accretionary wedges are 
observed to be overpressured, i.e. the fluid-pressure ratio A exceeds the 
hydrostatic value Ahydro = prJ p. Such elevated pore-fluid pressures will give 
rise to fluid flow within the wedge, and these percolating fluids will exert 
a seepage force on the solid wedge material, as discussed above. If the 
permeability of the wedge material is isotropic (K = kI), then the flow in 
a submarine wedge will be everywhere upward and normal to the upper 
surfaces: 

A subaerial fold-and-thrust belt has an additional small downslope com
ponent driven by the topography: 

(85) 

In a steady-state wedge with a constant permeability k, the fluid flux u is 
pervasive and uniform. The source of the upward-flowing fluids is the 
dewatering of the sediments subducted beneath the wedge (Westbrook et 
al 1982, Moore 1989). 

Small-Angle Approximation 

The above results can be simplified by specializing to the case of a wedge 
having a narrow taper: IX« 1, f3« 1, 1/10« 1, and I/Ib« l .  This should be 
a useful approximation for many thin-skinned fold-and-thrust belts and 
accretionary wedges. The simplifications arise from the replacement of 
sines and tangents of small angles by the angles themselves; cosines and 
secants are replaced by one to the same order of approximation. The 
specification t/lb« I implies that the principal compressive stress 0"1 is 
quasi-horizontal; strictly speaking, this is only a valid approximation if 
the basal decollement fault is very weak [,ub( l-Ab)« ,u(I-A)]. 

The approximate critical taper equation takes the purely algebraic form 

(86) 
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CRITICAL TAPER MODEL 81 

This is the generalization of Equation (16) for a submarine wedge with 
pore-fluid pressure effects taken into account. 

Laboratory Sandbox Models 

Davis et al (1983) tested the predictions of the critical taper theory using 
an extremely simple laboratory model. Their apparatus consisted of a 
bottomless box containing well-sorted sand resting on a sheet of Mylar; 
the Mylar was supported by a flat rigid base whose dip was adjustable 
(Figure 11). The process of plate subduction was mimicked by slowly 
pulling the Mylar sheet beneath the sand; the frictional drag on the base 
induced deformation within the sand. Frictional drag on the transparent 
sidewalls was minimized by coating them with graphite before the sand 
was emplaced. The sand was stratified with passive black marker beds 
to allow the deformation within the wedge to be observed during an 
experimental run. Typically, the deformation was dominated by motion 
along a few discrete forward- and backward-verging thrust faults, as shown 
in Figure 12. The first faults formed near the rigid buttress at the back of 
the initially un tapered wedge, and the locus of active faulting then moved 
toward the toe; deformation ceased once the critical taper was attained. 

The loosely packed dry sand employed by Davis et al (1983) had a 
coefficient of internal friction fl :::::: 0.6 (</J :::::: 30°). The measured coefficient 
of friction between sand and Mylar was flb :::::: 0.3. The left side of Figure 
13 compares the theoretical and observed critical tapers for four values of 
the basal dip {3. Both the exact relationship between (J. and {3 and the small
angle approximation (16) are shown. Clearly, in this case, the small-angle 
approximation is valid; more importantly, the agreement of both the exact 

Figure 11 Schematic diagram of laboratory sandbox model. Actual length of rigid base is 
approximately I m. Figure in cap (Dan Davis) not shown to scale. 
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82 DAHLEN 

forward verging 
thrust 

Figure 12 Photographic side view of a deforming sand wedge, showing discrete forward
and backward-verging thrust faults. 

Dry noncohesive sand 
Mylar base 

�= 0.6 flb � 0.3 

OO+----oro�--r---�2-'---.�--4�o----r----sr·--�----�8�O---+ 
basal dip P 

b1 
, 

Dependence on 
basal friction 

j 
l'o,���������, . / 

t 
� iil 

approxImate 
theory 

Figure /3 (Left) Comparison of theoretical critical surface slope with measured slopes in 
sandbox experiments (Davis et al 1983, Dahlen et af 1984). Dashed line is the small-angle 
approximation" = 5.70 -�p. Dots represent the average of8 experimental runs at f3 = 00, 2 

at P = 2°, 14 at p = 30, and 9 at p = 6°. Bars denote the standard deviation. (Right) Theor
etical dependence of (J. (for f3 = (f) on the coefficient of basal friction /lb' Dashed line is t1,e 
small-angle approximation C! = i}!b' 
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CRITICAL TAPER MODEL 83 

and approximate results with the data is well within the experimental 
uncertainty. The observed basal step-up angles of the forward and back
ward thrust faults were compared with Equations (82) and (83) by Dahlen 
et al ( 1 984). The angles were measured off photographs such as that in 
Figure 12; only freshly formed faults undistorted by subsequent faulting 
or rotation were included in the observations. The predicted step-up angles 
for /l = 0 .6, /lb = 0 .3, and A = Ab = 0 are (jb = 2 10 and (j;' = 38°. These 
agree very well with the observed values (jb = 22 ± 2° and JI, = 38 ±4°. 

To test the predicted dependence on the coefficient of basal friction flb, 
Goldberg ( 1 982) conducted experimental runs using Mylar coated with 
sand as a base; the sand was glued to the Mylar base. The resulting surface 
slopes were significantly steeper than those produced on uncoated Mylar, 
in the range r:t = 10--- 12° compared with IX = 5-7° for {3 = 0° . The right 
side of Figure 13 shows the predicted dependence on flb for fl = 0 .6 and 
A = Ab = O. The increasing discrepancy betwecn the exact results and the 
small-angle approximation as flb approaches /l is evident; the approxi
mation is accurate to within 1 0% provided the basal friction is 1 0---1 5% 
less than the internal friction. Goldburg ( 1 982) did not attempt to measure 
/lb for a glued sand base directly; the observed wedge geometries suggest, 
however, that flb � 0.5. 

Mulugeta (1988) has recently performed more sophisticated modeling 
experiments using a motorized Plexiglass squeeze-box in a centrifuge. 
Experiments using sand with rounded grains gave results in good agree
ment with critical taper theory, but those using more angular sand did not. 
This was attributed to the greater degree of compaction of the angular 
sand; an alternative explanation might, however, be the extreme sensitivity 
of the taper to flb when flb � fl (Figure 13). 

GEOLOGICAL APPLICATIONS 

Both the success of the critical taper model on the laboratory scale and 
the scale invariance of the noncohesive theory encourage applications to 
more complicated and less well-constrained geological situations. We apply 
the model here to the two end-member wedges illustrated in Figure 2 .  

Taiwan 

The island of Taiwan is the site of an ongoing collision between the Luzon 
island arc situated on the Philippine Sea plate and the stable continental 
margin of China situated on the Eurasian plate. The divergence between 
the strike of the arc and the margin results in a southward-propagating 
collision that began about 4 Ma in the north and is occurring now at the 
southern tip of the island (Suppe 198 1) .  Farther to the south, the oceanic 
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84 DAHLEN 

crust of the South China Sea is subducting beneath the Luzon arc along 
the Manila Trench, forming a submarine accretionary wedge on the east 
side of the trench. The subaerial fold-and-thrust belt that comprises more 
than half of the island of Taiwan forms by an expansion of this accretionary 
wedge as the arc encounters the thick sedimentary deposits on the Chinese 
continental slope and shelf. At the southernmost tip of the island, the 
mountains have just risen above sea level; to the north, the wedge grows 
in both height and width to become the Western Foothills, Hsuehshan 
Range, and Central Mountains of Taiwan. 

This growth cannot continue unobstructedly because of the rapid tropi
cal erosion. Between 23°N and 2 5°N latitude, the mountains exhibit a 
remarkably uniform surface slope and width W = 90 km. This mor
phology suggests strongly that the wedge has attained a dynamic steady 
state, with the accretionary influx balanced by the erosive efflux. The local 
rate of convergence between the Eurasian and Philippine Sea plates is 
V = 70 km Myr- 1 (Seno 1 977, Ranken et al 1 984), and the thickness of 
the incoming sediments at the deformation front is estimated by drilling 
and seismic data to be h = 7 km (Suppe 1981) .  The average erosion 
rate, determined from both hydrological and geomorphological studies (Li 
1976, Peng et al 1977), is e = 5 .5  km Myr- 1 • The observed balance 
h V = e W confirms the steady-state nature of the deformation. North of 
25°N, the mountains are being rifted on their eastern flank by the back
arc spreading in the Okinawa Trough; this major change in tectonic con
ditions is caused by the southward propagation of a reversal in the polarity 
of subduction as the Philippine Sea plate subduets beneath the Eurasian 
plate to the northeast of Taiwan (Suppe 1 984). 

Taiwan is an ideal natural labor·atory for testing the validity of the 
critical taper model because of the abundant geophysical data acquired 
during petroleum exploration. The steady-state region is characterized by 
a regional surface slope a = 3° and a regional basal dip p = 6° (Davis et al 
1983). The basal dip is best determined in the front 30 km of the wedge 
by seismic reflection profiling, deep drilling, and the construction of retro
deformable cross sections (Suppe 1 980). Pore-fluid pressures are also 
known in the front 30 km of the wedge from formation pressure tests and 
geophysical logging of numerous deep wells. The measured pore-fluid to 
litho static pressure ratio is A = Ab = 0.67 (Suppe & Wittke 1977, Davis et 
al 1983). 

The critical taper model can be used to determine the range of basal and 
internal friction values consistent with the observed wedge geometry and 
pore-fluid pressures. The left side of Figure 1 4  shows the theoretical 
relation between (f. and P for various values of J1b and J1. The geometry of 
the Taiwan wedge is consistent with the model, but the parameters cannot 
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Figure 14 Theoretical surface slope C( versus basal dip f3 for the Taiwan fold-and-thrust belt (left) and the Barbados accretionary wedge (right). 
Many possible combinations of flb and fl are consistent with the observed geometries and pore-fluid pressures. 
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86 DAHLEN 

be well constrained; the coefficient of friction J.1.b on the decollement fault 
can be as low as 0.17 or in excess of 1. If J.1.h is in the range of typical 
laboratory measurements for rocks and clay-rich fault gouges (0.3-0.85), 
then J.1. must exceed flb by 20-30% . This is an indication that the Taiwan 
wedge is not so pervasively fractured that frictional sliding is possible on 
surfaces of optimum orientation everywhere. 

Barbados 

The Barbados accretionary complex is located to the east of the Lesser 
Antilles island arc, where 65 Ma oceanic crust of the North American 
plate is subducting beneath the Caribbean plate (Westbrook 1975, 1982). 
The local rate of convergence between the two plates is V = 2 km Myr- 1 
(Minster & Jordan 1978, Sykes et aI 1982). The thickness h of the incoming 
sediments varies by more than an order of magnitude, ranging from 7 km 
of mostly terrigenous sediments near the delta of the Orinoco River in the 
south to less than I km of hemipelagic muds in the north. The continuous 
accretion of these sediments since the Eocene has produced an accretionary 
prism of unusually great width (�300 km). 
The geometry and internal structure of the Barbados wedge are par

ticularly well known in the vicinity of 15°30'N latitude, where there has 
been a concentrated program of seismic reflection profiling and drilling 
(Westbrook et a11982, 1989, Moore et a11982, 1988). Only the uppermost 
two thirds of the thin incoming sediments in this region are being accreted 
at the deformation front; the underlying sediments are being underthrust 
beneath the toe, essentially un deformed (see Figure 2). The dip of the basal 
decollement fault is extremely shallow (f3 = 2°). The upper surface exhibits 
a slightly convex shape with a mean slope r:J. = 1.5°. 
The entering sediments have initial porosities of 50-60%, but the 

porosity decreases both with depth and with distance to the deformation 
front as a result of compaction and dewatering (Bray & Karig 1985). If 
the average porosity for the wedge as a whole is 17 = 30%, then the average 
value of the aggregate density of the porous medium is p = 2000 kg m - 3. 
Pore-fluid pressures are not nearly as well known in Barbados or any other 
accretionary wedge as they are in Taiwan. A single estimate obtained 
inadvertently at Deep Sea Drilling Project Site 542 during an attempt to 
free stuck drill string suggests that the pore-fluid to litho static pressure 
ratio near the deformation front is very high (A � Ab � 0.9-1). The ubiqui
tous presence of mud volcanic activity (Westbrook & Smith 1983) as well 
as the narrowness of the taper provide additional evidence for nearly 
litho static fluid pressures. 
The right side of Figure 14 shows the theoretical relation between r:J. and 

f3 for submarine wedges having p = 2000 kg m- 3 and A = Ab = 0.95. As 
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CRITICAL TAPER MODEL 87 
in the case of Taiwan, the Barbados observations are consistent with the 
critical taper model, but they place very little constraint on the friction 
parameters f-Lb and f-L. The constraint that J1-b must be greater than 0.27 is 
not very robust because the pore-fluid pressure data are so circumstantial. 

Heat Flow Constraint on Friction in Taiwan 

An increase in {Lh increases the critical taper, whereas an increase in J1-
decreases it; this is the reason that the observed or estimated geometries 
and pore-fluid pressures in Taiwan and Barbados cannot constrain the 
level of friction. Twenty years ago, Brune et al (1969) pointed out that the 
level of frictional stress on the San Andreas fault could be determined by 
measuring the heat flow anomaly produced by frictional heating. Since 
that time, an extensive program of heat flow measurements has failed to 
reveal the expected narrow anomaly around the fault (Henyey & Wasser
burg 1971, Lachenbruch & Sass 1973, 1980, 1988). In Taiwan, there is a 
substantial heat flow anomaly that can be attributed to brittle frictional 
heating; Barr & Dahlen ( l989a,b) have used this anomaly to infer the 
effective coefficient of basal friction. A steady-state thermal model of the 
Taiwan fold-and-thrust belt was developed for this purpose; both shear heat
ing on the decollement fault and internal strain heating within the deform
ing brittle wedge were incorporated in a mechanically consistent manner. 
The left side of Figure 15 shows a contour map of the observed surface 

heat flow in Taiwan; the data were collected by Lee & Cheng (1986) from 
more than 1 00 oil wells, geothermal wells, and shallow boreholes. Prior to 
contouring, a robust smoother was applied to suppress spurious obser
vations and enhance the regional pattern. In the steady-state region 
between 23°N and 25°N the smoothed contours are roughly parallel to 
the strike of the fold-and-thrust belt; the heat flow increases from its 
tectonically undisturbed value of 100 m W m - 2 at the deformation front 
to more than 240 mW m-2 at the rear. The smoothed data between 23°N 
and 25°N are shown projected along strike on the right side of Figure 1 5. 
Theoretical heat flow curves for various values of the quantity {Lb( l - Ab) 
are shown superimposed for comparison; in each case, the corresponding 
values of the wedge strength parameters J1- and A are chosen to be consistent 
with the observed Taiwan geometry. The heat flow data are best fit by 
{Lb(l - Ab) = 0. 16. The effective coefficient of basal friction {Lb(l - Ab) has 
been chosen as the fitting parameter rather than {Lb, since the basal pore
fluid ratio Ab is only well determined in the vicinity of the deformation 
front. If the value measured there prevails along the entire decollement 
fault, the inferred coefficient of sliding friction is J1-b = 0.5. This is lower 
than Byerlee's universal value of 0.85 for most rocks; it is, however, within 
the range of measured friction values for clay-rich fault gouges. 
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Figure 15 (Left) Smoothed surface heat flow on the island of Taiwan. (Right) Theoretical heat flow versus distance from the deformation front 
for various values of the effective coefficient of basal friction. Values in the shaded range U-tb( l - Ab) = O.l2--{).20] provide acceptable fits to the 
smoothed data (shown as dots). 
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APPROXIMATE GENERAL THEORY FOR A 

THIN-SKINNED WEDGE 

The exact critical taper model described above is based on a number of 
extreme simplifying assumptions; in addition to ignoring cohesion, we 
have assumed that all the parameters p, A., Ji, A.b, and Jib are constant. 
Clearly, such simplifications are not realistic; on the other hand, there has 
been little motivation to develop a more general model in view of the 
almost complete lack of deep in situ measurements of pore-fluid pressure 
and other variables in active wedges. 'This situation is likely to change 
during the next decade as the geophysical exploration and characterization 
of active fold-and-thrust belts and accretionary wedges continue. Seismic 
data have already been used to infer the porosity distribution of two active 
wedges, Barbados (Westbrook et al 1989) and the Nankai Trough off 
southwestern Japan (Karig 1986). In this section, we extend the critical 
taper model to take into account spatial variations in porosity, pore-fluid 
pressure, and other parameters. For simplicity, we assume the principal 
stresses 0" ]  and 0"3 are nearly horizontal and vertical, respectively, and 
consistently invoke small-angle approximations; the resulting theory for a 
thin-skinned wedge is quasi-analytical. 

Theory 

We consider a geometrically irregular submarine wedge, as shown in 
Figure 16; the case of a subaerial wedge can be recovered by setting the 
fluid density Pr equal to zero, as before. To begin with, we employ x- and 
z-axes that are locally aligned with the top of the wedge, as shown in the 
top sketch in Figure 16. The small-angle equations of static equilibrium 
within the wedge are then 

va xx vaxz 
vx + Tz - pga � 0, (87a) 

(87b) 

The quantity oax./ox can be ignored to first order in Equation (87b); the 
vertical (principal) stress due to the overlying water and porous wedge 
material is then found by integration to be 

O"zz � 0" 3 � -PrgD -g f p dz. (88) 

The pore-fluid pressure Pr within the wedge is written in the form 
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90 DAHLEN 

Figure 16 (Top) Schematic cross section of a geometrically irregular thin-skinned wedge 
with spatially variable mechanical properties. (Bottom) In applying the approximate critical 
taper equation (98), it is permissible to employ horizontal and vertical x- and z-axes. 

Pr = PrgD+Ag f p dz. (89) 

Equation (89) simply serves to define the quantity A; both A and the 
aggregate density p = ( l -IJ)Ps+IJPr are regarded as functions of x and z 
within the wedge. In the small-angle approximation, it is also permissible 
to ignore the quantity o"';z in Equation (57a); the cohesive Coulomb failure 
criterion (60) thus takes the form 

'!(O"zz - O"xJ � Scos 1> - �(O"xx + O"zz + 2Pr) sin 1>. (90) 
Equation (90) can be solved for the horizontal (principal) stress: 

(Jxx ::::O (J I  ::::0 -PrgD-C-gA J: p dz, (91 )  
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where 

( sin c/> ) I\. = 1 +2(1-,1.) I-sin c/> • 

CRITICAL TAPER MODEL 91 

(92) 

The uniaxial compressive strength C and the angle of internal friction c/> 
are also allowed to vary arbitrarily with position (x, z) inside the wedge. 
The shear traction on the basal decollement fault, in the small-angle 

approximation, is 

(93) 
To find axz on z = H, we integrate Equation (87a); this gives 

In writing Equation (94), we have used the fact that dD/dx � - ex. The 
final result for Tb is most succinctly stated in terms of the depth-averaged 
quantities 

1 iH p =  
H Jo p dz, 

_ 1 [H C = H Jo Cdz, 

We find, after some reduction, 

(95a) 

(95b) 

(95c) 

Tb � (P -Pr) gHex+ C(rx+ {3) + (f - p)gH(rx+ {3) 
+ H(dC/dx) + !gH2 (df/dx). (96) 

The basal boundry condition requires that Tb be equal to the coefficient of 
basal friction times the effective normal traction; we allow also for the 
possibility of a basal cohesion or plasticity Sb by writing 

(97) 

Upon equating Equations (96) and (97), we obtain the approximate critical 
taper equation: 
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92 DAHLEN 

a + f3 � [(l - Prlft)f3 + llb(l - Ab)]�gH+ Sb - [dC/dx + !gH (dr/dx)]H
. (r - Pr) gH+ C 
(98) 

Once this result has been obtained, it is permissible to ignore the slight 
variable tilt of the x- and z-axes at different points in the wedge, as shown 
in Figure 1 6  (bottom). At every horizontal location x, we use Equations 
(95) to calculate the vertical averages p, C, and r. The critical taper 
equation (98) then relates the local taper a + f3 to the local properties p, C, 
r, Sb, Ilb( 1 - Ab), and the local thickness H. The approximations that have 
been employed are valid as long as the base is relatively weak and the 
horizontal gradients in the properties are small. Since a + f3 � dH/dx, we 
can regard Equation (98) as a first-order ordinary differential equation of 
the form dH(dx � F(x, H). This equation can be integrated to find the 
wedge thickness H(x), given the thickness H(O) = h of the entering sedi
ments at the deformation front x = O. 

Special Cases 

If all the properties are constant within the wedge, Equation (98) reduces 
to 

(99) 

This is the generalization of Equation (86) to a wedge with cohesion and 
basal plasticity. In the lithostatic limit A = Ab = 1, Equation (99) becomes 

f3 
(l - prlp) f3 + Sb/pgH 

a + � (l - Pr/p) + C/pgH . 
( 100) 

This is the small-angle solution for a perfectly plastic wedge obtained by 
Chapple ( 1978). 

It is very common for pore-fluid pressures to be hydrostatic at shallow 
depths and overpressured at deeper depths. If cohesion and basal plasticity 
are ignored and both p and 4> are assumed to be constant, Equation (98) 
reduces to 

( 10 1 )  

where 
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x = 2H- 21
H 

zA dz. ( 1 02) 

Equation ( 102) shows how vertical variations in the pore-fluid pressure 
ratio are averaged in such a way that the bottom of the column is more 
strongly weighted than the top; intuitively, it makes sense that the deeper 
portions of a wedge should be more important in determining the overall 
wedge strength. 

To model the observed convexity of the Barbados wedge, Zhao et al 
( 1986) considered a linear increase in cohesion with depth, S = Kz. Equa
tion (98) reduces in this case to 

( 1 03) 

Equation (103) assumes that there is no basal plasticity and that all the 
wedge properties except the cohesion are constant. Zhao et al ( 1986) 
estimated the horizontal variation of K by a piecewise application of an 
exact critical taper model having S = Kz; such a procedure ignores the 
term involving the derivative dK/dx in Equation ( 1 03). Fletcher ( 1 989) 
derived Equation ( 103) and showed that the neglect of dK/dx could lead 
to nonnegligible errors. Another defect of the Zhao et al ( 1986) analysis 
is their neglect of density variations; they treated p as constant in spite of 
the pronounced porosity variations. 

Decollement Fault in Salt 

Stresses in geological materials are limited by brittle fracture and frictional 
sliding at low temperatures, but by thermally activated processes 
(especially dislocation climb) at high temperatures (Brace & Kohlstedt 
1980). Figure 17 illustrates the idealized dependence of typical rock strengths 
on depth; brittle frictional behavior is seen to prevail in the upper 10-15 
km of the crust except in the case of evaporites, which flow plastically at 
substantially shallower depths. This extreme weakness of salt at upper 
crustal pressures and temperatures has an important effect on the mech
anics of fold-and-thrust belts above salt, as noted by Davis & Engelder 
( 1985). 

The approximate critical taper of a fold-and-thrust belt whose decolle
ment fault is in a salt horizon is given by Equation (99) with /1b(l - Ab) = O. 
The depth-independent plastic strength of salt is Sb � I MPa; fold-and
thrust belts overlying salt have extremely narrow tapers (a +  f3 � 1°), since 
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o 
Strength Jer I  - er3J in MPa 

200 400 600 

O �-----J------�-----J----__ � ____ � ______ -L ____ -J 

E "'" 
.S 
.s:: a. (]) o 

1 0  

20 

Brittle frictional strength 
(noncohesive, �l ; 0.6) 

Figure 17 Idealized strength of rocks as a function of depth. Brittle frictional strength is 
largely independent of rock type, whereas plastic strengths vary considerably. This leads to 
a corresponding variation in depth to the brittle-plastic transition: 0-2 km for evaporites, 
10-15 km for quartzofeldspathic rocks, and 25-30 km for olivine-rich rocks. Plastic strengths 

are extrapolated from laboratory data by assuming a typical geologic strain rate and geo
thermal gradient. 

Sb/ pgH « I if H is greater than a few kilometers. A cross section of the 
Zagros fold-and-thrust belt overlying the Hormuz salt in western Iran is 
shown in Figure 1 8; the extremely subdued topography is shown to true 
scale at the top. 
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�� 
10x vertical exaggera1ion 
o 100 km 

, I 

S 

4 km  
2 

== __ � O  

Figure 18 Cross section of the Zagros fold-and-thrust belt (Farhoudi 1978). Broad sym
metrical anticlines are cored by diapiric salt, denoted by the dark stipple. 

Forward-verging thrust faults generally predominate in fold-and-thrust 
belts not underlain by salt, since their shallower dip allows them to accom
modate a greater amount of horizontal shortening than the steeper dipping 
back-thrusts for a given increase in gravitational potential energy. Salt
based fold-and-thrust belts, in contrast, generally lack a dominant sense of 
vergence; they are commonly characterized by broad, relatively symmetric 
folds (Davis & Engelder 1985). The theoretical step-up angles of forward
and backward-verging thrust faults are very nearly equal (6;' � 6b) because 
the principal compressive stress (J I is almost parallel to the base (Figure 
19) .  Simply stated, a fold-and-thrust belt riding on salt cannot tell from 
which direction it is being pushed. 

- - - - - - -- - - ITI 

salt strength 

in salt 

Figure 19 (Left) Schematic cross section illustrating the narrow taper and nearly sym
metrical forward- and backward-verging thrust faults that characterize a fold-and-thrust belt 
overlying salt. (Right) Mohr diagram illustrating the basal state of effective stress. Compare 
with Figure 10. 
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96 DAHLEN 

Brittle-Plastic Transition 

Basal plasticity can be important even in the absence of salt for wedges that 
have grown large enough to protrude beneath the brittle-plastic transition. 
Once this occurs, the shcar traction on the basal decollement fault is 
abruptly decreased; the resulting reduction in the critical taper is again 
roughly described by Eq uation (99). A noneroding or slowly eroding wedge ' 

can only grow self-similarly if the drag on its base is purely frictional. It 

is thus the existence of a brittle-plastic transition at 1 0-1 5 km depth 
that ultimately limits the height of very wide fold-and-thrust belts and 
accretionary wedges. This provides a natural explanation for the break in 
topographic slope of the Higher Himalaya at the edge of the Tibetan 
Plateau (Figure 20). 

CONCLUSION 

The critical taper model is a useful paradigm for understanding the large

scale mechanics of fold-and-thrust belts and accretionary wedges. The 
theoretical formulation for a homogeneous noncohesive wedge is exact and 
entirely analyticaL If one eschews elegance, the model can be generalized to 
take into account the spatial variation of mechanical properties and irregu
lar geometries. The approximate general theory discussed here is limited to 
narrow tapers; exact, purely numerical models can, however, be developed 
using plastic slip-line theory (Hill 1 950, pp. 1 28�60, 294-300; Stockmal 
1 983) or the finite element method. Hydrological models of pore-fluid 
pressures and flow rates in accretionary wedges have recently been 
developed (Shi &.Wang 1 988, Screaton et aI 1 989), and a logical next step 
would be to combine these with the critical taper model. The principal 

N 
• n • 2 

Tethys Higher 
I", - 0'31 Himalaya Himalaya 

o 

300 MPa 

True Scale 
o m  • • 

s 

o .�� � 1Q 
o 50 km 
, ! • 

za 3)( vertical exaggeration 
Figure 20 Schematic cross section of the Himalayan fold-and-thrust belt, showing the break 

in topographic slope in the Higher Himalaya at the edge of the Tibetan Plateau. A typical 
north-south topographic profile (along 82Q30'E) is shown to true scale at the top. 
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, CRITICAL TAPER MODEL 97 
obstacle at the present time is the meagerness of available data; the develop
ment of more detailed models must be preceded by the acquisition of 
structural, pore-fluid pressure, and heat flow data from active wedges. 
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